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Abstract

Secure multiparty computation (SMC) is now a research
focus in the international cryptographic community. SMC
makes participants perform secure computation without
revealing their own private data. In this paper, we dis-
cuss a secure computational geometry problem, that is, to
privately determine whether two straight lines intersect.
This is a basic and important SMC problem. Almost all
protocols addressing this problem are applicable for in-
tegers, which limits their applications. So, we propose
an efficient scheme for rational numbers. We proved that
the protocol is secure under the semi-honest model by us-
ing the simulation paradigm. In addition, we propose a
protocol which can be applied to space problems. This
protocol can be used as a building block to construct new
protocols to solve some space problems. Finally, we an-
alyze the computational complexity and communication
complexity of the protocol, and present an experimental
result.

Keywords: Secure Multi-party Computation; Simulation
Paradigm; Straight Line Intersection

1 Introduction

Secure Multiparty Computation (SMC) [3] was initially
introduced by Yao as the millionaires’ problem [16] in
1982 for two parties. Then Ben and Goldwasser [2] ex-
tended SMC to multiple parties and established the the-
oretical basis of SMC [5, 13]. The heart of SMC is that
parties can cooperatively compute a function of their own
private data without disclosing any private information.
Hence, the paries are able to maximize their interests
while protecting their data privacy.

Privacy-preserving computational geometry is a
promising research area of SMC. It mainly focuses
on protecting the security of computational geometry.

Many privacy-preserving computational geometry prob-
lems have been studied, such as point-inclusion, intersec-
tion of two convex polygons, convex hulls. Du [1] intro-
duced the problem of the intersection of two straight lines.
Later, Luo [10] presented and solved the problem.

The relationship between two straight lines has signif-
icant application in practice. For instance, the spy of
Country A observes activity an route L1 while another
spy in Country B observes an activity route L2. They
are willing to cooperate to figure out whether L2 is rel-
evant to L1 and the result is helpful for both countries
to understand the trend of the target’s behaviors, such
as some suspected terroristic organizations, the military
dynamics of a dangerous country. However, neither A nor
B wants to disclose its observation to each other because
they don’t believe each other. It is possible that Coun-
try B exploits the intelligence information of Country A
(or sells it to the target) to expose the spy of Country
A, resulting in the spy being persecuted. So the problem
of the relationship between two straight lines is of great
significance.

A number of scholars have proposed protocols for this
problem. For example, Luo introduced and solved the
problem of the intersection of two straight lines. The
protocol is helpful, but it only works for integer points
on the lines [10]. In our real life, we usually choose some
rational points on the lines to meet the needs of numerous
practical applications. So we propose an efficient protocol
based on the plane geometry to solve this problem. Then
we use the simulation paradigm to prove the security of
the protocol. In addition, we propose a protocol which
can be applied to some space problems. This protocol can
be used as a building block to construct new protocols
to solve some space problems. Finally, we present the
computation and communication complexity of different
protocols and show an experimental result.
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2 Preliminaries

2.1 Security

Two-party Computation. Two-party computation is
a random mapping process where a random input
pair is mapped to a random output pair, which is
represented below:

f : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗ × {0, 1}∗

That is to say, for an arbitrary given input pair,
the function will output a pair of random variables
(f1(x, y), f2(x, y)). The function is denoted as

(x, y) −→ (f1(x, y), f2(x, y))

Semi-honest parties [8]. Our work assumes that all
parties are semi-honest. loosely speaking, a semi-
honest party is one that follows the protocol prop-
erly, except that it keeps a records of all its inter-
mediate computations and might try to derive the
other parties’ private inputs from the record. Gol-
dreich [4] proved that, given a protocol that privately
computes functionality f in the semi-honest model,
we can construct a protocol by introducing macros
that force each party either to behave in the semi-
honest manner or to be detected, by which case we
can privately compute functionality f in the mali-
cious model. The semi-honest model is not merely an
important methodological locus but may also provide
a good model for many settings. It suffices to prove
that a protocol is secure in the semi-honest setting.

Privacy by simulation [8]. Intuitively, a protocol is
private if what a party can efficiently compute by
participating in the protocol can also be efficiently
computed from its input and output only. This as-
sumption is formalized by the simulation paradigm,
which requires that a party’s view in a protocol exe-
cution can be simulated by its input and output only.
If so, the parties learn nothing from the protocol ex-
ecution itself, and the protocol is secure.

Definition 1. For a functionality f , π privately computes
f if there exist probabilistic polynomial-time algorithms,
denoted by S1 and S2 such that

{S1(x, f1(x, y)), f2(x, y)}x,y
c≡ {viewπ1 (x, y), outputπ2 (x, y)}x,y (1)

and
{f1(x, y)), S2(y, (x, y))}x,y

c≡ {viewπ1 (x, y), outputπ2 (x, y)}x,y (2)

where
c≡ denotes computational indistinguishabil-

ity, viewπ1 (x, y) and viewπ2 (x, y), outputπ1 (x, y) and
outputπ2 (x, y) are related random variables, defined as a
function of the same random execution.

2.2 A Symmetric Cryptographic Solution
to Determine Whether Two Numbers
Are Equal

Li et al. [9] proposed a secure solution to determine
whether two numbers are equal by using XOR operations.
This cryptographic protocol is much more efficient than
others because the computational complexity of symmet-
ric encryption is much lower than that of public key en-
cryption. We use this scheme as a basic module to design
Protocol 3 in Section 3. Li’s protocol is as follows:

Protocol 1: A symmetric cryptographic solution to de-
termine whether two numbers are equal.

Inputs: Alice has a number a, Bob has a number b.

Output: Whether a = b.

Setup: Alice and Bob choose random numbers r ∈
{0, 1}m and s ∈ {0, 1}n(m,n > 64), respectively, and
compute c = a⊕ r, d = b⊕ s. Then exchange c and
d.

Encryption Process: Alice and Bob compute a′ = d⊕
r = b⊕s⊕r, a′ = c⊕s = a⊕r⊕s, respectively. Then
they use hash to compute hash(a′) and hash(b′),
respectively. Finally, they exchange hash(a′) and
hash(b′).

Decryption Process: Alice and Bob judge whether
hash(a′) = hash(b′). If it holds, then a = b; oth-
erwise a 6= b.

2.3 Area of the Triangle In the Plane

There are three points P1(x1, y1), P2(x2, y2) and
P3(x3, y3) with rational coordinates. The area of the tri-
angle constituted by these three points can be computed
as follows:

SMP1P2P3
=

1

2
[y1(x3−x2)+x1(y2−y3)+x2y3−x3y2] (3)

If P1(x1, y1) , P2(x2, y2) and P3(x3, y3) is in counterclock-
wise order, then the area value is positive; otherwise the
area value is negative.

2.4 Protocol Based on the Formula for
the Area of the Triangle In the Plane

Li et al. proposed a protocol [7] for securely computing
the area of a triangle, but the protocol discloses the slope.
Then they improved and developed the protocol [6]. We
use this protocol as a basic module to design Protocol 3
in Section 3. The protocol is as follows:

Protocol 2: Securely compute Area of a Triangle in the
Plane.

Inputs: Alice’ s input is point P1(x1, y1), and Bob’ s in-
puts are point P2(x2, y2) and point P3(x3, y3).
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Output: SMP1P2P3 .

Setup: Paillier’s homomorphic encryption scheme
(G,E,D), Bob runs G(τ) (τ is the given security
parameter) to generate a key pair (pk, sk).

Encryption Process:

Bob executes the following:

1) Computes a = x3 − x2, b = y2 − y3, c = x2y3 −
x3y2. It is straightforward that the signs of a
and b are different. We assume that a > 0,
b < 0.

2) Chooses a random number r (r ∈ Z∗n) such that
b1 = b+ r > 0.

3) Uses the public key pk to encrypt a and b1, the
results are denoted by E(a) and E(b1), and then
sends E(a), E(b1), r and pk to Alice.

Alice computes

E(S1) = E(ay1 + b1x1) = E(a)y1 · E(b1)x1

R = rx1

and then sends E(S1) to Bob.

Decryption Process:

Bob decrypts E(S1)

S1 = ay1 + b1x1 = ay1 + b1x1 + rx1

and computes

S2 = S1 + c = ay1 + b1x1 + c+ rx1

Bob sends S2 to Alice.

Alice computes

SMP1P2P3
=

1

2
(S2 −R) =

1

2
(ay1 + b1x1 + c)

Alice tells Bob the result.

3 Determining the Relationship
Between Two Straight Lines
and Its Extension

In this section, we aim at solving the problem of privately
determining the relationship between two straight lines.
That is, Alice and Bob desire to determine the relation-
ship between their own lines without disclosing the lines’
information. This problem can be generalized as follows.
Alice has L1 : y = k1x+b1 and Bob has L2 : y = k2x+b2.
They want to know whether these two lines intersect. In
addition, they want to know whether L1//L2 or L1 ⊥ L2

without disclosing information about the lines. Many pro-
tocols have been put forward in recent years to solve this
problem. Luo [10] put a scheme with high computational

Figure 1: Two lines intersect

Figure 2: Two perpendicular lines

complexity. Yang [15] improved the protocol by using
Paillier homomorphic encryption [14]. The Paillier public
key encryption has additively homomorphic [11] property.
Yang’s protocol is of high computational complexity due
to many modular exponentiation operations. Although
Luo and Yang’s protocols solved the problem, their pro-
tocols are only limited to the integer field. In real life,
k1(k2) or b1(b2) are more likely to be rational numbers.
The existing protocols are not applicable. So it’s neces-
sary to design a protocol to meet this requirement and we
propose a protocol to solve this problem.

3.1 An Efficient Protocol for Determin-
ing the Relationship Between Two
Straight Lines

Alice has a private line L1 : y = k1x + b1 where k1
and b1 are rational numbers, Bob has a private line
L2 : y = k2x+ b2 where k2 and b2 are also rational num-
bers. They can separately and secretly compare the slopes
and intercepts. The two lines are parallel if they have the
same slopes and different intercepts. They are coincident
if they have the same slopes and intercepts. Otherwise,
the two lines intersect or may be perpendicular.

In the latter situation, Alice and Bob separately shift
L1 and L2 to go through the origin. Alice randomly
chooses a point denoted by P1(x1, y1) on L1, Bob ran-
domly chooses two points denoted as P2(x2, y2) and
P3(x3, y3) on L2. These three points constitute a trian-
gle M P1P2P3. We denote the height of M P1P2P3 by h,

the area of M P1P2P3 by SMP1P2P3 . h =
2SMP1P2P3

P2P3
. We

determine whether h = op1 (See Figure 1 and Figure 2).

If h = op1, L1 and L2 are perpendicular.
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If h 6= op1, L1 and L2 intersect.
In order to describe clearly, we define

P (L1, L2) =


0, L1, L2 intersect

1, L1, L2 are parallel

2, L1, L2 are coincident

3, L1, L2 are perpendicular

Protocol 3: An Efficient Protocol for Determining the
Relationship between Two Straight Lines

Inputs: Alice’ s private line L1 : y1 = k1x + b1, Bob’ s
private line L2 : y2 = k2x+ b2.

Output: P (L1, L2)

Setup: Suppose that k1 = u1

v1
where gcd(u1, v1) = 1, and

k2 = u2

v2
where gcd(u2, v2) = 1. Alice and Bob use

Protocol 1 to compare whether u1 = u2, v1 = v2,
respectively. If u1 = u2 and v1 = v2, then k1 = k2.
Similarly, Alice and Bob determine whether b1 = b2.
If k1 = k2 and b1 = b2, then L1 and L2 are coincident.
Otherwise, Alice and Bob do the following.

Alice and Bob separately shift L1 and L2 to go through
the origin. Alice randomly chooses a point P1(x1, y1)
on L1, and Bob randomly chooses two points de-
noted by P2(x2, y2) and P3(x3, y3) on L2. These three
points constitute a triangle M P1P2P3.

Encryption Process: Alice and Bob use Protocol 2 to
privately compute the area of M P1P2P3.

Decryption Process: Bob computes h, and Alice com-
putes op1. Then they use protocol 1 to determine
whether h = op1. If

h = op1

L1 and L2 are perpendicular. Otherwise, L1 and L2

intersect. Then they can get the result of P (L1, L2).

Thus, it’s important for us to use the idea, but almost
all protocols used to address this problem only work for
planes. This limits their applications. Thus, we propose
an efficient protocol for spaces.

3.2 A Secure Computational Protocol for
Triangle Area in Spaces

By the formula, the area of the triangle constituted
by three rational points P1(x1, y1, z1), P2(x2, y2, z2) and
P3(x3, y3, z3) in spaces is as follows:

S4P1P2P3
=

1

2

√√√√√
∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
z1 x1 1
z2 x2 1
z3 x3 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
2

(4)

which yields:

S4P1P2P3
=

1

2
{[x1(y2 − y3) + y1(x3 − x2) + y2x3 − y3x2]2

+[y1(z2 − z3) + z1(y3 − y2) + y2z3 − y3z2]2

+[z1(x2 − x3) + x1(z3 − z2) + z2x3 − z3x2]2} 1
2 .

We design a protocol to securely computes the area of
a space triangle, and it is shown as follows.

Protocol 4: An efficient protocol for computing the
space triangle area

Inputs: Private rational points P1(x1, y1, z1),
P2(x2, y2, z2) and P3(x3, y3, z3), where Alice has P1

and Bob has P2, P3.

Output: S = 1
2{[x1(y2−y3)+y1(x3−x2)+y2x3−y3x2]2+

[y1(z2 − z3) + z1(y3 − y2) + y2z3 − y3z2]2 + [z1(x2 −
x3) + x1(z3 − z2) + z2x3 − z3x2]2} 1

2

Encryption Process:

Bob does the following:

1) Randomly chooses a random number k ∈ Z∗n.
(k is accurate to three decimal places. )

2) Computes

a = y3 − y2, b = x3 − x2, c = y2x3 − y3x2
d = z3 − z2, e = y2z3 − y3z2, f = z2x3 − z3x2

and constitutes vectors

A = ((−ak, bk), (−dk, ak), (−bk, dk))

3) Sends A to Alice.

Alice randomly chooses three random numbers r1,r2,r3 ∈
Z∗n, and computes

T1 = −akx1 + bky1 + r1

T2 = −dky1 + akz1 + r2

T3 = −bkz1 + dkx1 + r3

Then Alice sends T1, T2, T3 to Bob.

Bob computes
T ′1 = T1 + kc

T ′2 = T2 + ke

T ′3 = T3 + kf

and sends T ′1, T
′
2, T

′
3 to Alice.

Alice computes

D1 = T ′1 − r1
D2 = T ′2 − r2
D3 = T ′3 − r3
T = D2

1 +D2
2 +D2

3

and tells T to Bob.
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Decryption Process: S = 1
2kT

1
2 = 1

2{[x1(y2 − y3) +
y1(x3 − x2) + y2x3 − y3x2]2 + [y1(z2 − z3) + z1(y3 −
y2)+y2z3−y3z2]2+[z1(x2−x3)+x1(z3−z2)+z2x3−
z3x2]2} 1

2 and tells the result to Alice.

Correctness: By Formula (4), the area of M P1P2P3 can
be computed from P1(x1, y1z1), P2(x2, y2, z2) and
P3(x3, y3, z3). So Protocol 4 is correct.

Privacy: In order to analyse the security, we check
whether each party can obtain the others’ private in-
formation by executing Protocol 4. A brief analysis
of the privacy of Protocol 4 is given as follows.

According to Protocol 4, Alice are supposed to re-
ceive a, b, d that contain Bob’s unknown variables:
x2, x3, y2, y3, z2, z3. It is obvious that the six un-
known variables cannot be derived from three equa-
tions. Therefore, Alice cannot obtain Bob’s secret
points.

Bob can only gain Alice’s information from three
equations as follows:

T1 = −akx1 + bky1 + r1

T2 = −dky1 + akz1 + r2

T3 = −bkz1 + dkx1 + r3

Because of the random numbers r1, r2, r3 which Alice
adds, it is impossible for Bob to obtain Alice’s secret
point the six unknown variables(x1, y1, z1, r1, r2, r3)
from the three equations. Therefore, Bob cannot ob-
tain Alice’s secret points. This demonstrates that
protocol 4 is private.

Thus, they can securely compute the area of a trian-
gle in the space.

3.3 Applications

As mentioned above, Protocol 4 can be used as a build-
ing block to construct new protocols to solve some space
problems such as the problem of the intersection of a line
and a plane. This problem is as follows:

Alice has a line L : x−x0

X = y−y0
Y = z−z0

Z . Bob has a
plane π : Ax+By+Cz+D = 0. They want to determine
the relationship between the line and the plane without
revealing their private data.

Firstly Bob finds out the line L3 of the normal vector
of the plane. They can separately shift L and L3 to go
through the origin, and use Protocol 4 to determine the
relationship between L3 and L. Thereby the relationship
between the line and the plane is obtained.

In order to describe clearly, we define

P (L, π) =


0, L, π intersect

1, L, π are parallel or coincident

2, L, π are perpendicular

Protocol 5: A Scheme for Determining the Relationship
between a line and a plane.

Inputs: Alice’ s private line L : x−x0

X = y−y0
Y = z−z0

Z ,
Bob’ s private plane π : Ax+By + Cz +D = 0.

Output: P (L, π)

Encryption Process:

Bob finds out the of normal vector L3 of the plane. Then
they separately shift L and L3 to go through the ori-
gin. Bob randomly chooses two points P4(x4, y4, z4)
and P5(x5, y5, z5) on L3. Alice randomly chooses a
point P6(x6, y6, z6).

Decryption Process:

Alice and Bob use Protocol 4 to compute the area of
M P4P5P6. And then they determine the relationship
between L and L3.

1) If L and L3 are parallel or coincident , then L
and π are perpendicular.

2) If L and L3 intersect, then L and π intersect.

3) If L and L3 are perpendicular, then L and π are
parallel or L is in the π.

Similarly, we can utilize the idea to solve the problem
of determining the relationship of two planes in spaces.

4 Security

In this section, we use the simulation paradigm to prove
that Protocol 3 is secure.

Theorem 1. Protocol 3 can securely determine the rela-
tionship of straight lines.

Proof. Alice and Bob respectively construct two simula-
tors, S1 and S2 which make Equations (1) and (2) hold.

In Protocol 3:

viewπ1 (L1, L2) = {L1, hash(k), hash(b), SM, op1,

hash(h), P (L1, L2)}
f1(L1, L2) = f2(L1, L2)

= outputπ1 (L1, L2)

= outputπ2 (L1, L2)

= P (L1, L2).

L1, L2 are the inputs of Alice and Bob. Alice got SM

when Protocol 2 finished.
Bob sent hash(k) and hash(b) to the Alice when they

comparing whether k1 = k2, b1 = b2. In addition, Bob
sent hash(h) to the Alice when they comparing whether
h = op1.

Alice constructs S1. S1 performs the following simula-
tion.
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1) By f(L1, L2), S1 randomly chooses a line L′2 such
that P (L1, L

′
2) = P (L1, L2). Suppose that L′2 : y′ =

k′2x+ b′2.

2) Suppose that k′2 =
u′
2

v′2
where gcd(u′2, v

′
2) = 1. S1 com-

pare whether u1 = u′2, v1 = v′2. Then S1 randomly
chooses two points P ′2(x′2, y

′
2)and P ′3(x′3, y

′
3) on L′2.

3) S1 computes S′M = 1
2 [y1(x′3−x′2)+x1(y′2−y′3)+x′2y

′
3−

x′3y
′
2].

Clearly, S′M 6= 0. Then S1 computes h′ and op′1. In
addition, S1 determine whether h′ = op′1.

Let

S1(L1, f1(L1, L2)) = {L1, hash(k
′
), hash(b

′
), S′M,

op1, hash(h
′
), P (L1, L2)}.

Since the selected points are random points and Pro-
tocol 1 has been proved, then

hash(k)
c≡ hash(k

′
), hash(b)

c≡ hash(b
′
)

SM
c≡ S′M, hash(h)

c≡ hash(h
′
)

thus,

{S1(L1, P (L1, L2), f1(L1, L2)), f2(L1, L2)}

c≡ {viewπ1 (L1, L2), outputπ2 (L1, L2)}

Similarly, the simulator such that Eq.(2) holds can be
constructed analogously, thus,

{f1(L1, L2), S2(L2, f2(L1, L2))}

c≡ {outputπ1 (L1, L2), viewπ1 (L1, L2)}

This completes the proof of the theorem.

5 Efficiency Analysis

5.1 Theoretical Analysis

Computational complexity . There are many proto-
cols such as Luo’s scheme and Yang’s scheme [15] de-
termining the relationship between two lines. Luo’s
scheme was put forward at first, then Yang greatly
improved recently. So we compare our protocols with
Luo’s scheme and Yang’s scheme.

Luo’s [10] scheme uses the scalar product protocol [1]
for n times. The scalar product protocol utilizes an
efficient oblivious transfer [12]. Suppose that the se-
curity parameter is p. Every invocation of scalar
product protocol needs to use 1-out-of-k oblivious
transfer p times. It needs lg k 1-out-of-2 oblivious
transfer for a 1-out-of-k oblivious transfer. Each 1-
out-of-2 oblivious transfer needs two modular expo-
nentiation operations at least.

Therefore, Luo’s Scheme needs at least 2p lg k mod-
ular exponentiation operations. In order to meet the
security requirement, Luo’s scheme requires p > 5
and k > 8. So, Luo’s scheme requires 30 modular
exponentiation operations at least.

Yang’s scheme uses the Paillier homomorphic encryp-
tion. Yang’s protocol 3 (Yang 3) encrypts 3 times
and decrypts 6 times to determine the relationship
between two straight lines. That is to say, it uses 12
modular exponentiation operations in total.

Our Protocol 3 uses XOR operations so it greatly
reduces the computational complexity. Protocol 3
uses at most 8 modular exponentiation operations
for computing the area of the triangle. In addition,
our protocols can be utilized in rational field while
Luo’s scheme and Yang’s scheme does not work in
rational field.

Communication Complexity. Communication com-
plexity, i.e. communication rounds, is an important
factor to evaluate secure multiparty computation so-
lutions. Luo’s scheme needs p rounds. Yang’s scheme
requires 2 round communications. Our protocols also
require 2 round communications. Table 1 summa-
rizes the comparison.

5.2 Simulation Result

In this section, we present an experimental result in terms
of efficiency. Since Yang’s scheme is much more efficient
than Luo’s scheme, we only compare our protocols with
Yang’s Scheme.

Experimental Settings: All the experiments are con-
ducted on an HP PC with 3.30 GHz Intel Core i5-
6600 processor with 8 GB RAM running a 64-bit
Windows 10 Enterprise. The program code is written
in Java.

Time Complexity Analysis: Our protocols can be
used in the rational field. Supposed that Alice se-
lects a point (16.5,13.2) on her line and Bob chooses
two points (14.4,10.8) and (9.6,7.2) on his line. We
run the experiment for 10000 times and randomly
pick up 10 sets of data and the result is shown in
Figure 3. Yang’s scheme does not work in rational
field, so we choose some integers to test. We assume
that in the Paillier homomorphic encryption scheme
the two large primes p and q are 256 bits. Suppose
that Alice selects a point (17,13) on her line and Bob
chooses two points (11,8) and (10,7) on his line. We
run the experiment for 10000 times and randomly
pick up 10 sets of data and the result is shown in
Figure 3.
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Table 1: Comparison of the computational and communication complexity

Luo’s scheme Yang 3 Protocol 3
Computational Complexity 2p lg k 12 8
Communication Complexity p 2 2

Figure 3: The comparison of Protocol 3 and Yang 3

The results of this experiment validate that our proto-
cols are more efficient.

6 Conclusion

In this paper, we proposed an efficient protocol to pri-
vately determine the relationship between two straight
lines. The protocol improves the efficiency by utilizing
XOR operations and the idea of computing the area of a
triangle in the planes. Also, we presented a protocol to
compute the area of a triangle in the spaces. In addition,
the two protocols can be used in rational field. Then we
utilized simulation paradigm to prove the security and did
experiment to show the efficiency of Protocol 3. In the
future, We will discuss the problem of the relationship
between two straight lines in the malicious model.
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