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Abstract

The use of smart meters allows the power supplier to
collect detailed consumer data from consumers, which
may threaten consumers’ personal information. In or-
der to protect the privacy of consumers and prevent data
leakage from specific consumers, we propose a multidi-
mensional data aggregation scheme with differential pri-
vacy. The proposed scheme uses the Horner rule to deal
with multidimensional data. The proposed scheme uses
certificate-based aggregate short signature to achieve data
authentication and data integrity, which reduces the num-
ber of bilinear pairing to a constant. Specially, our pro-
posed scheme overcomes the differential attack problem
by adding Laplace noise to aggregated data. We ana-
lyze the level of differential privacy utility. Compared to
existing schemes, the proposed scheme is more efficient
in terms of computational cost and communication over-
head.

Keywords: Data Aggregation; Differential Privacy; Pri-
vacy Protection; Smart Grid

1 Introduction

In the past few years, we have seen increasing interest in
smart grid technology around the world [2]. Smart grid,
or future power grid, which is a combination of traditional
grid systems and advanced information and communica-
tion technologies, improves the efficiency, reliability, econ-
omy and power generation continuity of the modern grid
and provides more stable and reliable power for power
users [19, 25]. Advanced communications and information
technology applications solve many inherent problems in
traditional grids, such as lack of load balancing, intelli-
gent consumption and dynamic pricing [9]. Smart meters
in the smart grid system collects consumer power con-
sumption data and other information and send it to the

remote control center [11, 20]. The widespread deploy-
ment of smart meters has also brought problems about
privacy leaks [13]. Smart meters store consumer sensi-
tive power consumption information because they can be
used to analyze the user’s lifestyle [10]. During the data
transmission process, the authenticity, integrity and avail-
ability of the data may be destroyed, the user’s personal
sensitive information may be attacked by the attacker.

Varieties of security protection technologies have been
developed in smart metering [21]. The privacy protection
of existing smart grid communication process is mostly
based on data aggregation technology. The user encrypts
the usage data and sends it to the gateway. The gateway
authenticates all the received data and sends them to the
operation center after they are aggregated. Data aggre-
gation technology refers to the use of encryption methods
to enable power companies to calculate the total power of
all users to analyze the data without knowing the power
consumption of each user [25]. Existing data aggrega-
tion schemes use techniques such as homomorphic en-
cryption [15, 16, 17, 19], blind factors [8] and differential
privacy [3, 4, 18]. However, many of these schemes can
not achieve both integrity and confidentiality. Also they
can not resist some specific attacks. At the same time,
many studies are concerned about the one-dimensional
data, but with the development of smart meter technol-
ogy we need to focus on dealing with multidimensional
data.

In order to solve the existing problems of data aggre-
gation scheme, we propose a multidimensional data ag-
gregation scheme with differential privacy.

The contributions of this paper are in the following:

1) The proposed scheme uses certificate-based aggregate
short signatures [12]. The aggregated signatures used
in the scheme are short and efficient, which reduces
the number of bilinear pairing to a constant. The
security analysis demonstrates we can achieve data
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authentication and data integrity.

2) To resist the differential attack, the proposed scheme
provides ε-differential privacy by adding the Laplace
noise selected from the Laplace distribution to the
aggregated data of the community gateway.

3) Compared with others schemes, the proposed scheme
has lightweight computational cost and communica-
tion overhead.

The remainder of this work works as follows: Section 2
describes the work of the existing data aggregation sce-
nario. Section 3 describes the system model and the se-
curity model. Section 4 outlines the relevant preliminar-
ies. Section 5 presents our multidimensional data aggre-
gation scheme. Section 6 and Section 7 give the security
and performance analysis. Finally we draw our conclu-
sions in Section 8.

2 Related Works

In order to solve the privacy problem in the smart grid
data aggregation, a variety of data aggregation privacy
protection scheme are proposed. Li et al. [15] proposed a
method of incremental aggregation in the network using
homomorphic encryption, which did not solve the prob-
lem of authentication and data integrity. Li et al. [16]
proposed a scheme about privacy protection demand re-
sponse, which is based on homomorphic encryption and
identity-based signature to achieve the security of the
one-dimensional data aggregation. It also used adaptive
key evolution technology for demand response. Bao et
al. [3] proposed a lightweight data aggregation scheme
that added symmetric geometric noise to resist differen-
tial attacks and achieved fault tolerance. The scheme used
non-interactive session keys for source authentication and
integrity protection.

Chen et al. [5] proposed a multifunctional data aggre-
gation scheme that implemented statistical functions for
usage data, such as averaging, variance and so on. Fan et
al. [8] proposed the first one-dimensional data aggregation
solution for internal attackers, which utilized blind factors
to process confidential data and used small indexes to im-
prove batch validation to achieve security utility. He et
al. [10] improved the key leak problem in Fan’s scheme,
by reducing the number of bilinear pairing operations.
In order to reduce the computational cost, He et al. [11]
continued to improve the scheme, by using elliptic curve
cryptography and implementing a lightweight data aggre-
gation based on the Schnorr signature scheme. Abdalla
et al. [1] used the NTRU cryptosystem to achieve privacy
protection, and the new ring signature NSS was signed to
ensure integrity. But the scheme focused on the prediction
of the demand for electricity from a group of customers
in the same region instead of focusing on the process of
data aggregation.It also restricted the connection with the
provider only when the total clusters demand needed to
be adjusted.

All the aforementioned schemes consider one-
dimensional data aggregation. In order to deal with the
problem of multidimensional data aggregation, Lu et
al. [17] proposed the use of super-increasing sequence to
process multidimensional electricity data. The Paillier
homomorphic encryption system was used to encrypt
the aggregated data during data transmission, and they
used BLS short signature and batch verification. But
the scheme had only one residential area and a gateway,
which limited the size of the user and could not resist the
differential attack. Fu et al. [9] used the elliptic curve
ElGamal cryptography to encrypt multidimensional
data and adopted the method of aggregated signature
to carry out secure multidimensional data aggregation.
However, the data aggregation result obtained by this
scheme was the sum of all data. They could not separate
the fine-grained data of each dimension. Zhou et al. [26]
proposed a multilevel network aggregation scheme with
fault tolerance and invalid signatures search. Shen et
al. [19] used the Horner rule to handle multidimensional
data by using two-level gateways to protect privacy. The
aggregation scheme could handle dynamic users, but it
could not resist differential attacks.

3 System Model And Security Re-
quirements

In this section we will introduce the system model and
security requirements.

3.1 System Model

The system is a four-layer smart grid communication net-
work structure, which consists of the operation center,
regional gateway, community gateway and home area net-
work (ie users). The system model is shown in Figure 1.
An operation center is responsible for a region, corre-
sponding to the regional gateway; a region has m commu-
nities, corresponding to the community gatewayBGW1,
BGW2,BGW3...BGWm. The first i community has ni
users, and each user collects their electricity data with a
smart meter.

• OC: OC is a trusted entity that is responsible for
the registration verification of the gateway and the
user. It issues certificates for all gateway and users,
generates keys for the entire system and issues public
parameters. It also collects, processes and analyzes
real-time data, such as the sum of power usage data
for a given dimension or the power consumption dur-
ing peak hours, which implements segmented power
pricing decisions and appropriate resource allocation
to provide reliable service for smart grid systems.

• DGW : DGW has the function of aggregation and
relay. It’s responsible for verifying messages from
various BGW s and aggregating them. Then DGW
forwards the messages to OC.
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• BGW : BGW has the same function as DGW , re-
sponsible for verifying the confidential information
received by the users. Then BGW aggregates the
information and forwards them to the higher level
gateway. In this process, BGW may be easily at-
tacked by external attackers (such as differential at-
tacks) because of the low level of security.

• U : The smart meter owned by the user is responsi-
ble for periodically (for example, every 15 minutes)
to encrypt the coarse-grained l-dimensional data and
report it to BGW .

The communication between the user and BGW gen-
erally uses WiFi technology, while BGW and DGW ,
DGW and OC generally use the wired link to communi-
cate.

Figure 1: The proposed scheme

3.2 Security Requirements

In this system, we believe that OC, DGW ,BGW are com-
pletely trusted, but users are semi-honest, which means
users will not deliberately leak or change the information,
but they are curious about others, trying to infer the us-
age information of others.

There may be an adversary A in the system who will
steal the usage data when the user sends their data to the
gateway; or an adversary attack (such as a differential
attack) by analyzing the similar data sets obtained from
the two aggregations may happen, trying to infer the in-
dividual user’s sensitive information from the aggregation
difference.

Adversary A may also invade the database of DGW
and BGW , or invade communication links, which will de-
stroy the authenticity and integrity of the data.

Confidentiality: Even if some users may collude with
each other,they can not get the usage information of other
users. Adversary A who steals the electricity data can not
get the relevant information of a single user.

Authentication and data integrity: The user’s electric-
ity data in the transmission process requires authentica-

tion to avoid being tampering or forgery by malicious at-
tackers.

Differential privacy: Even if the opponent A launches
a differential attack, he/she can not get the individual
user’s sensitive electricity data.

4 Preliminaries

In this section we will outline the knowledge of Bilinear
pairing, Paillier encryption algorithm, horner rule, and
differential privacy as the basis of our scheme.

4.1 Bilinear Pairing

Let k be the security parameter and p be the prime with
k bits. Let G1,GT be a cyclic addition group of order p
generated by P (generator); a and b are elements in Zp
(Zp is the prime p-order cyclic group).

Assume that the discrete logarithm problem in G1 and
GT is a difficult problem. Bilinear pairing is a mapping
that satisfies the following properties [22]:

• Bilinearity: For any P,Q ∈ G1 and a, b ∈ Zp, we
have e(aP, bQ) = e(P,Q)ab.

• Non-degenerative: There are P,Q ∈ G1, making
e(P,Q) /∈ 1.

• Computability: For all P,Q ∈ G1, there exists valid
algorithms to calculate e(P,Q).

4.2 Paillier Encryption Algorithm

In the Paillier cryptography system, the public key is
pk(N, g), the corresponding private key is sk(λ, µ). Let
E(·), m and r represent encrypted functions, messages
and random numbers respectively. The ciphertext is c =
E(m) = gm · rNmodN2. The plaintext is m = D(c) =

L(cλmodN
2

) · µmodN .

4.3 Horner Rule [19]

The Horner rule uses the least multiplication strategy to
find the value of the polynomial A = anx

n + an−1x
n−1 +

...+a1x+a0 at x. Using this rule, n coefficients a1,a2,...,an
are obtained by n multiplications and n additions.

4.4 Differential Privacy [6]

If the data aggregation result D includes the user Bob’s
power usage data, the algorithm M (D) is executed to
obtain some calculation results. Assuming that the data
aggregation result D is changed to D’ after deleting of
Bob’s data , the execution of the algorithm M (D’) or
M (D) produces almost the same result. It is assumed
that Bob’s usage data is safe in the data set D under the
algorithm M. It means whether Bob’s data exists or not
will not affect the output.



International Journal of Network Security, Vol.20, No.6, PP.1137-1148, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).14) 1140

4.4.1 ε-Differential Privacy

If the data sets D1and D2 are different for at most one
element, the randomization function K gives ε- differential
privacy, that is, for any s ∈ Range(k), we have P [k(D1) ∈
s] ≤ eεP [k(D2) ∈ s].

4.4.2 Laplace Mechanism [7]

Laplace mechanism is to use the Laplace distribution to
produce noise. The probability density function of the

Laplace distribution is p(x) = 1
2be
− |x|

b . From the Laplace
distribution, noise r is randomly selected to be added to
the original aggregation, the perturbed result can achieve
ε- differential privacy.

5 Multidimensional Data Aggre-
gation Scheme

In this paper, the multi-dimensional data aggregation
scheme with differential privacy is divided into five stages:
initialization phase, registration phase, user data encryp-
tion phase, secure aggregation phase and data recovery
phase.

The processing of each stage is described in detail be-
low and the meaning of each character symbol is shown
in Table 1.

5.1 Initialization

At this stage, OC generates and publishes the parameters.
Giving the security parameters k and k1, OC guides the
entire system.

Step 1. OC generates (q, P,G1, G2, e) by runningGen(k).
Then OC calculates the Paillier encryption sys-
tem’s public key (N = pq, g) and the correspond-
ing private key (λ, µ).

Step 2. Define four secure hash functions H0 : {0, 1}∗ →
Z∗q , H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Z∗q , H3 :
{0, 1}∗ → G1.

Step 3. Select two random factors R and R1. After choos-
ing the random number s ∈ Z∗q as the master key,
OC compute the relevant public key Ppub = sP
and Qpub = H1(P, Ppub).

Step 4. Finally, OC publishes the system public informa-
tion {q, P,G1, GT , e,N, g,R,R1, H0, H1, H2, H3,
Ppub, Qpub}.

5.2 Registration Phase

In this section, we have to complete the registration of
regional gateways , community gateways and users to en-
sure their legitimacy. The registration phase includes re-
gional gateway registration, community gateway registra-
tion and user registration.

5.2.1 Regional Gateway Registration

DGW registers in OC and OC issues a certificate for it.
After registration, DGW becomes a legal regional gate-
way. The process is as follows.

Step 1. DGW generates two random numbers r, x ∈ Z∗q ,
calculates X = xP , α = rP and β = r −
xH0(ID ‖ α)modq where is the x private key,
X is the public key. DGW then sends the
message{X,α, β, ID}to the OC.

Step 2. OC checks the equation α = Pβ+XH0(ID ‖ α).
If it does not exist, OC will deny the registration;
otherwise, OC calculate QID = H3(ID,X) and
issues a certificate certID = sQID.

Verification of regional gateway registration:

Pβ +XH0(ID ‖ α)

=P (r − xH0(ID ‖ α)modq) +XH0(ID ‖ α)

=rP − xPH0(ID ‖ α) +XH0(ID ‖ α)

=α−XH0(ID ‖ α) +XH0(ID ‖ α)

=α (1)

5.2.2 Community Gateway Registration

BGW registers in OC and OC issues a certificate for
it. After registration, BGW becomes a legal community
gateway. The process is as follows.

Step 1. BGWi generates two random numbers ri, xi ∈
Z∗q , calculates Xi = xiP , αi = riP and βi =
ri − xiH0(IDi ‖ αi)modq where is the xi private
key, Xi is the public key. Then BGW sends the
message {Xi, αi, βi, IDi} to the OC.

Step 2. OC checks the equation αi = Pβi +XiH0(IDi ‖
αi). If it is not met, OC will deny the reg-
istration; otherwise, OC calculates QIDi

=
H3(IDi, Xi) and issues a certificate certIDi

=
sQIDi .

Verification of community gateway registration:

Pβi +XiH0(IDi ‖ αi)
=P (ri − xiH0(IDi ‖ αi)modq) +XiH0(IDi ‖ αi)
=riP − xiPH0(ID ‖ α) +XiH0(IDi ‖ αi)
=αi −XiH0(IDi ‖ αi) +XiH0(IDi ‖ αi)
=αi (2)

5.2.3 User Registration

U registers in OC and OC issues a certificate for it. After
registration, U becomes a legal user. The specific process
is as follows.

Step 1. Uij generates two random numbers rij , xij ∈ Z∗q ,
calculates Xij = xijP , αij = rijP and βij = rij−
xijH0(IDij ‖ αij)modq where the xij is private
key, Xij is the public key. Then Uij sends the
message {Xij , αij , βij , IDij} to the OC.
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Table 1: Notations

Notations Description
OC Operation Center
DGW Regional Gateway
BGW Community Gateway
U User

k, q, P, Bilinear pair parameter
ki, p, q, g Paillier password system parameters

H0, H1, H2, H3 Hash functions
R,Ri The factor that handles multidimensional data
n The maximum number of users in a community
ni The number of users in the i-th community
r Random number
ε Differential privacy budget

Step 2. OC checks the equation αij = Pβij +
XijH0(IDij ‖ αij). If it is not met, OC will
deny the registration; otherwise, OC calculates
QIDij

= H3(IDij , Xij) and issues a certificate
certIDij = sQIDij .

Verification of user registration:

Pβij +XijH0(IDij ‖ αij)
=P (rij − xijH0(IDij ‖ αij)modq) +XijH0(IDij ‖ αij)
=rijP − xijPH0(IDij ‖ αij) +XijH0(IDij ‖ αij)
=αij −XijH0(IDij ‖ αij) +XijH0(IDij ‖ αij)
=αij (3)

5.3 User Data Encryption

The user data encryption generation phase is re-
sponsible for handling users’ multidimensional data.
Users regularly collect their l-dimensional usage
data(dij1, dij2, ..., dijl). Like [19], we handle multi-
dimensional data by synthesizing the l-dimensional data
into a polynomial and implements the following steps:

Step 1. Structure a polynomial with l-dimensional usage
data Mij = Rii(dij1R

1 + dij2R
2 + ...+ dijlR

l);

Step 2. The user selects r∗ij and calculates the ciphertext

Cij = gMijr∗Nij modN
2;

Step 3. Calculate hij1 = H0(IDij ‖ Cij ‖ Xij ‖ T ‖
Ppub),hij2 = H2(IDij ‖ Cij ‖ Xij ‖ T ‖
Qpub),Vij = hij1 · certIDij

+ xij · hij2 ·Qpub. The
signature is σij = (Cij , Vij);

Step 4. Send (IDij , σij , Cij , T ) to BGWi.

5.4 Secure Aggregation Phase

In this section we mainly complete the secure aggregation
of data in the community gateway and the regional gate-
way. Before the gateway data aggregation, we rely on the

aggregation of certificate-based short signatures to com-
plete the security certification, which ensures the integrity
of the data during transmission process. The length of the
signature and the number of bilinear pairing involved in
the algorithm are independent of the number of users.
After the community gateway data is aggregated, we add
noise to the community gateway to achieve differential
privacy.

5.4.1 Community Gateway Aggregation

The community gateway aggregates the signatures of the
received data and verifies it. Then the community gate-
way aggregates the encrypted data for all users in their
own community. During this process, the community
gateway will add Laplace noise to the encrypted data to
resist differential attack. To add Laplace noise to the ag-
gregated data, the sensitivity of the data set need to be
calculated.

Let D be a subset of the users and for two data sets
D1 and D2 with only one element different, we have ‖
A(D1)−A(D2) ‖1≤W . Therefore, the sensitivity of A is
∆f = W .

Step 1. Verify the received data (IDij , σij , Cij , T ). Then
BGW calculates received ni users aggregate sig-

nature V0 =
ni∑
j=1

Vij by using the aggregate signa-

ture generator. The corresponding signature set
is {(Ci1, Vi1), (Ci2, Vi2), ..., (Cini , Vini)}.

Step 2. Check that if the verification e(V0, P ) =

e(
ni∑
j=1

hij1QIDij
, Ppub)e(

ni∑
j=1

hij2Xij , Qpub) is met.

Step 3. If the verification is successful, the BGW aggre-
gates n = ni+n−ni encrypted l-dimensional data
items Ci1, Ci2, ..., Cin, where the ni usage data re-
ports are received from smart meters and the re-
maining n−ni data reports are constructed from
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the zero-dimensional vector. Then aggregate n

ciphertexts CGWi =
n∏
j=1

CijmodN
2.

Step 4. According the sensitivity ∆f = W , BGW gen-
erates a noise m̃i from the Laplace distribution.
The final result is calculated as C̃GWi

= CGWi
·

gm̃i . The resulting ciphertext is the disturbed
data and the noise therein ensures the privacy of
each user.

Step 5. BGW calculates hi1 = H0(IDi ‖ C̃GWi
‖ Xi ‖

T ‖ Ppub), hi2 = H2(IDi ‖ C̃GWi
‖ Xi ‖ T ‖

Qpub), Vi = hi1 · certIDi + xi · hi2 · Qpub. The

signature is σi = (C̃GWi
, Vi);

Step 6. BGW sends (IDi, σi, C̃GWi
, T ) to DGWi.

Verification of correctness:

e(V0, P )

=e(

ni∑
j=1

Vij , P )

=e(

ni∑
j=1

(hij1certIDij + xijhij2Qpub), P )

=e(

ni∑
j=1

hij1certIDij
, P )e(

ni∑
j=1

xijhij2Qpub, P )

=e(

ni∑
j=1

hij1QIDij
, Ppub)e(

ni∑
j=1

hij2Xij , Qpub). (4)

5.4.2 Regional Gateway Aggregation

The regional gateway aggregates the signatures of the re-
ceived data and verifies it. Then the regional gateway
aggregates the encrypted data for all users in its region.

Step 1. For the received data (IDi, σi, C̃GWi , T ), DGW
uses the aggregate signature generator to calcu-

late V ∗0 =
m∑
i=1

Vi. ThenDGW uses the aggregated

short signature verification method to verify if

e(V ∗0 , P ) = e(
m∑
i=1

hi1QIDi
, Ppub)e(

m∑
i=1

hiXi, Qpub).

Step 2. If the above verification is successful, the aggrega-

tion operation C̃ =
m∏
i=1

C̃GWi
modN2 is performed

by DGW .

Step 3. DGW calculates h1 = H0(ID ‖ C̃ ‖ X ‖ T ‖
Ppub), h2 = H2(ID ‖ C̃ ‖ X ‖ T ‖ Qpub), V =
h1 · certID + x · h2 · Qpub. The signature is σ =

(C̃, V );

Step 4. DGW sends (ID, σ, C̃, T ) to OC.

Verification of correctness:

e(V ∗0 , P )

=e(

m∑
i=1

Vi, P )

=e(

m∑
i=1

(hi1certIDi + xihi2Qpub), P )

=e(

m∑
i=1

hi1certIDi , P )e(

m∑
i=1

xihi2Qpub, P )

=e(

m∑
i=1

hi1QIDi , Ppub)e(

m∑
i=1

hi2Xi, Qpub). (5)

5.5 Data Recovery

For the received (ID, σ, C̃, T ), OC verifies if the signa-
ture e(V, P ) = e(h1QID, ppub)e(h2X,Q). After successful
verification, the Paillier decryption algorithm is used to
obtain the sum of all multidimensional data. Then We
use Horner rules to analyze the sum of the data for each
dimension.
Verification of correctness:

e(V, P )

=e(h1certID + xh2Qpub), P )

=e(h1certID, P )e(xh2Qpub, P )

=e(h1QID, Ppub)e(h2X,Qpub). (6)

C̃ =

m∏
i=1

CGWi
· g

m∑
i=1

m̃
modN2

= (

m∏
i=1

(

n∏
j=1

gMij · r∗ijmodN2))g

m∑
i=1

m̃

= (

n∏
j=1

(

m∏
i=1

gMij · r∗ijmodN2))g

m∑
i=1

m̃

= (

n∏
j=1

(gM1j · gM2j · ... · gMmj )(

m∏
i=1

n∏
j=1

r∗ijmodN
2))g

m∑
i=1

m̃

(7)

Let R∗ =
m∏
i=1

n∏
j=1

r∗ij . We have

C̃ = g

n∑
j=1

M1j+
n∑

j=1
M2j+...+

n∑
j=1

Mmj+
m∑

i=1
m̃

R∗modN2

= g
R1

1

n∑
j=1

l∑
v=1

Rvd1jv+...+R
m
1

n∑
j=1

l∑
v=1

Rvdmjv+
m∑

i=1
m̃

R∗modN2

= g
R1

1

n∑
j=1

Rv
l∑

v=1
d1jv+...+R

m
1

n∑
j=1

Rv
l∑

v=1
dmjv+

m∑
i=1

m̃

R∗modN2

(8)

Let Biv =
n∑
j=1

dijv ,which represents the sum of the
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electricity data of the first v dimension of all users in

community i. We have Bi =
l∑

v=1
Rv ·Biv and m̃ =

m∑
i=1

m̃i.

Let

M = R1
1

n∑
j=1

Rv
l∑

v=1

d1jv + ...+Rm1

n∑
j=1

Rv
l∑

v=1

dmjv

=

m∑
i=1

Ri1

l∑
v=1

Rv ·Biv

=

m∑
i=1

Ri1 ·Bi (9)

We have M̃ = M + m̃. Because C̃ = gM̃ · r∗Nij modN2

is still Paillier encryption algorithm form, we can get M̃
by using the corresponding private key (λ, µ). Here, al-
though M̃ is the noisy data, the impact of noise added
temporarily can be ignored. It will not affect the oper-
ation center for its analysis, because the accuracy of the
meter level allows the existence of the error and the error
can be controlled within the allowable range by changing
the size of ε.

By executing the data recovery algorithm [19] in Ta-
ble 2, using M̃ and R1 as the input of the algorithm,
OC can obtain Bi. Using Bi and R as the input of the
algorithm, OC can get Biv.

Algorithm 1 Data recovery algorithm

Input:A and x //A = anx
n + an−1x

n−1 + ... + a1x
Output:{a1,a2,...an}
1: X0=A /x
2: for j = 1 to l do
3: aj = Xj−1 mod x
4: Xj = Xj−1 mod x
5: end for
6: return {a1,a2,...al}

6 Security Analysis

In this section, we will show that our multidimensional
data aggregation scheme implements the security require-
ments that are proposed in Section 3.

• Confidentiality: The confidentiality of user data is
protected. Because the users’ encrypted data exist in
the form of ciphertext Cij = gMij ·r∗Nij modN2 during
the transmission process, and the Paillier cryptog-
raphy system is semantically secure for the selected
plaintext attacks, the adversary can not obtain the
user’s electricity information. Even if the adversary
invades the gateway database, he/she still can not
get the user’s specific electricity information. The
malicious users who want to analyze other people’s
usage information may collude with each other to

share their own data, but they can not infer elec-
tricity consumption of other users because the user’s
private key is a secret storage.

• Unforgeability and Data Integrity: The authenti-
cation and integrity of user data and aggregation
data are protected. In this scheme, the user’s pri-
vate key is composed of two parts, one part is the
user certificate generated by OC, and the other part
is the secret value, which is independently selected
by the user. Therefore, the security certification of
certificate-based signature is to prove that only know
the user’s certificate and secret value ( ie, fully aware
of the user’s private key) to produce a valid signature.
If an adversary wants to crack a signer’s private key
or certificate, it faces the difficulty of solving the dis-
crete logarithm, which is safe in the random predic-
tion model under the CDH model [12, 23, 24].

• Differential Privacy: User data can resist differential
attacks. Differential attack is to change the input of
the algorithm, through the output of the algorithm
or the change value of the output to expose the infor-
mation in the algorithm input. If we use an algorithm
to compute the aggregation result of a group of users’
usage data, the differential attack can obtain a set of
aggregation results by using the algorithm again. If
the data of the two aggregations differ by only one
user U, then the power consumption data of the user
U can be obtained by subtracting the value of the
two aggregation results.

In this scheme, ε-differential privacy is achieved by
adding noise to the community gateway with a given
privacy level of ε. Even if the external adversary
initiates a differential attack by analyzing the similar
data sets obtained from the two aggregations, he/she
gets the data with noise and can not calculate the
electricity usage information of a single user.

Assume that the adversary A obtains two perturbed
aggregations s + m̃s and t + m̃t , where s and t are
two data sets with only one element different and
m̃s and m̃t are two corresponding Laplacian noise.
Because|s− t| ≤W , for any integer k, we have

θ = P (s+ m̃s = k)/P (t+ m̃t = k)

= P (m̃s = k − s)/P (m̃t = k − t)

=
1

2b
e−
|k − s|
b

/
1

2b
e−
|k − t|
b

= e−
|k−s|−|k−t|

b (10)

Because−|s−t| ≤ |k−s|−|k−t| ≤ |s−t|, we have θ ≤
e|s−t|/b ≤ eW/b = eε satisfying ε-differential privacy.
So the aggregated data set is added enough noise
to provide differential privacy for each participating
user while still provides high efficiency. Our scheme is
safe in ε-differential privacy and can provide a strong
and provable privacy guarantee.
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Table 2: Comparison of five multidimensional electricity data aggregation schemes

Our Lu’s Shen’s Fu’s Zhou’s
Performance scheme scheme scheme scheme scheme

Confidentiality Yes Yes Yes Yes Yes
Unforgeability Yes No Yes No Yes

Signature verification security Yes No Yes No Yes
Multi-level gateway Yes No Yes No Yes

Dynamic users Yes No Yes No Yes
Differential privacy Yes No No No No

7 Performance Analysis

This section describes our scheme from the implemented
functions, the computational cost, the communication
overhead and the differential privacy utility. Table 2
shows the performance of the proposed scheme and the
other four multidimensional data aggregation schemes [9,
17, 19, 26]. We compared confidentiality, data integrity,
unforgeability, signature verification security, multi-level
gateway, dynamic users and differential privacy. Lu’s
scheme [17] and Fu’s scheme [9] have problems in secu-
rity of batch authentication signatures. Although Fu’s
scheme [9] can handle the aggregation of multidimensional
data, the aggregated result is not the fine-grained data
of each dimension. Shen’s scheme [19] solves the prob-
lem of counterfeiting in batch verification. But the above
schemes can not resist the differential attacks.

7.1 Computational Complexity

In our scheme, Ce,Cm and Cp represent the computa-
tional cost of an exponentiation operation in Zn2 , a scalar
multiplication operation in G1 and a pairing operation.
According to Shen’s scheme [19], the computational cost
of an exponential operation, a pairing operation and a
multiplication operation is shown in Table 3. Compared
with the exponential operations and pairing operations,
the computational cost of the multiplication operations in
Zn and the hash operations are considered negligible.

For our proposed scheme, a user Uij needs to perform
two exponential operations in Zn2 to generate Cij and
a scalar multiplication operation in G1 to generate the
signature. A community gateway needs to perform three
pairing operations and 2ni scalar multiplication opera-
tions to verify the aggregated signature. An exponential
operation needed to be used to add noise. A community
gateway generates the signature with a scalar multipli-
cation operation. In order to verify the aggregated data
from theBGW s, a regional gateway need to perform three
pairing operations and 2m multiplication operations. A
DGW need to generate the signature with a scalar multi-
plication operation. For the OC, three pairing operations
and two multiplication operations are used to verify the
signature.

In Table 4 we compare the computational cost of our

scheme with Shen’s scheme [19], Zhou’s scheme [26] and
our scheme. The computational cost of the user in Zhou’s
scheme is related to the dimension of the data, but our
scheme and Shen’s scheme are independent of the dimen-
sion of the data. Obviously our scheme has a better
performance than Zhou’s scheme. Through the following
analysis, we show that our scheme is better than Shen’s
scheme too.

On the community gateway side, we assume that the
maximum number of users per community is n(n ≥ ni),
let

3Cp + Ce + (2n+ 1)Cm ≤ (n+ 2)Cp + Cm

78.8 + 12.8n ≤ 20n+ 46.4

7.2n ≥ 32.4

n ≥ 4.5 (11)

When the number of users in a community is greater
than or equal to 5, our scheme has a less computational
cost. From Figure 2, it can be seen our scheme has a
better performance on the community gateway side.

On the regional gateway side, m is the number of com-
munity gateways, let

3Cp + (2m+ 1)Cm ≤ (m+ 2)Cp + Cm

66.4 + 12.8m ≤ 20m+ 46.4

7.2m ≥ 20

m ≥ 2.78 (12)

When the number of community gateways is greater
than or equal to 3, our scheme has a less computational
cost.

From Figure 3, it can be seen our scheme has a better
performance on the regional gateway side.

According to Table 4, we compared the total compu-
tational cost of our scheme, Shen’s scheme and Zhou’s
scheme. The computational cost of Zhou’s scheme is re-
lated to the dimension of the data, so we assume the di-
mension of the data is 3. From Figure 4, Figure 5 and
Figure 6, it is obvious that our scheme has a better per-
formance.

7.2 Communication Overhead

For each user encrypted data (IDij , σij , Cij , T ), the com-
munication overhead for all users in a community to the
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Table 3: Description Calculation time (ms)

Symbol Description Calculation time (ms)
Ce Exponential operation 12.4
Cp Bilinear pairing operation 20
Cm Multiplication 6.4

Table 4: The cost comparison

Symbol Our scheme Shen’s scheme Zhou’s scheme
User 2Ce + Cm 2Ce + Cm (l + 1)Ce + Cm
BGW 3Cp + (n− ni + 1)Ce + (2ni + 1)Cm (ni + 2)Cp + (n− ni)Ce + Cm 2Cp + (4n− 1)Cm + Ce
DGW 3Cp + (2m+ 1)Cm (m+ 2)Cp + Cm 2Cp + (4m− 2)Cm
OC 3Cp + 2Cm 2Cp 2Cp
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Figure 4: The total computational cost of our scheme
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Figure 5: The total computational cost of Shen’s scheme



International Journal of Network Security, Vol.20, No.6, PP.1137-1148, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).14) 1146

500
600

700
800

900
1000

4

6

8

10
0

2

4

6

8

10

x 10
5

User NumberBGW Number

T
ot

al
 c

om
pu

ta
tio

na
l c

os
t(

m
s)

Figure 6: The total computational cost of Zhou’s scheme

community gateway is SU→BGW = (|IDij |+|σij |+|Cij |+
|T |)n. For each community gateway aggregated data
(IDi, σi, C̃i, T ), the communication overhead for all com-
munity gateways in a region to the community gateway
is SBGW→DGW = (|IDi| + |σi| + |C̃i| + |T |)m. For each
regional gateway aggregated data (ID, σ, C̃, T ), the com-
munication overhead for a regional gateway to the opera-
tions center is SDGW→OC = |ID|+ |σ|+ |C̃|+ |T |.

We choose 1,024 bits N (|N2| = 2048) and 160 bits
G1, set |ID|+ |T | to 64 bits. Table 5 shows the communi-
cation overhead comparison of our scheme and other two
schemes [17, 19].

The total communication cost of our scheme is 2272 ∗
m∗n+2272∗m+2272 and the total communication cost
of Shen’s scheme is 2308 ∗m ∗ n+ 2308 ∗m+ 2308. Our
scheme has less communication overhead than the other
schemes.

7.3 Differential Privacy Utility Compari-
son

In order to verify the effectiveness of differential privacy,
we assume that a community has 1,000 users. Between
17: 00-22: 00, every 15 minutes of electricity data is ag-
gregated, the community gateway adds Laplace noise to
achieve ε - differential privacy. Through the inverse cu-
mulative distribution function of the Laplace distribution,
we obtain the Laplace noise by inputting the random vari-
ables uniformly distributed in the range of (-0.5, 0.5) for
this inverse cumulative distribution function.

ε is the privacy budget, based on the data,we have
∆f = 200.

From Figure 7, it can be seen that the smaller ε we
use , the better the effect of privacy protection we have,
but the utility is relatively poor. The large ε we use, the
utility is better. The literature [14] made a more detailed
introduction about how to choose ε.
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Figure 7: Differential privacy utility comparison

8 Conclusions

In this paper, a secure multidimensional data aggregation
scheme is proposed, which uses the Horner rule to deal
with polynomials of multidimensional electricity data.
The method of certificate aggregation is used to realize
the unforgeability of authentication and signature. Time-
consuming pairing is reduced to a constant; by adding
Laplace noise to the community gateway to achieve ε - dif-
ferential privacy to resist differential attacks; through per-
formance analysis, the scheme’s computational and com-
munication overhead is improved.
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