International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1125

Formal Analysis of SDIN

Authentication Protocol

with Mechanized Protocol Verifier in the
Symbolic Model

Lili Yao, Jiabing Liu, Dejun Wang, Jing Li and Bo Meng
(Corresponding author: Bo Meng)

School of Computer Science, South-Central University for Nationalities
708 Minzu Ave, Hongshan Qu, Wuhan, Hubei Sheng 430074, China
(Email: mengscuec@gmail.com)

(Received Aug. 21, 2017; revised and accepted Nov. 1 & Oct. 21, 2017)

Abstract

With the wide development and applications of SDN, its
security has attracted the attention of the people. In this
study, in the beginning we apply applied PI calculus in
symbolic model to formalize Mynah authentication pro-
tocol and mechanized analyze it with ProVerif. We find
that there are two security vulnerabilities. And then, we
propose an improved Mynah authentication protocol to
address the vulnerabilities found by us. At the same time,
the improved Mynah protocol is modeled by applied PI
calculus and analyzed with ProVerif. Finally, we develop
and deploy the improved Mynah authentication protocol
to open source controller ONOS and switch Open vSwitch
to validate its securities.

Keywords: Authentication; Formal Method; Pro Verif; Se-
curity Protocol

1 Introduction

The purpose of introducing SDN is to establish a flexible
data access and forwarding method in network and then
to deal with the barriers for deploying the new technolo-
gies of the network protocols and to decrease cost and to
overcome the difficulty of network management, especially
provide a good environment for large-scale implementa-
tion of cloud computing and virtualization. With the wide
development and applications of SDN [15, 16, 18], peo-
ple have paid a special attention to its security [2, 25].
Owning to that the design and development of most SDN
controllers that are the key component in SDN network
at first focuses on the schedule and control of network
resources and ignoring the security considerations of the
controller itself [27]. SDN network is facing enormous
security challenges, for example, the lack of trust mech-
anisms [25, 28]. Kloti and Kotronis [13] use STRIDE
tool and Attack Tree to provide a security analysis of

OpenFlow-based SDN and find that there are security
risks such as information disclosure, denial of service and
intervention vulnerabilities in a controller or a channel
between the controller and the switch. In order to ad-
dress the authentication [29], Shin et al. [26] present the
FRESCO security application development framework in
OpenFlow-based SDN. Based on Nox [9] and FRESCO,
Porras et al. [23] introduce the FortNOX, a software add-
on that applies a digital signature to implement the au-
thentication of users. Mattos and Duarte [17] present
AuthFlow which is a mechanism for authentication and
access control based on host credentials. Dangovas and
Kuliesius [7] introduce a SDN-based authentication and
access control system to provide strong AAA (authenti-
cation, authorization and accounting) schemes.

Recently in order to address the vulnerability of Datap-
athID (DPID) duplication and provide the authentication
between the controller and the switch, Kang et al. [12]
propose Mynah authentication protocol and claim that
it can address the two vulnerabilities. However, security
analysis of Mynah protocol is not only not clear, but also
DPID duplication problem has not fully been solved found
by us. Hence in the study, we present formal analysis and
an improved Mynah authentication protocol.

The main contributions of this study are summarized
as follows:

1) The state-of-art of security research of SDN network
is introduced in detail.

2) Apply applied PI calculus in the symbolic model to
formalize Mynah authentication protocol and mecha-
nized analyze it with mechanized tool ProVerif. The
result shows that it cannot provide mutual authenti-
cation between the controller and the switch and is
unable to deal with DPID duplication.

3) Propose an improved Mynah authentication proto-
col to address the security vulnerabilities found by

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1126

us. At the same time, the improved Mynah authen-
tication protocol is modeled by applied PI calculus
and mechanized analyzed with ProVerif. The result
shows that the improved Mynah authentication pro-
tocol resolves DPID duplication and provides con-
fidentiality of data and authentication between the
switch and the controller.

Develop and deploy the improved Mynah authenti-
cation protocol to open source controller ONOS and
switch Open vSwitch to validate authentication and
confidentiality. The experiment result shows that it
can provide confidentiality of data and authentica-
tion between the switch and the controller.

2 Related Works

In the beginning of design and development, most SDN
controllers [11, 21, 24] focus on the scheduling and control
of network resources, ignoring the security considerations
of the controller itself [27]. So SDN is facing security
challenges, for example, the lack of trust mechanisms [28].

With SDN development and applications, attacks of
the controller and the switch significantly increased. Kloti
and Kotronis [13] use STRIDE tool and Attact Tree to
provide a comprehensive analysis of the security of Open-
Flow protocol, whether it is a controller or a channel be-
tween the controller and the switch. There are security
risks such as information disclosure, denial of service and
intervention vulnerabilities. The existing OpenFlow pro-
tocol [8, 10, 22, 30] often uses SSL/TLS protocol and does
not guarantee the authentication between the controller
and the switch [3]. SSL/TLS protocol itself is overloaded
and is not good choice to large-scale deployment. In addi-
tion, the controller is facing a man-in-the-middle attack,
denial of service, bypassing the firewall and other tradi-
tional networks already exist security risks [14].

About the authentication [29]. Shin et al. [26] present
the FRESCO security application development frame-
work in OpenFlow-based SDN. The main function of
FRESCO is to provide modular interface and deployment
platform to build security services, through the corre-
sponding FRESCO scripting language to define and im-
plement security services, simplifying the development of
security applications and complexity of debugging. It
facilitates the controller to update and extend security
services in the operating mode. Based on Nox [9] and
FRESCO [26], Porras et al. [23] introduce the FortNOX,
a software add-on to improve the flaws in the OpenFlow
control plane and to deploy new security modules while
using existing security services, each of the flow rules is
signed using the role-based data source authentication
method and the identity of the user is verified by verifying
the signature data to ensure the security of the session.
Mattos and Duarte [17] present AuthFlow which is an au-
thentication and access control mechanism based on host
credentials. The mechanism uses IEEE 802.1X standard
and RADIUS authentication server to authenticate the

host above the MAC layer, but AuthFlow has not used
the signed certificate as access credentials. Dangovas and
Kuliesius [7] introduce an authentication and access con-
trol system that binds the name (users, addresses) and
user machines to the unambiguously defined network ap-
pliances and its ports and register the switch and host
information to the controller and authenticate, satisfied
strong AAA (authentication, authorization and account-
ing) schemes.

Recently in order to address the vulnerability of DPID
duplication and provide authentication between the con-
troller and the switch, Kang et al. [12] propose Mynah
authentication protocol and claim that it can address the
two vulnerabilities. However, security analysis of Mynah
protocol is not only not clear, but also DPID duplication
problem has not fully been solved found by us.

3 The Applied PI Calculus
ProVerif

&

The applied PI calculus [1] is proposed by Abadi et al.
in 2001, which is a formal language [6, 19] used to for-
malize the modeling of concurrent processes. Applied
PI calculus builds on pure PI calculus [20]. From pure
PI calculus, we inherit constructs for communication and
concurrency, also add functions and equations. In ap-
plied PI calculus, messages may then consist of atomic
names or consist of values constructed from names and
functions. The advantage of this is that we can easily
treat standard data types, reducing the limitation of data
representation. The applied PI calculus using functions
to represent generic cryptographic primitives, such as en-
cryption, decryption, digital signatures, etc. It does not
need to construct a new cryptographic primitive for each
cryptographic operation with good versatility. We can
also describe attacks against protocols that rely on (equa-
tional) properties of some of those primitives. Therefore,
it can express and analyze fairly sophisticated security
protocols.

The grammar for processes of applied PI calculus lan-
guage is similar to the PI calculus. Process P, @ as the
basic unit, the input process is 0 that empty process; Q|P
is the parallel composition of P and @); the replication
P behaves as innumerable copies of P running in paral-
lel. The process vn.P that defines the variable name and
in(M,z : t) indicates that it is input in the channel in
the process and out(M,x : t) indicates that the process
is output in the channel, i f M = NthenPelse@ indicates
that the execution process is selected according to the
judgment condition, let z = M in P else @ presents the
event evaluation, R(M1,---, Mk) represents the macro
definition.

ProVerif [5] is a mechanized tool based on the Dolev-
Yao model for automated verification of security protocol
properties and is developed by Blanchet in 2001. It can
be used to analyze and validate security protocols that
use Horn clauses or applied PI calculus to model various

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811_20(6).13) 1127

cryptographic primitives. Includes shared key cryptog-
raphy, public key cryptography, digital signature, hash
function and Diffie-Hellman key exchange. At the same
time, it avoids the problem of the state space explosion.
It can analyze and verify the strong confidentiality, au-
thenticity, more general consistency and process of obser-
vation equivalent. ProVerif has successfully analyzed a
large number of complex security protocols.

4 Mynah Authentication Protocol

4.1 Review

Mynah authentication protocol [12] based on OpenFlow
protocol is designed to address the vulnerability of DPID
duplication and to provide the authentication security ser-
vice based on DPID. OpenFlow protocol uses DPID as
the identifier of the data plane, but does not provide any
means to authenticate DPID of the switch. The messages
in Mynah authentication protocol are shown in Figure 1.

Switch Controller

Hello

Hello Response

Feature Reply

Echo Request(session key)

Echo Reply(DPID verified)
. i g At
Switch Controller

Figure 1: The messages of Mynah authentication protocol

Hello and Hello Response: After the switch and the
controller establish a TCP connection, the switch
sends a Hello message to the controller and the con-
troller produces the Hello Reponse message to the
switch to determine the negotiation on version of
OpenFlow protocol used by the communicating par-
ties. Hello message contains the highest version of
OpenFlow protocol that the sender can support. The
switch and the controller each received a Hello mes-
sage from each other, compare the highest version
supported by other parties with the highest version
supported locally and finally the version with the
lower version as the final version. If the negotiation
process fails, a HELLO FAILED error message is re-
turned to the peer and the connection is terminated.

Feature Request and Feature Reply: After the ver-
sion of OpenFlow protocol is determined between the
communicating parties, the controller sends a Fea-
ture Request message to the switch requesting con-

figuration parameters and other related information
for the switch. In the SDN network architecture, a
controller manages the flow table updates of multiple
switches at the same time. Therefore, it is necessary
to save the independent information of the switch
as an identification flag during the connection estab-
lishment process, so as to avoid interfering with the
instructions sent. After receiving the Feature Re-
quest, the switch sends a Feature Reply message to
the controller. Feature Reply message contains ac-
tions, DPID-based authentication and etc.

Echo Request and Echo Reply: The switch sends
the Feature Reply message and indicates that the
switch-controller can perform DPID-based authen-
tication. The switch can send its session key in
the Echo Request message. The session key de-
pends on DPID, timestamp and transaction serial
number. The session key should be encrypted us-
ing either asymmetric key algorithms or symmetric
key algorithms. The switch encapsulates SessionKey
encrypted with a public key into the Echo Request
message and sends it to the controller. After the con-
troller receives Echo Request message, it first checks
DPID to verify the identity of the switch and then
decrypts SessionKey using the corresponding private
key. And then the controller checks whether the
DPID, timestamp and transaction ID is valid or not.
If any of the three parameters is invalid, the con-
troller rejects the connection from the switch. If all
information is valid but has a connection with the
same DPID, the controller still rejects the connec-
tion. Finally, the controller generates a DPID ver-
ification message and encapsulates it into the Echo
Reply message, which is encrypted with SessionKey
and sends it to the switch.

4.2 Formalize Mynah Authentication
Protocol Using the Applied PI Cal-
culus

4.2.1 Function and Equational Theory

The functions and equations used in the modeling process
are described in this section. This study uses applied PI
calculus to formalize Mynah authentication protocol. Fig-
ure 2 depicts the Mynah authentication protocol function
and equation theory.

The message = is encrypted by function senc(xz, PU)
with public key PU and message x is decrypted by func-
tion sdec(z, PU) with public key PU. The message z is
encrypted by function aenc(z, PU) with public key PU
and the message z is decrypted with function adec(x, PR)
with private key PR. The private value is received by
function PR(y) as an input and a private key is gener-
ated as an output, at the same time the common value is
received as an input through function PU(y) and a public
key is generated as an output.

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1128

4.2.2 Processes

The whole Mynah authentication protocol process con-
sists of two processes: switch process and controller pro-
cess. They together constitute the main process, as shown
in Figure 3.

Funaenc(z, PU).

equationadec(aenc(z, PU(y)), PR(y))
equationsdec(senc(xz, PU(y)), PU(y))

x.
x.

Figure 2: Function and equational theory

|lmainprocess = (processSwitch|processController)||

Figure 3: Main process

letprocessSwitch 2

newmsgVersionS; newmsgTypeHelloS; newzidl;
out(c, (msgVersionS, msgTypeHelloSzidl));
in(c, (= msgVersionCon, = msgTypel, = zidRlyl));
in(c, (= msgType2, = xidRly2));
newmsgTypeFeaReply;

out(c, (msgTypeFeaReply, xidRly2, datapathl D))
newtimestamp; newzid3; newmsg1ype EchoReq;
letsessionkeyS = getSessionKey

(timestamp, xid3, datapathID)in

letsecretK ey = aenc(sessionkeyS, PU(keyopl))
inout(c, (msgTypeEchoReq, xid3, secretKey));
in(c,= msgType3, = xidRly3, = secretMessage);
i fsdec(secretMessage, PR(sessionkeysS))

= OPmessagethenout(c, finished)

Figure 4: Mynah authentication protocol switch process

The switch process is shown in Figure 4. First, it sends
the protocol version number msgVersionS to controller
process through public channel ¢ and then receives the
protocol version number msgVersionS from controller
process through the public channel ¢ for message version
negotiation. After the version is determined, switch pro-
cess receives the configuration information request Fea-
ture Request through public channel ¢, generates the re-
sponse Feature Reply and sends its own DPID to the
controller process through public channel c. After con-
troller process receives the DPID, switch process uses the
DPID, timestamp and transaction sequence xid3 to gener-
ate the SessionKey and uses asymmetric encryption algo-
rithm to encrypt secretKey and sends it to controller pro-
cess through public channel ¢. And then from controller
process through open channel ¢ to receive controller en-

crypted message, the use of existing SessionKey and sym-
metric decryption algorithm decryption secretMessage, if
the decryption is successful to verify the correctness of
key, though open channel ¢ output finished, to the end of
this protocol communication.

The controller process is shown in Figure 5. It sends
the protocol version number msgVersionS to switch pro-
cess through public channel ¢ and then receives protocol
version number msgVersionS of the switch from switch
process through public channel ¢ and performs the mes-
sage version negotiation. This process is similar to the
switch process. Once the version is determined, controller
process immediately sends Feature Request over public
channel c and waits for the Feature Reply of the receiving
process. In the received Feature Reply response, the con-
troller process obtains DPID of sender’s process and saves
it. And then through open channel c to receive the ses-
sion process SessionKey, using private key PR(keyopl)
decryption secertkey get the session key SessionKeyC,
the session key DPID and previously saved DPID com-
parison verification. If authentication is successful, the
parameter OPmessage is encrypted using SessionKeyC
and sent to switch process via open channel c.

letprocessController 2

newmsgVersionC; newmsgTypeH elloC,
newxid4;

out(c, (msgVersionC, msgTypeHelloC, xid4));
in(c, (= msgVersionSw, = msgTyped, = xidRlyd));
newmsglypeFeaReq, newxidb;

out(c, (msgTypeFeaReq, xid5));

in(c, (= msgTyped, = xidRly5, = datapathID));
in(c, (= msgTypeb, = xidRly6, = secretkey));
letsessionkeyC = adec(secretkey, PR(keyopl))in
newmsglypeEchoReply; new flag4,
letsecretMessage = senc(OPmessage,
PR(sessionkeyC))in

newmsglypeEchoReply, newzidRly6, new flag4;
out(c, (msgTypeEchoReply, xid Rly6,

flag4, secret Message))

Figure 5: Mynah protocol controller process

4.3 Automatic Verification of Authen-
tication and Confidentiality of My-

nah Authentication Protocol with
ProVerif

Here we use the statements query attack (OPmessage) to
verify confidentiality of OPmessage message and then use
non-injective agreements to model authentication, Mynah
protocol authentication is shown in Table 1.

The ProVerif inputs in Figure 7 are entered into the
ProVerif and the analyze outputs are shown in Figure 8
to Figure 10.

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1129

Table 1: Authentication

Non-injective agreement

Authentication

ev:endauthcon_sMynah(z)==> ev:beginaauthcon_sMynah(z).

Verify the authentication from the controller to the switch

ev:endauthswit_cMynah(z)==> ev:beginaauthswit_cMynah(z).

Verify the authentication from the switch to the controller

Figure 8 is the result of confidentiality of the message
OPmessage. The result is true. According to the specifi-
cation of Mynah authentication protocol, the switch sends
the session key in the Echo Request message. The ses-
sion key is encrypted using either asymmetric key algo-
rithms. The switch encapsulates SessionKey encrypted
with a public key into Echo Request message and sends
it to the controller. After the controller receives Echo
Request message, it first checks DPID to verify the iden-
tity of the switch and then decrypts SessionKey using the
corresponding private key. The attacker cannot obtain
the private key and hence cannot decrypt the message
OPmessage.

funaenc/2. funadec/2.
funsenc/2. funsdec/2.
funPU/1.funPR/1.

fungetSessionKey/3.

equationadec(aenc(x, PU(y)), PR(y))
equationsdec(senc(x, PU(y)), PU(y))

Z.
Z.

Figure 6: Functions and equations in ProVerif

queryattacker : O Pmessage.

queryev : endauthcon_sMynah(x)

==> ev : beginaauthcon_sMynah(x).

(x x ControllerauthenticatesSwitch *)
queryev : endauthswit_cMynah(x)

==> ev : beginaauthswit_cMynah(z).

(* x SwitchauthenticatesController)
eventbeginaauthswit_cMynah(echoRequest);
out(c, echoRequest);
in(c, echoReply);
eventendauthcon_sMynah(echoReply);

in(c, echoRequest);
eventendauthswit_cMynah(echoRequest);
eventbeginaauthcon_sMynah(echoReply);
out(c, echoReply).

Figure 7: Mynah authentication protocol in ProVerif

[| B |

B BER: C\Windows\system32\cmd.exe

|-— Query not attacker:0Pmessagel]
Completing. ..
[Starting query not attacker:OPmessagel]

[RESULT not attacker:OPmessagel] is true.

C: proverif s

Figure 8: OPmessage confidentiality

| B |

B BER: C\Windows\system32\cmd.exe

levent<endauthcon_sMynah{a_1672>> at <{29> in copy a_1674

[The event endauthcon_sMynahCa_1672> is executed.
A trace has been found.
[RESULT ev:endauthcon_sMynah(x_71> ==> ev:beginaauthcon_sMynah(x_71> is false.

C: “proverif >

Figure 9: The analysis result of authentication from the
controller to the switch

[| B)

R EER: C\Windows\system32\cmd.exe

jevent {endauthswit_cMynah{<{OF_ECHO_REQUEST.a_114@.a_1141>>> at {68> in copy a_1i14]
2

[The event endauthswit_cMynah{{OF_ECHO_REQUEST.a_1148.a_1141>> is executed.
A trace has been found.
[RESULT ev:endauthswit_cMynah{x_?1} ==} ev:beginaauthswit_cMynah{x_71)> is false.

C: \proverif >

Figure 10: The analysis result of authentication from the
switch to the controller

Figure 9 presents the result of ew:
endauthcon_sMynah(x) ==> ev:
beginaauthcon_sMynah(z). Figure 10 shows the
result of ev: endauthswit.cMynah(z) ==> ev:

beginaauthswit_cMynah(z). The results are false and
show that the switch and the controller cannot authenti-
cate each other. According to the specification of Mynah
authentication protocol, there has no authentication
mechanism between switch and controller.

About DPID duplication, owning to that the DPID is
not classified, the attacker can get the DPID and then use
the DPID to launch the communication early. According
to the specification of Mynah authentication protocol, the
attacker generates the Echo Request message and sends
it to the controller. The controller checks whether the
DPID, timestamp and transaction ID is valid or not. If
any of the three parameters is invalid, the controller re-
jects the connection from the switch. If all information is
valid but has a connection with the same DPID, the con-
troller still rejects the connection. Because the DPID is

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1130

fresh and not is used, the controller generates a DPID ver-
ification message and encapsulates it into the Echo Reply
message and sends it to the switch. So Mynah authenti-
cation protocol cannot prevent DPID duplication.

5 Improved Mpynah Authentica-
tion Protocol

5.1 The Design of Improved Mynah Au-
thentication Protocol

Improved Mynah automation protocol framework is
shown in Figure 11. Firstly, there is a version negotiation
between the switch and the controller. If it is success-
ful, the controller gets switch configuration information,
otherwise ends the conversation. Second, after the switch
configuration information is obtained, the controller ini-
tiates the authentication request and then if the authen-
tication request succeeds, the switch generates a session
key. At the same time the digital signature mechanism is
introduced to implement the authentication between the
switch and the controller. If the request fails, terminate
session. Finally, if authentication is successful, session key
is used to encrypt the follow-up message. Otherwise, the
session is terminated.

Initiates a connection

failed

success.

Get switch configuration
information

Authentication request

success

failed

Generate session key

Authentication results

success Y . Y

Session key encrypts

subsequent messages Session termination

Figure 11:
framework

Improved Mynah authentication protocol

The improved Mynah authentication protocol intro-
duces a digital signature to implement authentication be-
tween the switch and the controller, confidentiality of data
and to prevent DPID duplication.

Lo (conate]

1.Hello |
2.HelloResponse
s eyt gt
3.FeatureRequest
Bl bl
4.FeatureReply |

8. OF_ECHO_REPLY(DPID verified)

Figure 12: Improved Mynah authentication protocol mes-
sages

The improved Mynah message structures are shown
in Figure 12. After the controller obtains DPID of the
switch, it needs to verify the identity of the switch. The
controller initiates an authentication request and uses a
digital signature to generate a message digest for pro-
tocol type, event sequence number and DPID in the
OF_AUTH_REQUEST message and encapsulates it into
OF_AUTH_REQUEST message and then sends it to the
switch. After receiving OF_AUTH_REQUEST message,
the switch verifies the digital signature using public key
of the controller. And then it generates a session key,
encrypts the key using an asymmetric encryption algo-
rithm, calculates the digital signature and encapsulates
it in OF_AUTH_REPLY message to the controller. The
controller verifies after receiving OF_AUTH_REPLY mes-
sage. Finally, the controller encrypts subsequent commu-
nication message entries using the obtained session key.

1) The controller and the switch still need to complete
version negotiation process. The controller obtains
configuration information about the switch.

2) After obtaining DPID of the switch, the controller
initiates the authentication request.

3) The controller uses its own private key to gener-
ate a digital signature for OF_AUTH REQUEST
message and appends the digital signature to mes-
sage OF_AUTH_REQUEST as a whole message to
switch. The switch verifies the digital signature
through public key of the controller after receiving
OF_AUTH_REQUEST message, verifies whether the
initiator of request is indeed controller and then the
switch generates session key and uses symmetric en-
cryption algorithm to encrypt the session key, gen-
erates a digital signature of OF_AUTH_REPLY mes-
sage using its own private key and sends it to the
controller. After receiving OF_AUTH_REPLY mes-
sage, the controller verifies the digital signature us-
ing the public key of the switch. If the verification
of the digital signature is successful, the controller

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1131

Table 2: Improved Mynah authentication protocol message structures

Description of the improved Mynah authentication protocol field
Message item Field Name Description
Header Message head, Type=OFPT_AUTH_REQUEST
OF_AUTH_REQUEST DPID Create a data plane identifier for the connected switch
SignedMessage Digital signature, authentication controller identity
Header Message head, Type=OFPT_AUTH_REPLY
OF_AUTH_REPLY SecretKey The encrypted session key
SignedMessage Digital signature, authentication switch identity
OF_ECHO_REQUEST Header Message head, Type=OFPT_ECHO_REQUEST
SecretMessage Encrypted message
Header Message head, Type=OFPT_ECHO_REPLY
OF ECHO-REPLY Flag Verify that the authentication result is TRUE

obtains the session key sent by the switch using sym-
metric decryption algorithm. Otherwise the protocol
is ended.

After the controller obtains the session key gen-
erated by the switch, the session key is used to
encrypt data. And then the controller encapsu-
lates it into OF_AUTH_REQUEST message and
sends it to the switch. When the switch received
OF_AUTH_REQUEST message, it uses the session
key to decrypt it. Finally, the switch generates
OF_ECHO_REPLY message and sends it to the con-
troller.

OF_AUTH_REQUEST message is generated by the
controller, which contains DPID of the switch and the
digital signature generated by the controller using the pri-
vate key. OF_AUTH_REPLY message is generated by the
switch, which contains encrypted session key and the dig-
ital signature generated by the switch using the private
key. The message fields and descriptions are shown in
Table 2.

5.2 Formalize Improved Mynah Authen-
tication Protocol Using the Applied
PI Calculus

The function and the equation theory are shown in Fig-
ure 13 in formal model of the improved Mynah authen-
tication protocol. The message x is digitally signed by
function sign(x, PR) with private key PR and the cor-
rectness of message x signature is verified by function
versign(xz, PU) with public key PU. The message x is
encrypted by function senc(x, PU) with public key PU
and message x is decrypted by function sdec(z, PU) with
public key PU. The message z is encrypted by function
aenc(x, PU) with public key PU and the message x is de-
crypted with function adec(z, PR) with private key PR.
The private value is received by function PR(y) as an in-
put and a private key is generated as an output and the
common value is received as an input through function
PU(y) as an input and a public key is generated as an
output.

Funaenc(z, PU).

Funadec(z, PR)
Funsenc(x, PU).Funsdec(x, PU).
Funsign(z, PR).Funversign(z, PU).

FunPU (y).FunPR(y).
equationadec(aenc(z, PU(y)), PR(y)) =
equationsdec(senc(xz, PU(y)), PU(y)) =
equationversign(sign(xz, PR(y)), PU(y)) = .
Figure 13: Improved Mynah authentication protocol func-
tion and equality theory

The switch process is shown in Figure 14. In the first
part, the switch first completes the version negotiation
and the FeatureReply response through public channel c,
sends the relevant configuration information to the con-
troller process and then switch process receives authen-
tication request OF_AUTH_REQUEST through public
channel ¢ and then uses controller public key PU (keyrpl)
and function versign(xz, PU) to confirm the digital sig-
nature. If the verification result verifies the authentic-
ity of signature, the session key is generated by DPID,
timestamp and transaction sequence xid3 and the session
key is encrypted using asymmetric encryption function
aenc(x, PU). Finally, switch private key PR(keyrp2) and
function sign(x, PR) to sign above parameters and sends
them to the controller process via open channel c. The
second part, through public channel ¢ from controller pro-
cess to receive secretMessage, using the existing Session-
Key and symmetric decryption algorithm sdec(x, PU) to
decrypt secretMessage. If the decryption is successful, the
flag of OF_ECHO_REPLY message is set to true and then
through public channel ¢ sends the message to controller
and the protocol communication ends.

The controller process is shown in Figure 15. First,
it completes the version negotiation and message fea-
tureRequest to the switch process through open chan-
nel ¢ and then obtains DPID of the switch. Sec-
ond, use controller private key PR(keyrpl) and func-
tion sign(x, PR) to generate a digital signature and en-

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1132

capsulate it into the OF_AUTH_REQUEST message to

send the authentication request through public channel c. funaenc/2.

Then the controller process receives the authentication re- ;Z?zzjzzg ’

sponse message OF_AUTH_REPLY through public chan- Funsenc /2’.

nel ¢, it uses switch public key PU (keyrp2) and function Funsign/2.

versign(z, PU) to confirm the digital signature. If the Funversign/2.

verification result confirms the authenticity of signature, funPU/1.

the function adec(x, PU) decrypts the SessionKey and en- funPR/1.

crypts the OPmessage with session key, encapsulating it

into the OF_ECHO_REQUEST message and sending it to equationadec(aenc(z, PU(y)), PR(y)) = =.

the switch process through public channel c. equationsdec(senc(z, PU(y)), PU(y)) = .
equationversign(sign(z, PR(y)), PU(y)) = =

Figure 16: Functions and equations in ProVerif

letprocessSwitch 2

newmsgVersionsS;

newmsgTypeHelloS; newxidl;

out(c, (msgVersionS, msgTypeHelloS, zidl));
in(e, (= msgType3, = zidRly3,

= datapathI D,= SignedMessageC2S5));
ifversign(SignedMessageC2S, PU (keyrpl),

queryattacker : O Pmessage.
queryev : endauthcon_s(x)
==> ev : beginaauthcon_s(x).
queryev : endauthswit_c(z)
==> ev : beginaauthswit_c(z).
...... in(c, authRequest);

(msgTypes, m’d]?ly& datapathID)) ifversign(SignedMessageC2S, PU (keyrpl)) =
= truethennewtimestamp; (msgType3, vidRly3, datapathI D1)then
newmsgType AuthReply;

eventendauthcon_s(SignedMessageC25);
....... eventbeginaauthswit_c(SignedS2C);
out(c, authReply);

....... eventbeginaauthcon_s(SignedS2C);

letsessionkeyS = getSessionK ey
(timestamp, xid Rly3, datapathlI D)
inletsecretKey = aenc(sessionkeysS,

i%g‘;lfé’;%)ci’” sign out(c, authRequest);

= T | I | R in(c, authReply);if
((gi]gTyp;?)@hReplyv zidRly3, secret Key), versign(SignedMessageS2C, PU (keyrp2)) =
PR(keyrp2))in (msgTypeT, xidRlyT, secret Keyl)then

out(c, (msgTypeAuthReply, vid Rly3,
secretKey, SignedS2C));

eventendauthswit_c(SignedMessageS2C);

Figure 14: The switch process Figure 17: Improved Mynah authentication protocol in

ProVerif
A
letprocessController =
newmsgVersionsS; B S5 CiWindows\system32\amd.oxs = | i)
newmsgTypeHelloS; newxidl; | query not atrackes:0Pmessagell
. . . Completing. .

out(c, (msgVersionS, msgTypeHelloS, xidl)); S oetirs Giisw gt §ttEkes OPRESEREEL]

. JRESULT ker:OFmess [1 is rue .
letslgnedczs — not attacker 'mes sage is true

sign((msgTypeAuthReq, xid7, datapathl D), [N
PR(keyrpl))in

out(c, (msgTypeAuthReq, xid7,
datapathl D2, SignedC2S, SignedC2S);

in(c, (= msgType7, = zidRlyT,

= secretKey,= SignedMessage));
ifversign(SignedMessageS2C, PU (keyrp2),
(msgTypeT, xidRly7, secretKey)) = true

Figure 18: Confidentiality of OPmessage

. = =. : = 1
thennewmsgType EchoReq; newxids; B e e e e ——
. id_18A21>,.!1 = Psid_18@21,.xid?_65[featureReply 59 = (OF_FEATURE_REPLYS
letsesszonkeyc = .xid6_56[helloSwitch ¢megUercionC_48[%1 = Bgid 18621,0F_HELLOL1,xid5_S@Lt
. 3. = Psid_18M21.datapathID1_1803,truel1>,helloSwitch 52 = (msgUe|
adec(secretKeyl, PR(keyopl))zn - ionC_4 18021, 0F_HELLOL1,xid5_SOI[!1 = @cid 188215, %1 = Bsid_18021,dal
jtapathID1_18083) , PR(keyrpl_110133>
letsecretMessage = IRESULT ev:endauthcon_s(x_97> ==> ev:beginaauthcon_s(x_97) is true.

senc(OPmessage, PR(sessionkeyC))in e weouenin
out(c, (msgTypeEchoReq, xid8, secretM essage));

Figure 19: The analysis result of the authentication from
Figure 15: The controller process the controller to the switch

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1133

Table 3: Authentication

Non-injective agreement

Authentication

ev:endauthcon_s(z)==>ev:beginaauthcon_s(z).

Verify the authentication from the controller to the switch

ev:endauthswit_c(z)==;>ev:beginaauthswit_c(x).

Verify the authentication from the switch to the controller

8 BIES: C\Windows\system32\cmd.exe oo e

id_17601,%id7_65 [featureReply 59 = (OF_FEATURE_REPLYI[1,xid6_56[hello8witch 52 = &3
[<msglUersionC_48[%1 = Bsid 17571.0F_HELLOIL1.xid5 S@8[*1 = Bsid 17571>.71 = @sid 17|
571.datapathIDi_1758,true[1> helloSwitch 52 = (msglersionC_48[!1 = Bsid_17571,0F|
| HELLOL1.xid5 5@[!1 = Bsid 17571>.!1 = Csid 17571 .datapathIDI1),PUCkeyopl 1810122
> . PR<keyrp2_12010>>

[RESULT ev:endauthsuit_c(x 97> ==> ev:beginaauthswit_c(x_97?> is true.

[C: \proverif >

Figure 20: The analysis result of the authentication from
the switch to the controller

5.3 Automatic Verification of Authen-

tication and Confidentiality of Im-
proved Mynah Authentication Proto-
col with ProVerif

After the formal model of the improved Mynah authen-
tication protocol was generated, ProVerif is used to per-
form the formal analysis. First the target that needs to be
proved is defined and then the analysis with ProVerif is
implemented. The authentication of the improved Mynah
authentication protocol is shown in Table 3. This process
is similar to the verification process of Mynah authenti-
cation protocol.

ProVerif scripts in Figure 17 are as input to ProVerif
and the outputs of analysis are shown in Figure 18 to
Figure 20.

Figure 18 shows the result of the formalize analysis
of confidentiality of OPmessage and the result is true, it
proved that the improved Mynah authentication protocol
provides confidentiality of OPmessage.
shows

Figure 19 the result of ev :
endauthcon_s(x) ==> ev beginaauthcon_s(x).
Figure 20 is the result of ev : endauthswit_c(x) ==> ev :

beginaauthswit_c(x).The two results are true and indi-
cate that the switch and the controller can authenticate
each other.

In the improved Mynah authentication protocol, be-
cause digital signature mechanism is adopted, the switch
uses the private key to sign the message when send-
ing the message OF_AUTH_REPLY. After receiving
OF_AUTH_REPLY message, the controller needs to ver-
ify the digital signature using the public key of the
switch, to ensure the authentication for the switch
and integrity of the message OF_AUTH_REPLY. Sim-
ilarly, the controller uses the digital signature for the
message OF_ECHO_REQUEST, the switch receives the
OF_ECHO_REQUEST and uses the controller’s public
key to verify the digital signature to ensure the authenti-

cation for the controller and the integrity of the message
OF_ECHO_REQUEST.

About DPID duplication, according to the specifica-
tion of the improved Mynah authentication protocol, the
attacker cannot generate the digital signature for message
OF_ECHO_REQUEST because the private key of con-
troller is secret. At the same time the attacker also can-
not produce the digital signature for OF _AUTH_REPLY
because the private key of the switch is secret. So the im-
proved Mynah authentication protocol can prevent DPID
duplication.

6 Develop and Deploy the Im-
proved Mynah Authentication
Protocol

The improved Mynah authentication protocol was devel-
oped and deployed to open source controller ONOS [4]
and switch Open vSwitch to validate its security. The im-
proved Mynah authentication protocol program consists
of the controller side developed with Java language and
the switch side developed with C language. The improved
Mynah authentication protocol program is deployed to
the controller ONOS and the switch Open vSwitch and
be recompiled. The improved Mynah authentication pro-
tocol development architecture is illustrated in Figure 21.

Improved Mynah authentication protocol

A,

Controller Switch

Existed message item
HelloResponse
FeatureRequest

Existed message item
Hello
FeatureReply

Add messages item
OF _Auth Request
OF_Echo_Request

Add messages item
OF _Auth Reply
OF_Echo_Reply

Figure 21: Improved Mynah authentication protocol de-
velopment architecture

Running environment is composed of the hardware en-
vironment and the software environment. The hardware
environment is for Intel Dore dual-core CPU, memory
2GB. The software environment is for the operating sys-
tem for Ubuntu 14.0.1, the controller ONOS version 1.3,
the switch Open vSwitch version 1.0, the virtual network
simulation platform Mininet version 1.0, Apache Karaf
version 3.0.2.

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811_20(6).13) 1134

6.1 ONOS Controller Side Development

In the ONOS platform, the controller and the switch con-
nection consist of three steps. The controller starts listen-
ing to port 6633, the switch launches the connection with
controller, the controller and the switch make negotiation
on version and the message transmission.

The main class in ONOS controller side is the Open-
FlowControllerImpl class that implements the OpenFlow-
Controller interface. During the initialization of Open-
FlowControllerImpl class, the controller object Controller
class and OpenFlowSwitchAgent class are instantiated
at first to monitor the state of the switch that has es-
tablished the connection. And then it calls the Con-
troller.start(OpenFlowAgent agent) method for parame-
ter configuration and starts the server side, listens port,
waits for the switch to establish a connection.

After the connection is established between the con-
troller and the switch, the controller generates OFChan-
nelHandler object and listens for the messages sent by
the switch. After receiving the message sent by the
switch, the controller first analyzes the type of mes-
sage and performs different method calls according to
the message type. When the message type is Fea-
ture_Reply, the controller should send the authentica-
tion request message OF_Auth_Request. When the mes-
sage type is Auth_Reply, the controller should send the
OF_Echo_Request message.

In ONOS design mode, the OFMessage interface is de-
fined, which contains all the data items and operations in
an OpenFlow message. Its subinterfaces are also defined
for behavior and data items according to the explicitly de-
fined message items in OpenFlow protocol specification.
The implementation class developed by us process the
data according to the method defined by the parent inter-
face and the specific version information. The data that
need to transmit between the controller and the switch
is encapsulated into the instantiated object and commu-
nicates through the ChannelPipeline pipeline in ONOS
platform. The protocol message structure is shown in
Figure 22.

OFMessage

OFAuthRequest OFAuthReply OFEchoRequest OFEchoReply

OFAuthRequestVerl3

‘ OFEchoRequestVerl3

‘OFAulhReplyVeIIS ‘ OFEchoReply13 ‘

Figure 22: ONOS message structure

Because each message has a separate implementation
class, the ONOS controller side need to check Type

and Version of the message received and then find the
corresponding implementation classes according to the
Type and Version for message encapsulation, encryp-
tion, decryption and authentication etc. ONOS controller
has implemented the implementation classes of HelloRe-
sponse message and FeatureRequest message, so we fo-
cus on the implementation classes and deployments of
OF _Auth_Request message and OF_Echo_Request mes-
sage.

When the controller sends an authentication request, it
first needs to obtain parameters such as version number,
Xid and DPID. Then the digital signature is generated
for the DPID as part of the OF_Auth_Request message
and sent to the switch. When the controller receives the
OF _Auth_Reply message, it is also necessary to verify the
digital signature using the public key. If the verification
succeeds, the authentication from the controller to the
switch is true. If the verification fails, the controller ter-
minates the session and releases the connection. At this
time the controller saves the DPID in its own database.
If the attacker wants to use the same DPID to establish
connection, then the controller needs to query database.
The results show that there is a duplicate DPID, then the
controller refused connection.

6.2 Open vSwitch Switch Side Develop-
ment

When the switch receives the OpenFlow message, it also
needs to perform the action according to the message
type. When the message type is Auth_Request, the switch
should send the OF _Auth_Reply message. When the mes-
sage type is Echo_Request, the switch should send the
OF_Echo_Reply message.

After receiving the OF_Auth_Request message, the
switch first verifies the digital signature using the pub-
lic key of the controller. If the verification succeeds, the
authentication from the controller to switch is true. The
switch then generates the session key and encrypts the
session key and generates the digital signature as a field
of the OF_Auth_Reply message sent to the controller. Af-
ter receiving the OF_Auth_Reply message, the controller
verifies the digital signature using the public key of the
switch. If the verification is successful, the controller ob-
tains the session key and can use it to encrypt the follow-
up message to the switch. At the same time, the switch
uses the session key to decrypt the message.

6.3 Results and Analysis

After the deployment of the improved Mynah authenti-
cation protocol program, we find that when DPID of the
switch changes, the controller terminates and releases the
connection, restarts the new session request by the switch
and completes the authentication process again. Other-
wise, the controller remains in listening state. When the
digital signature verification fails, the controller or switch

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1135

also to terminate the session process. That is consistent
with the results of the formal analysis with ProVerif.

7 Conclusion

With the rapid development and applications of SDN net-
work, people have paid a special attention to its security.
Recently Kang et al. propose an authentication protocol
called Mynah authentication protocol and claim that it
can address the vulnerability of DPID duplication and
provide the authentication between the controller and
the switch in OpenFlow-based SDN network. Owning
to security analysis of Mynah authentication protocol is
not clear, in this study we apply applied PI calculus in
symbolic model to formalize Mynah authentication pro-
tocol and mechanized analyze it with mechanized tool
ProVerif. We find that it does not provide mutual au-
thentication between the controller and the switch. At
the same time, Mynah authentication protocol can’t pre-
vent DPID duplication. Hence we propose an improved
Mynah authentication protocol to address the vulnerabil-
ities found by us. At the same time, the improved Mynah
authentication protocol is modeled by applied PI calcu-
lus and mechanized analyzed with ProVerif. The results
show that the improved Mynah authentication protocol
can prevent DPID duplication and provide confidential-
ity of data and authentication between the switch and the
controller. Finally, we develop and deploy the improved
Mynah authentication protocol to open source controller
ONOS and switch Open vSwitch to validate authentica-
tion and confidentiality. The experimental results show
that it can provide confidentiality of data and authenti-
cation between the switch and the controller. In the near
future, we will use the proof assistant Coq to prove the
correctness of the improved Mynah authentication proto-
col implementation.

Acknowledgments

This study was supported in part by the Fundamen-
tal Research Funds for the Central Universities, South-
Central University for Nationalities No.CZZ18003 and by
the natural science foundation of Hubei Province under
the grants No. 2014CFB249.

References

[1] M. Abadi and C. Fournet, “Mobile values, new
names, and secure communication,” in Proceedings
of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 104-115,
Mar. 2001.

M. Azrour, Y. Farhaoui, and M. Ouanan, “A new
secure authentication and key exchange protocol for
session initiation protocol using smart card,” Inter-

[10]

[11]

[12]

[13]

[14]

[15]

national Journal of Network Security, vol. 19, no. 6,
pp. 870-879, 2017.

K. Benton, L. J. Camp, and C. Small, “OpenFlow
vulnerability assessment,” in Proceedings of the sec-
ond ACM SIGCOMM workshop on Hot topics in
software defined networking, pp. 151-152, Aug. 2013.
P. Berde, M. Gerola, J. Hart, Y. Higuchi, and
M. Kobayashi, “ONOS: Towards an open, dis-
tributed SDN OS,” in Proceedings of the third work-
shop on Hot topics in software defined networking,
pp- 1-6, Aug. 2014.

B. Blanchet, “An efficient cryptographic protocol
verifier based on prolog rules,” in Proceeding of the
14th IEEE Computer Security Foundations Work-
shop, pp- 82-96, Cape Breton, June 2001.

I. Bocic and T. Bultan, “Symbolic nodel extrac-
tion for web application verification,” in 2017
IEEE/ACM 39th International Conference on Soft-
ware Engineering, pp. 724-734, Buenos Aires, Ar-
gentina, May 2017.

V. Dangovas and F. Kuliesius, “SDN-driven authen-
tication and access control system,” in The Inter-
national Conference on Digital Information, Net-
working, and Wireless Communications, pp. 20-23,
Czech, June 2014.

D. Erickson, “The beacon OpenFlow controller,” in
Proceedings of the second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking,
pp- 13-18, Hong Kong, China, Aug. 2013.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, and
N. Mckeown, “NOX: Towards an operating system
for networks,” ACM Sigcomm Computer Communi-
cation Review, vol. 38, no. 3, pp. 105-110, 2008.

F. Hu, Q. Hao, and K. Bao, “Survey on software-
defined network and OpenFlow: From concept to
implementation,” Communications Surveys € Tuto-
rials IEEE, vol. 16, no. 4, pp. 2181-2206, 2014.

S. Jain, A. Kumar, S. Mandal, J. Ong, and
L. Poutievski, “B4: Experience with a globally-
deployed software defined WAN,” in Proceedings
of the ACM SIGCOMM 2013 Conference on SIG-
COMM, pp. 3-14, Aug. 2013.

J. W. Kang, S. H. Park, and J. You, “Mynah: En-
abling lightweight data plane authentication for SDN
controllers,” in International Conference on Com-
puter Communication & Networks, pp. 1-6, Las Ve-
gas, USA, Aug. 2015.

R. Kloti, V. Kotronis, and P. Smith, “OpenFlow: A
security analysis,” in IEEE International Conference
on Network Protocols, pp. 1-6, Goettingen, German,
Oct. 2014.

D. Kreutz, F. M. V. Ramos, and P. Verissimo, “To-
wards secure and dependable software-defined net-
works,” in Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined
Networking, pp. 55—60, Aug. 2013.

D. Kreutz, F. M. V. Ramos, P. Esteves Veris-
simo, C. Esteve Rothenberg, and S. Azodolmolky,

International Journal of Network Security, Vol.20, No.6, PP.1125-1136, Nov. 2018 (DOI: 10.6633/IJNS.201811-20(6).13) 1136

“Software-defined networking: A comprehensive sur-
vey,” in Proceedings of the IEEE, vol. 103, no. 1,
pp. 10-13, 2014.

J. Liu, Y. X. Lai, Z. P. Diao, and Y. N. Chen, “A
trusted access method in software-defined network,”
Sitmulation Modelling Practice and Theory, vol. 74,
pp. 28-45, 2017.

D. M. F. Mattos and O. C. M. B. Duarte, “Auth-
Flow: Authentication and access control mechanism
for software defined networking,” Annals of Telecomn-
munications, vol. 71, no. 11-12, pp. 607-615, 2016.
J. Medved, R. Varga, A. Tkacik, and K. Gray,
“OpenDaylight: Towards a model-driven SDN con-
troller architecture,” World of Wireless, Mobile &
Multimedia Networks, pp. 1-6, 2014.

D. Mery and M. Poppleton, “Towards an integrated
formal method for verification of liveness properties
in distributed systems: With application to pop-
ulation protocols,” Software & Systems Modeling,
vol. 16, no. 4, pp. 1083-1115, 2017.

R. Milner, “Communicating and mobile systems:
The m-calculus,” Cambridge: Cambridge University
Press, pp. 1-5, 1999.

A. A. Mohammed, M. Gharbaoui, B. Martini, F. Pa-
ganelli, and P. Castoldi, “SDN controller for network-
aware adaptive orchestration in dynamic service
chaining,” in IEFEE NetSoft Conference and Work-
shops (NetSoft’16), July 2016.

S. Natarajan, A. Ramaiah, and M. Mathen, “A soft-
ware defined cloud-gateway automation system using
OpenFlow,” in IEEE 2nd International Conference
on Cloud Networking (CloudNet’13), pp. 219-226,
San Francisco, Nov. 2013.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, and
M. Tyson, “A security enforcement kernel for Open-
Flow networks,” in ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networks, pp. 121—
126, Helsinki, Finland, Aug. 2012.

L. Schiff, S. Schmid, and P. Kuznetsov, “In-
band synchronization for distributed SDN control
planes,” ACM SIGCOMM Computer Communica-
tion, vol. 46, no. 1, pp. 37-43, 2016.

S. Scott-Hayward, S. Natarajan, and S. Sezer, “A
survey of security in software defined networks,”
IEEE Communications Surveys € Tutorials, vol. 18,
no. 1, pp. 623-654, 2016.

S. Shin, P. Porras, V. Yegneswaran, M. Fong, and
G. Gu, “FRESCO: Modular composable security ser-
vices for software defined networks,” in Proceedings
of Network & Distributed Security Symposium, 2013.
R. Smeliansky, “SDN for network security,” in 1st
International Conference on Science and Technology,
Moscow, Russia, Oct. 2014.

M. M. Wang, J. W. Liu, J. Chen andJ. Mao, and
K. F. Mao, “Software defined networking: Security
model, threats and mechanism(in chinese),” Journal
of Software, vol. 27, no. 4, pp. 969-992, 2016.

23]

[24]

[25]

[26]

[29] D. Yu, A. W. Moore, C. Hall, and R. Anderson, “Au-
thentication for resilience: The case of SDN,” Lec-
ture Notes in Computer Science, vol. 8263, pp. 39—
44, 2013.

Q. Y. Zuo, M. Chen, G. S. Zhao, C. Y. Xin,
and G. M. Zhuang, “Research on OpenFlow-based
SDN technologies(in chinese),” Journal of Software,
vol. 24, no. 5, pp. 1078-1097, 2013.

[30]

Biography

Lili Yao was born in 1993 in China. Now she is a post-
graduate at School of Computer Science, South-Center
for Nationalities, China. Her current research interests
include protocol security and data storage security.

Jiabing Liu was born in 1993 and is now a postgraduate
at the school of computer, South-Center University for
Nationalities, China. His current research interest is the
Formal analysis of security protocol.

Dejun Wang was born in 1974 and received his Ph.D. in
information security at Wuhan University in China. Cur-
rently, he is an associate professor in the school of com-
puter, South-Center University for Nationalities, China.
He has authored/coauthored over 20 papers in interna-
tional/national journals and conferences. His current
research interests include security protocols and formal
methods.

Jing Li was born in 1989 and graduate from the South-
Center University for Nationalities, China. His main re-
search direction includes the analysis of security protocols
and formal methods.

Bo Meng was born in 1974 in China. He received
his M.S. degree in computer science and technology in
2000 and his Ph.D. degree in traffic information engi-
neering and control from Wuhan University of Technol-
ogy at Wuhan, China in 2003. From 2004 to 2006, he
worked at Wuhan University as a postdoctoral researcher
in information security. From 2014 to 2015, he worked
at University of South Carolina as a Visiting Scholar.
Currently, he is a full Professor at the school of com-
puter science, South-Center University for Nationalities,
China. He has authored/coauthored over 50 papers in
International/National journals and conferences. In ad-
dition, he has also published two books ” Automatic gen-
eration and verification of security protocol implementa-
tions” and ”secure remote voting protocol” in the science
press in China. His current research interests include se-
curity protocols and formal methods.

