
International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1061

Android Malware Identification Through Visual
Exploration of Disassembly Files

Yong-liang Zhao1 and Quan Qian2,1,3

(Corresponding author: Quan Qian)

School of Computer Engineering & Science, Shanghai University1

Shanghai Institute for Advanced Communication and Data Science, Shanghai University2

99 Shangda Road, Shanghai, China

(Email: qqian@shu.edu.cn)

Materials Genome Institute of Shanghai University3

No. 99, Shangda Road, Shanghai, China

(Received Apr. 28,2017; revised and accepted Aug. 20, 2017)

Abstract

Android malwares are the most serious threats for the cur-
rent mobile Internet. In this paper, we propose a static
analysis approach which does not need to understand the
source code of the android applications. The main idea is
as most of the malware variants are created using auto-
matic tools. And there are special fingerprint features for
each malware family. Depending on decompiling the an-
droid APK, we innovatively map the Opcodes, API pack-
ages and high level risky API functions into an integrated
three channels of a RGB image respectively. And then
use convolutional neural network to identify each family’s
features. The experimental results show that the pro-
posed method successfully identified the entire 14 mal-
ware datasets with accuracy 90.67%, precision 93.36%,
recall rate 93.95% and F1 93.56% on average.

Keywords: Android Malware; Deep Learning; Malware
Identification; Visual Analysis

1 Introduction

With the rapid development of mobile internet, mobile de-
vices, especially smartphones, are not only as important
tools for people to communicate with the outside world,
but also as personal digital assistants or enterprise digital
assistants to plan or organize their users’ work and also
private life. So, mobile security has become increasingly
important in mobile computing. According to the statis-
tical analysis of AliMobileSecurity, although the number
of mobile malwares and infections in 2015 showed a cer-
tain degree of decline,still 18% devices were infected with
different kinds of virus or trojans. Moreover, the profes-
sional virus attacks over the year have been significantly
upgraded, such as the abuse of system vulnerabilities, se-
curity reinforcement technology, especially the social en-

gineering. All of these make the traditional mobile virus
interception technology being encountered unprecedented
challenges.

Although the number of malwares is increasing every
year,most of the variants are modified or generated based
on the original malicious code [6]. In most cases, hackers
use automated or module reuse tools to generate mal-
wares automatically. These variants often share the same
ancestor’s work, resulting in the high degree of similar-
ity among variants. So, how to recognize the fingerprints
among different variants is the main task we should pay
more attention to.

About the mobile operating systems, there are An-
droid, iOS, Symbian OS and Windows phone. Consider-
ing the open source and widespread applications, in this
paper we mainly focus on Android system. We introduce
a new method to classify the android malwares. For each
malware sample, we extract the Opcode feature and map
it into R channel of RGB image, OS API feature into G
channel and risky API feature into B channel, then we
merge three channels into one combined feature image
and use the deep learning algorithm for further classi-
fication. The rest of the paper is organized as follows:
Section 2 gives a brief introduction of the related work.
Our main contributions, the image based feature integra-
tion and deep learning based classification are described
in Sections 3 and 4. The experimental results are shown
in Section 5. Section 6 summarizes the whole paper and
give some directions for future work.

2 Related Work

According to code state for analysis, malware detection
methods can be typically divided into two categories:
static analysis and dynamic analysis. In static analysis,
the codes of the sample are examined comprehensively

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1062

by disassembling or decompiling the malware binary files
without executing it, which can prevent operating system
from malicious damages. The advantages of static analy-
sis are that we can get a complete view of what a given
malware does. However, in most cases, static analysis
is not a trivial task since hackers use code obfuscation,
such as binary packers, encryptions to evade detection.
Furthermore, static analysis does not allow a high degree
of automation, since in most cases, it is done by hand
and sometimes very time-consuming. Considering about
the dynamic analysis, it can analyse the behavior of the
malware during executing it in a debugger. Currently,
sandbox-based dynamic analysis is one of the most pop-
ular solutions. A sandbox executes a malware sample in
a controlled environment which can monitor and record
information of system calls and behaviors dynamically.
The main limitations of dynamic analysis, especially the
sandbox-based solutions, are the overwhelming detailed
reports for human analysts to face. How to make the
malwares behavior more easier accessible. How to guar-
antee the high degree of execution path coverage are two
critical factors. Furthermore, in contrast to static analy-
sis, dynamic analysis can be automated to a high degree,
though it has high computation complexity.

2.1 Android Malware Detection Using
Static Analysis

Static analysis involves extracting information from the
application’s manifest of the Android application’s byte-
code. The features often used in static analysis include
API calls, requested permissions, used permissions, con-
trol flows, data flows, hardware components, application
components, intents, network addresses, etc.

Sanz et al. [15] presented PUMA, a system used the
permission application requests upon installation to de-
tect whether the application is malicious or not. Machine
learning models including simple logistic regression, Naive
Bayes, Bayes Net, SMO, IBK, J48, Random Tree (RT)
and Random Forests (RF) are evaluated on a dataset con-
sisting of 357 benign and 249 malicious applications. The
best overall accuracy reaches by Random Forests 86%.

Lee et al. [17] presented a detection mechanism us-
ing runtime semantic signatures, which showed high fam-
ily classification accuracy. They used three sets of ele-
ments to construct the signatures. The first set is binary
patterns of malicious API calls instructions, runtime se-
mantics of control and data flow. The second set is the
malware family characteristics including family common
strings, constants, methods, and classes. The third set is
weights that each behavior belongs to a family. Experi-
ments on 1,759 Android malwares including 79 variants
of 4 malware families show that the proposed method can
obtain 99.89% accuracy on detecting the malware family
of a particular variant.

Arp et al. [1] proposed DREBIN, which was a simi-
lar approach to the method proposed by Peng et al. [8].
Eight different static feature sets are extracted including

hardware components, requested permissions, application
components, filtered intents, restricted API calls, used
permission, suspicious API calls, and network addresses.
Experiments on evaluation of 123,453 benign applications
and 5,560 malware samples, DREBIN can detect 94% of
the malware.

Zhang et al. [12] implemented DroidSIFT. They ex-
tracted a weighted contextual API dependency graph as
program semantics to construct feature sets. Graph simi-
larity metrics are introduced to uncover homogeneous ap-
plication behaviors. Experiments on 2,200 malware sam-
ples and 13,500 benign samples are performed using Naive
Bayes. The results show that DroidSIFT can detect 93%
of malware instances.

Yang et al. [2] developed DroidMiner, which used static
analysis to automatically learn the malicious program
logic from known Android malwares. A two-tiered be-
havior graph is constructed in DroidMiner. The upper
tier is a component dependency graph (CDG) in which
each node represents an activity, a service or a broad-
cast receiver. The lower tier uses component behavior
graphs (CBG) to present each component’s lifetime be-
havior functionalities. From the behavior graph, differ-
ent malicious patterns, named modalities, can be mined.
In particular, function modality representing an ordered
sequence of API functions, and resource modality rep-
resenting a set of sensitive resources, are extracted and
converted to a modality vector by DroidMiner. The vec-
tors are then fed into several machine learning classifiers
including Naive Bayes, SVM, decision trees, and ran-
dom forests for malware detection. The best algorithm
of DroidMiner can achieve a 95.3% detection rate on a
dataset of 2,466 malwares. It can also reach 92% for clas-
sifying malwares into their proper families.

2.2 Android Malware Detection Using
Dynamic Analysis

Dynamic analysis records the execution of an application
and tries to identify malicious behavior. It is well known
for being resilient to obfuscation techniques. However,
dynamic analysis introduces more overhead because it
requires running the application first and then deciding
whether it is malicious based on run-time behavior. As
a consequence, it is mostly applicable for offline malware
detections. Besides that, the other deficiency of dynamic
analysis is code execution path coverage. Since some ma-
licious behaviors are triggered by special conditions, dy-
namic analysis will not record an application’s malicious
behavior if the conditions are not matched.

Ham et al. [20], proposed a method that was very sim-
ilar to CrowDroid. They also aggregated real-time sys-
tem calls to create a histogram using Linux strace tool.
They discovered that some system call patterns only oc-
curred in malicious applications and some only in benign
ones. Different from the K-means used in CrowDroid,
Ham et al., applied a discrimination algorithm based on
Euclidean distance on 1,260 malware samples published

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1063

by Genome [19]. But no classification accuracy was re-
ported yet.

Tchakounté et al. [18] scrutinized system call invoca-
tions initiated by the malicious code at the moment the
user runs it using the Linux strace tool. With their tool
they discovered new scenarios of how the users are lured
to aid the malicious developer.

Wei et al. [21] recorded system call invocations by man-
ually installing and executing each application on a real
Android phone. N-gram vectors are generated from the
system call invocations and fed into a SVM and a naive
Bayes for classification. Experiments on 96 benign appli-
cations and 92 digital book malware samples show their
methods can reach 94% accuracy.

Dimjasevic et al. [3] proposed MALINE, which also
records system call invocations for Android malware and
converts them into two representations. One is histogram
and the other is a variant of the Markov Chain representa-
tion. Experiments on 4,289 malwares and 12,789 benign
applications show that they can achieve 93% detection
accuracy.

So, there have been some relative work on Android
malwares using static or dynamic methods. But different
from the existing work, our contributions are as follows:

1) Proposing a new method that recognize the malware
without understanding its source code and execution
behavior.

2) Using visualization techniques to transform the Op-
codes to family images.

3) Integrate the Opcodes sequence features, API calls
features and high risky API calls features to three
different RGB channels.

4) Using CNN network to train the malware feature im-
ages and get an excellent identification results.

3 Visual Representation for An-
droid Malwares

Nataraj et al. [13], proposed a method for visualizing and
classifying malwares using image processing techniques,
which transform windows platform malware binaries to
gray-scale images. In 2015, Little Boat et al. won the
championship of Kaggle, a famous Microsoft Malware
Classification Challenge. It is interesting that the cham-
pionship team with three people did not engage in secu-
rity, and the methods used are very different from our
common methods. They use gray-images, n-gram and
the PE-header features, and use machine to learning clas-
sify the malwares. Without understanding the malware’s
source code, it shows great potential that image based
methods for malware detection.

Based on this idea, we propose a method mapping
Android applications to RGB images. We extract three
features: Opcode, sensitive API calls, and risky API re-
quests. And integrate them into one RGB color image.

Figure 1: The whole procedure of the malware family
identification

3.1 System Architecture

Figure 1 shows the working flow of our method. Firstly,
we decompile the application and extract the Opcodes;
Secondly, mapping the different Opcodes to pixels in R
channel of the RGB image, and then colouring some sen-
sitive API packages in G channel, highlighting the risky
API functions in B channel. Thirdly, merging the three
R, G, B channels to generate the feature image. Finally,
using machine learning to model the features and identify
different family fingerprints automatically.

3.2 Android Malware Decompilation

An Android application is commonly written in Java and
compiled to Dalvik bytecode which contained in a .dex
file. This file can be just-in-time compiled by the Dalvik
virtual machine or compiled once into a system-dependent
binary by ART on the Android paltform. Table 1 is the
structure of the .apk file that the Android applications are
packaged in. It contains the Dalvik executable .dex file.
The Androidmanifest.xml used to describes the content of
the package, including the permissions information. The
native code (optional) in form of executables or libraries
is usually called from the .dex file. Also, it contains the
digital certification for authentication and the resources
that the app uses, for instance, image files, sounds, etc.

The .dex file is a binary container for the bytecode and
the data within the classes. The structure of a .dex file is
showed in Table 2. This file is partitioned into a number
of sections. After the header and before the data section,
it contains the actual code. There are several identifier
lists that contain offsets pointing to the corresponding
entries in the data section. Due to the data section is the
section that contains the actual code, and other sections
are just for complimentary descriptions. So, for malwares
family identification, we extract the fingerprint features
from the data section to reduce the interferences of other
sections.

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1064

Table 1: The structure of apk file

File or directory Function

META-
INF/MANIFEST.MF

The Manifest file

META-INF/CERT.RSA The certificate of the application

META-INF/CERT.SF The list of resources and SHA-1 digest of the corresponding lines in the MANIFEST.MF file

lib/ The directory containing the compiled code that is specific to a software layer of a processor

res/ The directory containing resources not compiled into resources.arsc (see below).

assets/ A directory containing applications assets, which can be retrieved by AssetManager.

AndroidManifest.xml
An additional Android manifest file, describing the name, version, access rights, referenced
library files for the application.

classes.dex The classes compiled in the dex file format understandable by the Dalvik virtual machine.

resources.arsc A file containing precompiled resources, such as binary XML for example.

Table 2: The structure of dex file

Name Format Description

header header item The header

string ids string id item[]
String identifiers list. These are identifiers for all the strings used by this file,
either for internal naming (e.g., type descriptors) or as constant objects referred
to by code.

type ids type id item[]
Type identifiers list. These are identifiers for all types (classes, arrays, or primitive
types) referred to by this file, whether defined in the file or not.

proto ids proto id item[]
Method prototype identifiers list. These are identifiers for all prototypes referred
to by this file.

field ids field id item[]
Field identifiers list. These are identifiers for all fields referred to by this file,
whether defined in the file or not.

method ids method id item[]
Method identifiers list. These are identifiers for all methods referred to by this
file, whether defined in the file or not.

class defs class def item[]

Class definitions list. The classes must be ordered such that a given class’s super-
class and implemented interfaces appear in the list earlier than the referring class.
Furthermore, it is invalid for a definition for the same-named class to appear more
than once in the list.

call site ids call site id item[]
Call site identifiers list. These are identifiers for all call sites referred to by this
file, whether defined in the file or not.

method handles method handle item[]
Method handles list. A list of all method handles referred to by this file, whether
defined in the file or not.

data ubyte[]
The Data area, containing all the support data for the tables listed above. Differ-
ent items have different alignment requirements, and padding bytes are inserted
before each item if necessary to achieve proper alignment.

link data ubyte[]
Data used in statically linked files. The format of the data in this section is left
unspecified by this document. This section is empty in unlinked files, and runtime
implementations may use it as they see fit.

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1065

Figure 2: An example of mapping the Opcodes to pixel
values in R channel of an image

3.3 Opcode Feature Extraction

Feature extraction is the basis for malware family iden-
tification. In this paper, we try to use RBG image to
describe the Android malware features. The motivation
is, for RGB image, there are three channels and we can
use these three channels to represent different malware
features integrally and simultaneously. Besides that, once
we got the featured images, we can use some image pro-
cessing techniques, i.e., deep learning, to do feature mod-
elling.

First of all, we should map the Opcode into R channel
of RGB image. Android OS has a total of 255 Opcodes,
coding from the 0x00 to 0xFF according to different func-
tions. Here, we adopt a method similar to Nataraj et
al. [13], mapping the Opcode to pixels by converting its
hex value (encoded in Android OS) to decimal value. An
example is given in Figure 2.

3.4 API Colouring

Application program interface (API) is a set of
procedures, protocols, and tools for building soft-
ware applications. API calls are applied in An-
droid application development in order to imple-
ment functionalities conveniently. For example,
if we want to get the phone number, we should
call: android.telephony.TelephonyManager →
getLine1Number. API calls are also an important
clue for malware identification. Wu et al., [4] proposed
DroidMat, which detects malware by characterizing
applications using the manifest file, API call tracing and
it reaches 97.87% classification accuracy. Lee et al., [17]
presented a detection method using runtime semantic sig-
natures from malicious API call instructions, control and
data flow, the family common string, constants, methods
and classes. It reaches the 99.89% accuracy. So, the API
calls are very important for malware identification.

In Android system, the API calls are usually given in
parameters of a function call instruction as shown in Fig-
ure 3.

Figure 3: An API call example of a Android instruction

In order to extract the API call features, we divide
them into 58 classes by their packages, as shown in Ta-
ble 3. Among them, 18 classes are related to high level
securities needed to focus on as shown in Table 4. They
involve user privacy or device hardwares, such as camera,
microphone, etc.

Table 3: Android APIs classification

Package
Name (first
level)

Package Name (second level)

android

Account animation app appwidget blue-
tooth content databse drm gesture graph-
ics hardware inputmethodservice location
media mpt net nfc opengl os preference
provider renderscript sax security service
speech support telephony text util view we-
bkit bytecode system

java
Beans io awt lang math net nio security sql
text util

javax Crypto net security sql xml

junit Framework runner

org.apache Http

org Json w3c xml

dalvik System

3.5 Highlight the Risky APIs

In previous section, we summed up security related 18
classes from 58 Android OS classes. But the granular-
ity is too coarse. In order to highlight some high level
risky behavior, we should refine the granularity to con-
crete methods or functions. Therefore, 41 high level risky
methods from Android OS API are extracted as shown in
Table 5. And these features will be shown in B channel
of the RGB image.

3.6 RGB Image Creation

In previous section, we extract opcodes, API calls, risky
API features, and map them to different pixel values. Af-
ter that we should integrate all the three features into a
integrated RGB image as combined features. For exam-
ple, if an operation is as follows:

invoke{v0, v1}, Landroid/content/Context;→
getSystemService(Ljava/lang/String);Ljava/lang/object

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1066

Table 4: High level security related API classes and pixel values for G channel

API Package Name Description
Pixel
value

1 android.account Account Manager 6

2 android.app Contains high-level classes encapsulating the overall Android application model 18

3 android.bluetooth
Provides classes that manage Bluetooth functionality, such as scanning for devices,
connecting with devices, and managing data transfer between devices

30

4 android.graphics
Provides low level graphics tools such as canvases, color filters, points, and rect-
angles that let you handle drawing to the screen directly

42

5 android.hardware Provides support for hardware features, such as the camera and other sensors 54

6 android.media Used to play and,in some case,record media files 66

7 android.location Define location-based and related services 78

8 android.nfc
Provides access to Near Field Communication (NFC) functionality, allowing ap-
plications to read NDEF message in NFC tags

90

9 android.telephone
Provides APIs for monitoring the basic phone information, such as the network
type and connection state, plus utilities for manipulating phone number strings

102

10 android.content Contains classes for accessing and publishing data on a device 114

11 android.database Contains classes to explore data returned through a content provider 126

12 android.net Classes that help with network access, beyond the normal java.net.* APIs 138

13 java.net Net connection relative 150

14 android.os
Provides basic operating system services, message passing, and inter-process com-
munication on the device

162

15 android.service Notification relative 174

16 dalvik.system Dynamic loading relative 200

17 java.lang Classes loading relative 212

18 others other package 0

Then, we define the Opcode is invoke, and the parameters
are Landroid/content/Context;→ getSystemService.
Algorithm 1 shows how to merge the three different sort
of features.

Algorithm 1 Map Opcode to RGB image
1: Begin
2: Accept the dataOpcode,parameters.
3: R pix⇐ Call getPixelValue(Opcode)
4: if parameters is SensitiveAPI/*given in Table 4*/ then
5: G pix⇐ Call getGPixelValue(parameters)
6: else
7: G pix⇐ 0
8: end if
9: if parameters is RiskAPI /*given in Table 5*/ then

10: B pix ⇐ Call getBPixelValue(parameters) /*get from
Table 5*/

11: else
12: B pix← 0
13: end if
14: Image⇐ Callmerage(R pix,G pix,B pix)
15: End

4 Features Modelling and Ma-
chine Learning

Traditional machine learning techniques were limited in
their ability to process natural data in their raw form,

for example, the pixel based image data. Deep learning
allows computational models that are composed of multi-
ple processing layers to learn representations of raw data
with multiple levels of abstraction [11]. Deep learning
techniques, powered by advanced computation ability and
large datasets, have shown great performance in strate-
gic games like Go [16], ImageNet competition [14], lan-
guage translation and speech recognition. A very impor-
tant paper published recently in Nature [5] also validates
that deep constitutional neural network exhibits very high
melanoma classification ability. In this paper, the author
utilized a GoogleNet Inception v3 CNN architecture with
well trained weights on 1.28 million ImageNet data. The
final layer is removed and finely tuned to the author cate-
gorized dataset containing more than 13,000 images which
was collected from a combination of open-access derma-
tology repositories. The experimental results show it has
exceeded the common well trained dermatologists (72.1%
vs 66.0%)

In this paper, we adopt Convolutional Neural Network
(CNN) to identify the previous Android malware images.
For CNN, Fukushima [7] proposed a calculation model for
CNN in 1980 firstly based on local connections between
neurons and hierarchical transformation. Based on this
model, LeCun et al. [9] proposed the first real CNN multi-
layer network structure learning algorithm and used it for
handwritting digit recognition. The model can automat-
ically extract local features of image with strong adapt-
ability. Parameters sharing makes it more similar to the

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1067

Table 5: High level risky API and its pixel values for B channel

API class Method or function Description Pixel value

java.lang.Runtime exec execute script 220

android.content.Intent startActivity mail 210

android.app.PendingIntent send delayed trigger 200

android.app.AlarmManager Set delayed trigger 200

android.content.pm.PacakageManager removePackageFromPrefe uninstall application 190

android.database.sqlote.SQLiteDatabase execSQL database related 180

android.content.ContentResolver delete delete data 170

android.app.AcitivityManager killBackgroudProcess kill process 160

android.media.MediaRecorder MediaRecorder sound record 150

java.net.HttpURLConnection connect internet connection 140

java.net.URLConnection connect internet connection 140

org.apache.http.impl.client DefaultHttpClient internet connection 140

android.content.BroadcastReceiver abortBroadcast intercept SMS 63

android.telephony.PhoneStateListener onCallStateChanged monitor phone status 130

android.content.Intent getAction monitor broadcast 120

javax.crypto.Cipher getInstance encryption/decryption 110

javax.crypto.Cipher Init encryption/decryption 110

javax.crypto.Cipher doFinal encryption/decryption 110

android.telephony.TelephonyManager getLine1Number get phone number 100

android.content.pm.PacakageManager getInstallerPackageName get application information 90

android.content.pm.PacakageManager getInstalledPackages get application information 90

android.content.pm.PacakageManager getInstalledApplications get application information 90

android.location.LocationManager getLastKnownLocation get location information 80

android.telephony.TelephonyManager getCellLocation get location information 80

android.telephony.TelephonyManager getSubscriberId get IMSI 71

android.telephony.TelephonyManager getDeviceId get IMEI 70

android.telephony.SmsManager sendTextMessage send SMS 64

android.telephony.gsm.SmsManager sendMultipartTextMessage send multipart SMS 62

android.telephony.SmsManager sendMultipartTextMessage send multipart SMS 62

android.telephony.gsm.SmsManager sendDataMessage send multimedia message 61

android.telephony.gsm.SmsManager sendTextMessage send multimedia message 61

android.telephony.SmsManager sendDataMessage send multimedia message 61

android.telephony.gsm.SmsManager getDisplayOriginatingAddress read SMS 60

android.telephony.gsm.SmsManager getDisplayMessageBody read SMS 60

dalvik.system.DexClassLoader loadClass dynamic loading 50

dalvik.system.PathClassLoader loadClass dynamic loading 50

android.content.ContentResolver update tamper 40

android.content.ContentResolver insert insert 30

android.ContentResolver query traverse 20

android.content.Intent setDataAndType install 10

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1068

(a) Structure of the LeNET network

Convolution2D

MaxPooling2D

Convolution2D

MaxPooling2D

Convolution2D

MaxPooling2D

Flatten Dense Dropout

Dense DenseDropout

Conv Block 1 Conv Block 2 Conv Block 3 Fully-connected classifier

(b) Structure of our used CNN network

Figure 4: Structure of the LeNET network and the used
CNN network

biological neural network and reduces the complexity of
the network model.

The CNN structure (Figure 4(b)) used in this paper is
modified from Lenet-5 [10] as shown in Figure 4(a). Our
architecture consists of three sets of convolutions, acti-
vation, and pooling layers, followed by a fully-connected
layer, activation, another fully-connected, and finally a
softmax classifier. The convolution layer will learn 20
convolution filters, where each filter is of size 5x5. The
input dimensions of this value are the same width, height,
and depth as our input images. If each input feature im-
age is shown as xi, learn-able weight value wij , then the
output feature image is:

yj = bj +
∑
i

wij ∗ xi (1)

Where “*” is a convolution operator, and b is a learn-able
bias parameter.

The purpose of convolution layer is to extract different
features from the input layer. The first layer can only
extract convolution low-level features such as edges, lines,
angles, etc., more layers of the network can extract more
complex features from low-level features in iteration.

The output feature image adopts an activation func-
tion R = h(y) for non-linear mapping. The original LeNet
architecture used Tanh activation functions rather than
ReLU . But in this paper we use ReLU . The reason is
that ReLU tends to give much better classification ac-
curacy. The comparison results will be discussed in Sec-
tion V. The ReLU is defined as:

f(y) = max(0, y) (2)

and the Tanh is defined as:

R =
ey − e−y

ey + e−y
(3)

Activation function can enhance the non-linear char-
acteristic of the decision function and the whole neural
network, but does not change the Convolution layer it-
self.

The ReLU activation function followed by 2x2 max-
pooling in both x and y directions with a stride of 2 to

reduce training parameters. It divides the input image
into several rectangular regions, and outputs the maxi-
mum value for each subregion. The max-pooling layer
will constantly reduce the size of the data space, so the
number of parameters and the amount of computation
will drop. Also, it can control the overfitting during train-
ing to a certain extent. Typically, the CNN convolutional
layer is periodically inserted into the pool layer.

After the third subsampling layer (S2), we flatten the
output feature image to vector and link it to three fully
connected layers whose dimensions are 512, 256, 13 (num-
ber of malware categories) respectively. And after the first
two fully connected layers, there is a dropout layer whose
probability is 0.5 to avoid overfitting. The first two fully
connected layers adopt ReLU as activation function and
the last one (Loss Layer) uses softmax, which is defined
as:

σ(Z)j =
eZj

ΣK
k=1

for j = 1, ...,K. (4)

The softmax is used to determine how the training pro-
cess ”punishes” the difference between the predicted re-
sults and the actual results of the network.

5 Experiments and Analysis

The experimental dataset is downloaded from the Drebin
Dataset of Techinische Universität Braunschweig [1]. The
dataset contains 5,560 applications and we choose 14 rep-
resentative families to do our experiments. The malware
samples distribution of the experimental dataset is shown
in Table 6. The experimental programs are written in
Python, and the hardware environment is Intel Core i7-
3370 and 12GB main memory.

Table 6: The experimental android malware samples

Malware family Number of samples

1 FakeInstaller 925

2 DroidKungFu 666

3 Plankton 625

4 Opfake 612

5 BaseBridge 327

6 Iconosys 152

7 Kmin 147

8 FakeDoc 131

9 DroidDream 81

10 MobileTx 69

11 FakeRun 61

12 SendPay 59

13 Gappusin 58

14 Imlog 43

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1069

5.1 The Fingerprint Image of Malware
Family

In order to train the model by CNN preferably, different
malware feature images should zoom into the same size,
here 64x64. As shown in Figure 5, images generated by
malware variants from the same family have some spe-
cific similar textures in some area. Figure 6 shows an
example of the difference between Opcode features and
the features after combined three channels. It shows that
the combined features can describe more details of each
malware family.

Based on this feature image, the identification results
of our method are shown in Table 7. To evaluate the re-
sults scientifically, we use the Accuracy, TPR (true pos-
itive rate, also call Recall), FPR (false positive rate),
Precision, F1, and receiver operating characteristic curve
(ROC). All the metrics have the following definitions:

Accuracy =
TP + TN

P +N
,

TPR =
TP

TP + FN

FPR =
FP

FP + TN
,

Precision =
TP

TP + FP

F1 =
2× Precision× TPR
Precision+ TPR

Where, TP is the number of true positive predictions, FP
is the number of false positive predictions, and FN is the
number of false negative predictions. And the F1 score is
as a weighted average of the precision and TPR. The F-
measure or balanced F-score (F1 score) is the harmonic
mean of precision and TPR. From the experimental re-
sults, we can see that our algorithm performs well at Op-
fake family at 96.91%. Since there are only 58 samples
in Gappusin family, and the identification result is not as
good as other families.

5.2 The Identification Accuracy of Differ-
ent Feature Representations

Figure 7(a) shows a comparison of the identification ac-
curacy between the Opcode feature and the combined
features (Opcde feature, API feature and risky API fea-
ture). It shows that the combined features perform bet-
ter than just Opcode feature on malware family identifi-
cation. That is to say, the API call and the risky API
functions can significantly improve the texture features
on different families to some degree. Although for differ-
ent families, the improvements are not the same, but the
effect is positive.

Bas
eBr

idg
e

Dro
idD

rea
m

Dro
idK

ung
Fu

Fak
eDo

c

Fak
eIn

stal
ler

Fak
eRu

n

Ico
nos

ys
Iml

og
Km

in

Mo
bile

Tx
Op
fak

e

Pla
nkt

on
Sen

dPa
y

Gap
pus

in
0.5

0.6

0.7

0.8

0.9

1.0

TP
R

Malware Family

 Combined feature
 Opcode feature

(a)

0 10 20 30 40 50 60 70

0.5

1.0

Ac
cur

acy
Epoch

 Tanh
 Relu

(b)

0 10 20 30 40 50 60 70

0.5

1.0

1.5

2.0

2.5

Lo
ss

Epoch

 Tanh
 Relu

(c)

Bas
eBr

idg
e

Dro
idD

rea
m

Dro
idK

ung
Fu

Fak
eDo

c

Fak
eIn

stal
ler

Fak
eRu

n

Ico
nos

ys
Iml

og
Km

in

Mo
bile

Tx
Op
fak

e

Pla
nkt

on
Sen

dPa
y

Gap
pus

in
0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
R

Malware Family

 Combined feature
 Drebin
 Opcode feature

(d)

Figure 7: (a) Comparison of the TPR between the com-
bined features and Opcode feature (only R channel); (b)
Comparison of different activation functions for identifi-
cation accuracy; (c) Comparison of different activation
functions for loss; (d) Comparison of TPR between Com-
bined feature, Opcode feature and Drebin’s method

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1070

Table 7: Experimental results with different metrics

Malware Family Accuracy TPR FPR Precision F1

BaseBridge 0.9338 0.9253 0.0020 0.9807 0.9520

DroidDream 0.8966 0.9021 0.0020 0.9492 0.9250

DroidKungFu 0.8855 0.9402 0.0460 0.9015 0.9200

FakeDoc 0.9362 0.9710 0.0010 0.9419 0.9560

FakeInstaller 0.9629 0.9560 0.0070 0.9911 0.9730

FakeRun 0.8977 0.9610 0 0.9180 0.9390

Iconosys 0.9495 0.9710 0.0500 0.9617 0.9660

Imlog 0.8710 0.9857 0.0 0.8604 0.9190

Kmin 0.9619 0.9800 0.0010 0.9727 0.9760

MobileTx 0.9293 0.9876 0.0 0.9192 0.9520

Opfake 0.9691 0.9787 0.0070 0.9795 0.9790

Plankton 0.9698 0.9760 0.0060 0.9821 0.9790

SendPay 0.9647 0.9809 0.0010 0.9880 0.9840

Gappusin 0.5663 0.6373 0.0 0.7245 0.6780

Average 0.9067 0.9395 0.0090 0.9336 0.9356

(a) BaseBridge family

(b) DroidDream family

(c) Iconosys family

Figure 5: The fingerprint feature images of different malware families

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1071

(a) Iconosys family (b) FakeInstaller family

Figure 6: Examples of the difference between Opcode features and combined features of three channels

5.3 Comparison of Different Activation
Functions on Accuracy

In neural networks, the neuron is a computational unit
that takes as input x1, x2, x3 , and outputs hW,b(x) =

f(WTx) = f(
∑3

i=1Wixi + b), where f : < 7→ < is called
the activation function. The activation function affects
the training speed and final result of the whole model. It
is very important for the generation of the whole model.
Tanh and Relu are the two typical activation func-

tions, we use both of them in our experiment, and the
effect of each function are compared in Figure 7(b) and
Figure 7(c). From Figure 7(b), it shows that the Relu can
get a better accuracy than that of Tanh, and the conver-
gence rate of Relu is faster than that of Tanh. Figure 7(c)
shows the effects of different activation functions on mis-
classification rate (loss) on the testing dataset, we can see
that Relu is better on over-fitting than that of Tanh.

5.4 Comparison With the Drebin
Method

Figure 7(d) shows the true positive rate (TPR) compari-
son among combined feature, Opcode (on R channel) fea-
ture and Drebin’s method. We can see that although Op-
code feature shows the similar performance with Drebin in
some family, while for the overall performance, the Op-
code feature is still better than Drebin’s. Furthermore,
when considering the combined features, the overall de-
tection rate has improved a lot. We can get that in
most cases, the combined features are better than that
of Drebin and Opcode only.

For ROC curve, in Figure 8, we can get similar conclu-
sions that for different malware families, using combined
features, the ROC curve is closer to the upper left corner
of the coordinates. That is to say that using combined
feature we can get better results in general.

6 Conclusions and Future Work

In this paper we propose a malware identification algo-
rithm which combines malware visualization method and
machine learning techniques. First of all, we extract the
Opcode features, API calls features and high risky API
function features. Then we adopt convolutional neural

network to train the fingerprint images and identify the
malware families. The experimental results show that the
classification accuracy can be 96.91% at best and the av-
erage accuracy is higher than DREBIN [1] on the same
malware dataset. Besides that, the experimental results
show once again that Android malware variants in the
same family have some common textures in feature im-
age.

About the future work, we can consider the following
directions:

1) Using parallelization techniques to accelerate classi-
fication and detection speed.

2) Study further to detect effectively when malwares
using packing, encryption, anti-debugging, anti-
dissembling techniques.

3) Integrate the proposed static method with dynamic
analysis to extend the robustness and adaptability of
the detection system.

Acknowledgments

This work is partially sponsored by National Key
Research and Development Program of China
(2016YFB0700504), Shanghai Municipal Science and
Technology Commission (15DZ2260301), Natural Science
Foundation of Shanghai (16ZR1411200). The authors
gratefully appreciate the anonymous reviewers for their
valuable comments.

References

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck, “Drebin: Effective and explainable de-
tection of android malware in your pocket,” in Net-
work and Distributed System Security Symposium,
pp. 1–12, 2014.

[2] Y. Chao, X. Zhaoyan, G. Guofei, V. Yegneswaran,
and P. Porras, “Droidminer: Automated mining and
characterization of fine-grained malicious behaviors
in android applications,” in European Symposium on
Research in Computer Security, pp. 163–182, 2014.

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1072

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Flase Positive Rate

 combined features
 DREBIN

BaseBridge ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

DroidDream ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

DroidKungFu ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

FakeDoc ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

FakeInstaller ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

FakeRun ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Iconosys ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

ImLog ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Kmin ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

MobileTx ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Opfake ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Plankton ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Sendpay ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

 combined features
 DREBIN

Gappusin ROC

Figure 8: ROC curve of different malware families with different algorithms

International Journal of Network Security, Vol.20, No.6, PP.1061-1073, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).07) 1073

[3] M. Dimjaševic, S. Atzeni, L. Ugrina, and
Z.Rakamaric, “Android malware detection based on
system calls,” University of Utah, Technical Report,
UUCS-15-003, 2015.

[4] W. Dong-Jie, M. Ching-Hao, W. Te-En, L. Hahn-
Ming, and W. Kuo-Ping, “Droidmat: Android mal-
ware detection through manifest and API calls trac-
ing,” in Proceeding Seventh Asia Joint Conference
Information Security, pp. 62–69, Aug. 2012.

[5] A. Esteva, B. Kuprel, R. Novoa, J. Ko, S. Swetter,
H. Blau, and S. Thrun, “Dermatologist-level classi-
fication of skin cancer with deep neural networks,”
Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[6] M. Fossi, D. Turner, E. Johnson, T. Mack, T. Adams,
J. Blackbird, S. Entwisle, B. Graveland, D. Mckin-
ney, and J. Mulcahy, “2010 symantec internet secu-
rity threat report,” Volume, no. 5, pp. 277–278, 2011.

[7] K. Fukushima, “Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position,” Biologi-
cal Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[8] P. Hao, C. Gates, B. Sarma, L. Ninghui, Q. Yuan,
R. Potharaju, C. Nita-Rotaru, and L. Molloy, “Us-
ing probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Se-
curity, pp. 241–252, 2012.

[9] Y. LeCun, B. Boser, J. Denker, D. Henderson, R.
Howard, W. Hubbard, and L. Jackel, “Backpropa-
gation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learn-
ing,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[12] Z. Mu, D. Yue, Y. Heng, and Z. Zhiruo, “Semantics-
aware android malware classification using weighted
contextual api dependency graphs,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1105–1116, 2014.

[13] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Man-
junath, “Malware images: Visualization and auto-
matic classification,” in Proceedings of the 8th Inter-
national Symposium on Visualization for Cyber Se-
curity, pp. 4, 2011.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al., “Imagenet large scale vi-
sual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[15] B. Sanz, L. Santos, C. Laorden, X. Ugarte-Pedreror,
P. Bringas, and G. Álvarez, “Puma: Permission us-
age to detect malware in android,” in International
Joint Conference CISIS´ 12-ICEUTE´ 12-SOCO´
12 Special Sessions, pp. 289–298, 2013.

[16] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre,
G. V. D. Driessche, J. Schrittwieser, L. Antonoglou,
V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[17] L. Suyeon, L. Jehyun, and L. Heejo, “Screen-
ing smartphone applications using behavioral signa-
tures,” in IFIP International Information Security
Conference, pp. 14–27, 2013.

[18] F. Tchakounté and P. Dayang, “System calls analysis
of malwares on android,” International Journal of
Science and Technology, vol. 2, no. 9, pp. 669–674,
2013.

[19] Z. Yajin and J. Xuxian, “Dissecting android mal-
ware: Characterization and evolution,” in 2012
IEEE Symposium on Security and Privacy (SP’12),
pp. 95–109, 2012.

[20] H. You-Joung and L. Hyung-Woo, “Detection of ma-
licious android mobile applications based on aggre-
gated system call events,” International Journal of
Computer and Communication Engineering, vol. 3,
no. 2, p. 149, 2014.

[21] W. Yu, Z. Hanlin, G. Linqiang, and R. Hardy,
“On behavior-based detection of malware on an-
droid platform,” in Global Communications Confer-
ence (GLOBECOM’13), pp. 814–819, 2013.

Biography

Yong-liang Zhao is a master degree student in the
school of computer science, Shanghai University. His re-
search interests include cloud computing, big data analy-
sis, computer and network security especially in android
platform.

Quan Qian is a full Professor in Shanghai University,
China. His main research interests concerns computer
network and network security, especially in cloud comput-
ing, big data analysis and wide scale distributed network
environments. He received his computer science Ph.D. de-
gree from University of Science and Technology of China
(USTC) in 2003 and conducted postdoc research in USTC
from 2003 to 2005. After that, he joined Shanghai Uni-
versity and now he is the lab director of network and
information security.

