
International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1053

Secure Stored Images Using Transparent Crypto
Filter Driver

Osama Ahmed Khashan1 and Nour Mahmoud Khafajah2

(Corresponding author: Osama A. Khashan)

College of Computing and Informatics, Saudi Electronic University1

Riyadh, Saudi Arabia

(Email: o.khashan@seu.edu.sa)

Computing Department, Community College, Imam Abdulrahman Bin Faisal University2

Dammam, Saudi Arabia

(Received May 6, 2017; revised and accepted Oct. 21, 2017)

Abstract

The threat of losing the privacy of stored images due to
data breaches and malicious attacks has increased the se-
curity concerns to improve the protection of storage sys-
tems. However, the inherent features of images and the
manual nature of the current encryption applications have
proven to limit the prevention factors of encryption from
being used more heavily in real-time. To overcome these
limitations, several studies have highlighted the promi-
nent effects of transparent encryption; nevertheless, the
run-time processing in the current implementations of
transparent cryptographic file systems is still limited and
inefficient. In this paper, we describe the design and im-
plementation of Crypto filter driver, a fully transparent
and secure cryptographic file system for Windows plat-
form. It can dynamically realize the processes of writing
and reading file images on local disk, and transparently
encrypt and decrypt them on the fly. The experiments are
performed to measure the performance of the crypto fil-
ter driver over images of cryptographic service write and
read. Besides the robust security level provided by the
new crypto filter driver, the results showed high perfor-
mance.

Keywords: File System Filter Driver; Image Encryption;
Transparent Encryption

1 Introduction

The rapid technological progress in the multimedia do-
main leads to proliferation of huge volumes of image files
to be stored on the disk drives, which in many circum-
stances can provide vital information. Unfortunately, the
lack of security provisions for stored images may invite
unwanted attackers to gain access and risk images’ pri-
vacy.

Security in storage domain is a complex challenge due

to the long-term requirement to storing data. Unlike
transmission where the security is only needed for spon-
taneous time event, whereas the storage latency roughly
indicates the amount of time which the attacker would
need to analyse the security technique applied.

The nature of risks and threats today are increasingly
getting more sophisticated, transformational, and mali-
cious. Furthermore, the security provided by technologies
such as firewall, anti-virus, intrusion detection and pre-
vention systems are not self-protected from being attacked
once an intruder gains privileges to the root security since
they are all operated on the application level [16,28].

Encryption is the most effective solution to frustrate
malicious attacks and prevent inadvertent disclosure. It
can effectively protect the confidentiality and integrity of
stored images in the face of an intruder. Nevertheless,
designing systems for storage domain using cryptographic
approach is an error-prone, difficult and delicate task, and
it may affect system performance if it is not properly im-
plemented. Image encryption differs from text encryp-
tion due to the fact that images may encounter a larger
space, and contains complex structures and high correla-
tion between pixels. Therefore, encrypting and decrypt-
ing digital images involve high computational overhead
and processing time, which makes it a major challenge
for real-time implementations [19].

A large number of end user encryption applications
are available to provide encryption for different user file
types and platforms. Nevertheless, most of such encryp-
tion applications suffer from several limitations and they
are always influenced by the security requirements. Per-
formance failures occur once the encryption application
is unable to meet a real-time requirement due to inad-
equate performance. The manual nature of applications
to carry out encryption, decryption and key management.
Furthermore, the routine use would increase the overhead
incurred by user, which would make a user careless, or in-
tentionally leave files in plain view. Therefore, when ex-



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1054

ecution depends on a particular software or user’s direct
control, it may introduce a dangerous encryption scheme.

Technology of transparent encryption is the most effec-
tive solution for storage security. However, applications
must request the kernel response to perform different op-
erations on their behalf. Inserting cryptographic service
into the kernel as a basic part of the underlying file sys-
tems would offer a better functionality for transparent
encryption than using any automatic user-space encryp-
tion applications. It can effectively handle huge volumes
of stored data with efficient performance, high level of
transparency, and it is simple to use. It also increases
both the security and stability with an inability for super-
user privilege to run any arbitrary code with the kernel
control [11].

Transparent storage encryption can be carried out us-
ing either hardware-based or software-based approaches
to perform the encryption for the entire disk data, or even
a part of disk for individual files, directories, or individ-
ual partitions. Software-based encryption in this domain
is more flexible and popular. Cryptographic file systems
can significantly tackle the limitations related to the secu-
rity and reliability by incorporating advanced encryption,
authentication, and key management mechanisms. Cryp-
tographic file system can be performed as a user space en-
cryption layer using file system in a user space (FUSE) [7],
or as a middleware layer inside the kernel [8]. It can also
operate at the lower level of abstraction under the real
file system either as a block device layer attached to the
storage disk itself [4], or as a virtual disk driver [22,25] to
provide encryption to the entire single or multiple disk’s
partitions.

As a part of our previous work, we have developed
a transparent cryptographic file system for stored image
files using FUSE technology, named ImgFS [11] for Linux
platform. We also have improved the performance of the
ImgFS by developing the Parallel-ImgFS [12] to overcome
the cryptographic overheads and enhance the response
time during image read / write operations. Parallel-
ImgFS was implemented by exploiting the parallelism of
the multi-core computers using block-based parallel en-
cryption of image files. Although our implemented file
systems can provide high-performance cryptographic so-
lution; the task of reading or writing large stored image
files with cryptographic service still suffers from heavy
workloads due to the FUSE structure. FUSE generally
suffers from a limitation of lower performance compared
to other kernel file system layers. This is due to the addi-
tional overhead associated with the context switches when
the FUSE passes between user space and the underlying
file system [26].

In this paper, a new cryptographic file system called
Crypto filter driver has been introduced for Windows
platform to provide more effective transparent crypto-
graphic service for stored images stored on disk on a per
image file basis, which improves the efficiency. The devel-
oped crypto filter driver is implemented as a middleware
layer inside the Windows kernel by using the file system

filter driver technology. The main aim of developing this
crypto driver is to attain a higher processing speed and
to enhance the response time of encrypting and decrypt-
ing large image files. Moreover, to provide a systematic
way to access, manage, and control all cryptography and
key management operations. Therefore, we will evaluate
the performance of the developed crypto filter driver over
image files’ read / write operations. Finally, we will com-
pare the obtained computation results with our previous
work results of ImgFS and Parallel-ImgFS versions.

The reminder of this paper is organized as follows.
Section 2 presents a review of related work. Section 3
provides an overview of file system filter driver technol-
ogy. Design and implementation details of the crypto fil-
ter driver are presented in Section 4. Section 5 discusses
the performance evaluation. Finally, the conclusion of the
paper is given in Section 6.

2 Related Works

The innovative idea of transparent services provided by
the file system filter driver technology has stimulated
much research in this area. Many works have been estab-
lished using transparent encryption technology to provide
user protection and information secrecy, and without any
required change in the operating system functions. In
our previous work [13] we proposed an efficient approach
that can effectively trade-off between security and per-
formance of spatial image encryption through performing
a transparent partial encryption and shuffling of image
blocks that was implemented inside a file system filter
driver. Another proposed model by [21] for data leakage
prevention. It used a double cache file system filter driver
through allocating buffers in Windows kernel to manage
and encrypt sensitive data that are accessed by authorized
applications only. The authors of literature [34] proposed
a framework model for real-time monitoring and access
control to protect spatial geographical files. The filter
driver focused on tracking and analyzing the copyright
of protected data, and then performed transparent en-
cryption or decryption when a user supplying the correct
keys. Literatures [3,14] devoted to enhancing the security
of office documents by using transparent encryption that
was embedded inside the filter driver. A further proposed
model for intelligent transparent encryption was discussed
in [30]. It based on a filter driver to encrypt high se-
cret level files that are evaluated and identified using a
safety assessment program inside an intranet network. A
prevention sensitive data leakage model proposed by [29]
for transparent data encryption and real-time monitoring,
which was implemented inside a filter driver for intranet
environment.

Several authors have proposed models based on filter
driver that play an equally important role in the field
of information security as well as access control. Litera-
ture [27] proposed a transparent prevention system for il-
legal files access using an information flow detection algo-



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1055

rithm that was implemented inside a filter driver. A secu-
rity service on cloud platform as a well established model
proposed by [20] that based on a filter driver to provide
transparent encryption and cloud authentication to pro-
tect and regulate virtual works. Digital rights manage-
ment model was proposed by [32] using digital watermark
together with a filter driver for the protection of spatial
geographical files. The authors of literature [33] based
on a filter driver to propose a backup model to monitor
defined events belong to an application, and then back
up such events or recover them when needed from the
storage.

Most of these works are only proposals with less ob-
vious implementation details, and without relative per-
formance evaluation and testing process. Although such
works might provide a satisfying solution for data security,
there are still some inherent limitations in terms of trans-
parency, flexibility, and efficiency. Current encrypting file
systems provide encryption at a fine-grained level of en-
crypted folder or partition that include all sensitive files
inside, and they do not support encryption on per spe-
cific file-type basis or specified program’s file encryption.
Therefore, once the file system is mounted over that folder
or partition, all of its stored contents will be decrypted
with extra performance overhead. On the other hand, all
encryptions are performed using a single key that is stored
along with data inside the local disk in plain view.

3 Overview of File System Filter
Driver

File system filter driver is an optional driver tailored and
attached above the file system driver inside the Windows
kernel. Inside the Windows kernel space there is a set
of drivers existing between user space applications and
hardware devices that are grouped together in stacks and
integrating with the I/O Manager. When a user threads
an I/O request to open, create, read, write, or close a
file, the system call request would be sent to the I/O
Manager in the kernel space. In the following, the I/O
Manager carries out the required processing, like parsing
the filename, finding the physical location on the hard
disk and creating the necessary buffers. In the end, it
will build the required I/O Request Packet (IRP) before
passing it down to the entry point of file system drivers.
Drivers use a set of routines to handle with the IRPs
through the different file system drivers’ levels. Therefore,
drivers read or write data from disk drivers, and then
return the response back by I/O management to the user’s
process [31].

Windows uses a memory mapping mechanism to im-
prove the efficiency of the file system. It maps a file into a
memory space and accessing it whenever the file is needed.
It uses a Fast Dispatch routine to process all fast I/O re-
quests, and then stored data is taken out from the cache
memory to the I/O Manager. Unfortunately, this leads
to the difficulty of attaching any custom filter driver to

capture the processes access the memory, or changing the
control structure. On the other hand, Windows uses Dis-
patch routines to process the IRP requests that handle
data obtained from disk partition by disk driver through
swapping and paging activities, which are then returned
to the I/O Manager [2]. This gives an opportunity to at-
tach a filter driver to add new features, like caching, lock-
ing, compressing, security, recoverability, etc., or modify
the behavior of other drivers. Therefore, whenever the
IRP requests are sent to the local disk driver with a spec-
ified function call, the attached filter driver will effectively
intercept these requests to carry out its task that was be-
ing designed, on the fly, before they reach the lower file
system drivers. Figure 1 illustrates the structure of the
file system filter driver in addition to the interaction be-
tween different kernel parts.

Figure 1: File system filter driver structure

4 System Design and Implemen-
tation

The overall objective of this study is to develop a crypto
filter driver to provide mandatory encryption and decryp-
tion services for all image files stored on disk drive in high
performance and secure execution. It has also managed to
overcome the identified weaknesses related to other cryp-
tographic filter driver based implementations.

The crypto filter driver will be able to automatically
recognizing the image file once it detects that the process
is trying to open or save an image file on a local disk.
It will then be able to transparently encrypt or decrypt
the image contents at the granularity of per image file
level. All the operations will be performed in a dynamic
and seamless way, neither adding overhead on the users
for ciphering nor paying attention to the key management
related problems.



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1056

4.1 Crypto Filter Driver Work Mode

The crypto filter driver is built on the top of the file sys-
tem, therefore it can block all read and write requests re-
lated to the stored image files. When a user threads a re-
quest to write or read an image file through WriteFile() or
ReadFile() system calls, the I/O Manager handles the re-
quest and builds the required IRP, and subsequently turns
it directly to the underlying file system drivers. Once the
IRP passes through the crypto filter driver, it exposes the
logical structure of the IRP by reading the file object and
header attributes to recognize whether it is for read or
write an image file on a disk. With the write and read
destination addresses, the crypto driver is able to encrypt
or decrypt image data before it is written on disk or sent
back to the user mode.

In our system, the crypto filter driver mounts itself over
any file system driver and listens to all requests trying to
read or write images from its associated disk partition by
disk drivers. Therefore, all image files stored at the secure
partition are considered confidential (automatically en-
crypted), and are not allowed to leak. Other files created
by normal processes will not be encrypted or decrypted.

There are two methods to determine image file for-
mats. The first method is by using the filename exten-
sion by determining the format of an image file based
on the portion of the filename. However, this approach
suffers from security concerns when an image format is
renaming and treating as a different format, or hiding the
image file extension. The other method is by using the
metadata contained in the header of the file. Each file
header contains a magic number that can uniquely dis-
tinguish the format of the file. Other metadata in the
image header store information about image file, colour
space, resolution, and other authoring information. Al-
though this approach take longer time to identify a file
format, it offers a secure way to guarantee that a file for-
mat will be identified correctly. The crypto filter driver
is designed to recognize image files based on the magic
numbers contained on the file header. To do this we use a
list that contains most of the image magic numbers from
both of well-known compressed and uncompressed image
formats [10].

The pre-processing operation that is carried out by the
crypto driver is to detect the image file by reading its
magic number, and if that magic value is included in the
list, the image file will be considered for encryption pro-
cess. This makes the crypto driver most convenient to
work with image applications.

Image encryption and decryption processes are carried
out in the complete dispatch routines of IRP MJ WRITE
and IRP MJ READ, respectively, through the completion
routine set by IoSetCompletionRoutine(). When the re-
quirements are determined for reading or writing an im-
age file from a place on a local disk under the mount of
the crypto filter driver, the image file will be considered
to be added into a created encryption linked list. The
File Control Block (FCB) is used to represent the confi-

dential image files opened, and it is stored in the image
file object. Consequently, the file system will generate a
memory area for each image file to save image contents,
regardless of how many times the image file is opened
since each image has only one FCB. All opened confiden-
tial images are stored in the encryption-linked list. There-
fore, when an image file is opened, the FCB pointer will
be gotten from the file object that is available in the IRP.
Then, the FCB pointer will be compared to an encryp-
tion file table to determine its availability. If the pointer
is encountered, the FCB will be immediately added into
the encryption-linked list. Confidential image file read or
write is associated with adding or deleting FCB from the
encryption linked list. Consequently, the corresponding
image file’s content will be placed into a local buffer to
apply encryption or decryption operation.

4.2 Encryption and Decryption Pro-
cesses

Inside our implemented crypto filter driver, there are
two modules, cryptographic and key management. Fig-
ure 2 shows the implementation architecture of the image
crypto filter driver.

Figure 2: Crypto file system architecture

When the crypto driver realizes a new image in the
list needs to be encrypted, it immediately initializes the
encryption algorithm and other encryption parameters,
which are realized on the cryptographic module. The
whole image contents are firstly divided into a number of
blocks of fixed size, each with 16 bytes. Obviously, each
block should be checked that it has a perfect 16 bytes
size; otherwise, the block will be padded while it is being
written. Thereby, all image blocks would be encrypted
sequentially one block at a time, except the image file
header, which will be excluded from being encrypted or
decrypted.

We picked AES as a fast symmetric encryption algo-
rithm [5] with default 128-bit key length. Furthermore,



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1057

we chose the cipher block chaining (CBC) as an oper-
ation mode. Although the use of symmetric algorithms
may provide a lower performance for the image encryption
process compared with other image encryption methods,
the security level provided by the symmetric ciphers is
higher [15]. Thus, a trade-off between performance and
security can be achieved with the usage of the symmetric
ciphers.

In order to guarantee of achieving a better security
level, the uniqueness requirement for the initialization
vector (IV) across all image files is considered. There-
fore, a unique IV of 64 bits is generated randomly each
time a new image file is created. After completion of
image blocks encryption, the random generated IV is at-
tached to the header of the image file. Upon completing
the encryption process, a tag is added to the head or tail
of the image file. This method leads to easily identifying
the encrypted image when it is read from disk during re-
sponding to the read dispatch routine in order to satisfy
the decryption process.

Similarly, reading or copying stored image is performed
transparently in reverse order. In the IRP MJ CREATE
routine, the crypto driver extracts the file object from
IRP stack. It then checks whether the file has an encryp-
tion tag. If the IRP is related to a stored image in a place
under the crypto driver mounting point, the driver imme-
diately responds by adding the file to the decryption list.
Key management module is used firstly to extract the IV
from the image file header. After that, the cryptographic
module initiates the AES encryption cipher and related
parameters, and then uses the associated encryption key
to decipher all image blocks. The padded bytes are then
removed from blocks, if exist. Once the plain image is
generated, it will be directly sent back to the I/O Man-
ager and then to the caller in the user space.

4.3 Key Management Process

The security of any cryptographic system is relied on the
stringent level of the applied key management. Losing or
forgetting encryption keys due to a long storage period
leads to losing access to all stored data on a disk. In ad-
dition, storing keys in plain form on disk would increase
the keys chances to be stolen or leaked out easily. In such
study, we enforce the security of encryption keys, to over-
come the key issues of authenticated encryption schemes
identified by [9]. Furthermore, we allow the crypto driver
to use and manage the encryption keys of all stored im-
ages in a fully transparent manner. It also addresses the
limitations of current key management schemes that are
operated manually on a per-file system basis.

Key management module involves the operations of
creating, using and retaining the encryption keys. Us-
ing a single key to encrypt all image files is not secure,
once the attacker successes to obtain the secret key for
one file; he would be able to recover all other encrypted
files. Therefore, in our scheme, each image is encrypted
using a different file encryption key (FEK), hence, it is im-

possible to find two similar ciphered images related to the
same plain image. We enhance the security of FEK with
security margins afforded by HMAC [18], where the secu-
rity analysis of HMAC is proved in [1, 17]. The FEK for
each image is created by HMAC-MD5 of a common used
symmetric key of 16-byte length and a hashed code of the
image corresponding IV that is produced using MD5-128.

In order to ensure the integrity of the secure stored im-
ages, an embedded signature that is generated by hashing
the FEK (HFEK) using MD5-128 to ensure that the im-
age file has not been tampered or replaced by attackers
during storage. The generated HFEK is then stored as an
extended attribute on the header of the image file. Thus,
as soon the encrypted image file is being retrieved from
the disk, it would be loaded into a local buffer. The key
management subsequently extracts the HFEK from the
header file and the ‘check signiture()’ function will check
the file signature to verify that the image file has not been
tampered, before the read operation is executed. When
the image signature is verified, the cryptographic module
will shift by 256 bits of image file header to read 16 bytes
image block, and then calls the ‘file decrypt()’ function
to decrypt it using the corresponding FEK. The process
is repeated with all subsequent image blocks and the re-
sult will be stored temporarily into a buffer in order to be
returned later to the caller in the user space.

5 Performance Evaluation

In this section, several experimental tests were performed
sequentially to evaluate the performance of the crypto fil-
ter driver over the write and read operations of image
files with cryptographic service. A set of experimental
image samples of large sizes and different formats were
used. The experiment machine was installed with Win-
dows 7 of 32-bit version, and WDK. It had an Intel Core
i3- 2120, 3.3 GHz CPU. The system RAM was of size 4
GB, and the hard disk size was 320 GB of 7200 rpm.

We used Windows System Assessment Tool (Win-
SAT) [23] and Geekbench [6] benchmarks to run a series
of tests and to evaluate the performance of the machine
(in execution time) over the normal image file’s write and
read on the standard NTFS, against the performance of
image write with encryption and read with decryption, re-
spectively, on the implemented crypto filter driver. Each
test was repeated fifteen times in each benchmark and the
average of their values was taken. The standard deviation
of the calculated results was not high and the intervals
were always less than 6%. To ensure the accuracy of the
obtained results, we flushed the cache after each test using
the CcFlushCache() routine [24].

We measured the computational times of write and
read operations on a number of large experimental im-
age files using the crypto filter driver. We, respectively,
wrote and read an image file of size 25 MB from places on
local disk under the mount of the crypto filter driver and
NTFS, and the elapsed writing and reading times were



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1058

recorded. The tests were regularly repeated by increasing
the size of the image file up to 500 MB, where the sample
of image files (above 250 MB) are uncompressed images
of type BMP (Windows bitmap).

The recorded times include the total time for the op-
erations of write/read image into local buffer, encrypting
or decrypting image blocks, in addition to the time for
extracting or saving keys on the header of image file. Fig-
ure 3 and Figure 4 show the comparison of total times
measured (in seconds) for writing and reading image files
using the standard NTFS and the crypto filter driver, re-
spectively.

Figure 3: Comparison of computation times spent for
writing images using Crypto filter driver and NTFS

Figure 4: Comparison of computation times spent for
reading images using Crypto filter driver and NTFS

From the evaluation results, it was noted that the
crypto filter driver could always achieve an average speed
of 16 MB/s for writing image files with encryption on
the local disk, in comparison with the normal write using
NTFS which could achieve the average speed of 35 MB/s.
It was also observed from the results that the crypto fil-
ter driver could achieve the average speed of 48 MB/s
for reading image files with decryption. Compared with
the normal read on the standard NTFS, it could always
achieve 91.7 MB/s as the average of reading speed.

Several major processes executed during image write
and read operations in the crypto filter driver. These
processes include of searching image blocks of fixed 16-
byte size, writing/ reading image blocks into local buffer,

the workload time for generating and loading encryption
keys into/from the image file header, in addition to the
actual encryption/ decryption time of all image blocks.

We measured the computational time elapsed for gen-
erating keys and saving them on the image file header
during image write operation throughout the crypto fil-
ter driver mount time. It took in average 0.35 second
from the image write time. We also measured the aver-
age time elapsed to load and re-generate the keys dur-
ing image read operation, and it took about 0.27 second
from the total image read time. Table 1 illustrates the
times spent by the write-related processes and actual en-
cryption, the read-related processes and actual decryption
times elapsed during image write and read operations, re-
spectively, in the crypto filter driver.

Table 1: Computational times elapsed for the write-,
read-related processes, actual encryption, and actual de-
cryption

Image Time (sec)

size (MB)
Write-related

processes
Actual
encrypt

Read-related
processes

Actual
decrypt

25 0.58 0.91 0.32 0.21
50 0.93 2.13 0.39 0.64
100 1.57 4.27 0.61 1.49
200 2.96 8.62 0.93 3.24
300 4.53 15.44 1.25 5.19
400 6.06 20.59 1.59 6.73
500 7.11 26.03 1.91 8.38

Following that, we compared the performance of the
crypto filter driver over the write and read operations
with our previously implemented cryptographic FUSE-
based file systems, namely ImgFS and Parallel-ImgFS.
Figure 5 and Figure 6 show the measured computation
times for writing and reading images on ImgFS, Parallel-
ImgFS and Crypto filter driver, respectively, using the
same experimental image samples.

Figure 5: Comparison of computation times for writing
images with encryption using ImgFS, Parallel-ImgFS, and
Crypto filter driver



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1059

Figure 6: Comparison of computation times for reading
images with decryption using ImgFS, Parallel-ImgFS, and
Crypto filter driver

From the results, it was noted that the crypto filter
driver could achieve higher performance (lower execution
time) for both write and read operations than Parallel-
ImgFS and ImgFS. When calculating the average perfor-
mance, the crypto filter driver always took about 48% of
the normal write time and about 57% of the normal read
time for writing and reading image files, respectively. As
a result, the new crypto filter driver has successfully en-
hanced the response time of writing and reading image
files with an efficiency of 9% and 6% of the Parallel-ImgFS
write and read performance, respectively.

6 Conclusion

In this paper, we designed and implemented crypto filter
driver based on the file system filter driver technology that
was running inside the Windows kernel. The crypto filter
driver can effectively provide mandatory, automated and
transparent encryption scheme for all stored images dur-
ing system run time with an improved user’s convenience.
The system is perfectly suitable to work with image ap-
plications that might provide important information. It
is more convenient to work with medical imaging systems,
military image databases, scientific images, geography im-
age sensing and personal image albums.

We have shown the implementation details of the
crypto driver in order to make up the shortcomings of
the existing cryptographic filter driver based implementa-
tions. It has successfully managed to reduce the response
time from the forced decryption of all stored files when
other cryptographic file systems are mounted, by support-
ing a decryption to be on per-image file basis. Key man-
agement was also perfectly suited to provide different keys
for different encrypted images and without storing keys in
plain form on disk.

The experimental results indicated that while the new
crypto filter driver managed to provide a higher level of
security, it could achieve higher processing speed with a
reduced response time. It is always able to gain an average
speed of 16 MB/s and 48 MB/s, respectively, for writ-

ing and reading image files with cryptographic service.
In comparison with our previous FUSE-based works, the
crypto filter driver could achieve higher response times of
images’ write and read of about 9% and 6%, respectively.

References

[1] M. Bellare, “New proofs for NMAC and HMAC: Se-
curity without collision resistance,” Journal of Cryp-
tology, vol. 28, no. 4, pp. 844-878, 2015.

[2] California Software Labs, I/O File System Fil-
ter Driver for Windows NT, Technical Report
XP002548991, California Software Labs, Pleasanton,
California, 2002.

[3] J, Chen, and J. Ye, “Research on the file encryption
system based on minifilter driver,” in The 13th Inter-
national Conference on Man-Machine-Environment
System Engineering, Berlin, Heidelberg, vol. 259, pp.
175-182, 2014.

[4] R. Dowdeswell, and J. Ioannidis, “The Crypto-
Graphic disk driver,” in Proceedings of the Annual
USENIX Technical Conference (USENIX’03), pp.
179-186, 2003.

[5] D. Elminaam, H. Abdual Kader, and M. Hadhoud,
“Evaluating the performance of symmetric encryp-
tion algorithms,” International Journal of Network
Security, vol. 10, no. 3, pp. 213-219, 2010.

[6] Geekbench 4, Jan. 13, 2017. (http://geekbench.
com/index.html)

[7] V. Gough, EncFS Encrypted Filesystem, Jan. 27,
2017. (http://www.arg0.net/encfs)

[8] M. A. Halcrow, “eCryptfs: An enterprise-class en-
crypted filesystem for Linux,” in Proceedings of the
2005 Linux Symposium, pp. 201-218, 2005.

[9] M. Hwang, and C. Liu, “Authenticated encryption
schemes: Current status and key issues,” Interna-
tional Journal of Network Security, vol. 1, no. 2, pp.
61-73, 2005.

[10] G. Kessler, File Signatures Table, Sep. 3, 2017.
(http://www.garykessler.net/library/file\
_sigs.html\)

[11] O. A. Khashan, A. M. Zin, and E. A. Sundararajan,
“ImgFS: Transparent cryptographic storage images
using file system in user space,” Frontiers of Infor-
mation Technology & Electronic Engineering, vol. 16,
no. 1, pp. 28-42, 2015.

[12] O. A. Khashan, A. M. Zin, and E. A. Sundarara-
jan, “An optimized parallel encryption for storing
image files using filesystem in userspace,” Interna-
tional Journal of Advancements in Computing Tech-
nology, vol. 6, no. 2, pp. 126-135, 2014.

[13] O. A. Khashan, and A. M. Zin, “An efficient adaptive
of transparent spatial digital image encryption”, in
The 4th International Conference on Electrical En-
gineering and Informatics (ICEEI’13), vol. 11, pp.
288-297, 2013.



International Journal of Network Security, Vol.20, No.6, PP.1053-1060, Nov. 2018 (DOI: 10.6633/IJNS.201811 20(6).06) 1060

[14] N. M. Khafajah, K. Seman, and O. A. Khashan, “En-
hancing the adaptivity of encryption for storage elec-
tronic documents,” International Journal of Techni-
cal Research and Applications, vol. 2, no. 1, pp. 28-
32, 2014.

[15] O. A. Khashan, A. M. Zin, and E. A. Sundarara-
jan, “Performance study of selective encryption in
comparison to full encryption for still visual images,”
Journal of Zhejiang, University Science C, vol. 15,
no. 6, pp. 435-444, 2014.

[16] S. Kim, W. Park, S. Kim, S. Ahn, and S. Han,
“Integration of a cryptographic file system and ac-
cess control,” Intelligence and Security Informatics,
Springer, Berlin, Heidelberg, vol. 3917, pp. 139-151,
2006.

[17] J. Kim, A. Biryukov, B. Preneel , and S. Hong, “On
the security of HMAC and NMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1,” in International
Conference on Security and Cryptography for Net-
works, pp. 242-256, 2006.

[18] H. Krawczyk, M. Bellare, and R. Canetti, HMAC:
Keyed-Hashing for Message Authentication, RFC
2104, 1997.

[19] X. Li, C. Zhou, and N. Xu, “A secure and efficient
image encryption algorithm based on dna coding and
spatiotemporal chaos,” International Journal of Net-
work Security, vol. 20, no. 1, pp. 110-120, 2018.

[20] Z. Liang, S. Jia, J. Chen, and P. Chen, “Security
of virtual working on cloud computing platform,” in
IEEE Asia Pacific Cloud Computing Congress, pp.
72-75, 2012.

[21] J. Liu, S. Chen, M. Lin, and H. Liu, “A reliable file
protection system based on transparent encryption,”
International Journal of Security and Its Applica-
tions, vol. 8, no. 1, pp. 123-132, 2014.

[22] Microsoft, BitLocker Drive Encryption Overview,
Jan. 6, 2017. (https://technet.microsoft.com/
en-us/enus/library/cc732774(v=ws.11).aspx)

[23] Microsoft, Windows System Assessment
Tool (WinSAT’17), Jan. 8, 2017.(https:
//technet.microsoft.com/en-us/library/

cc770542(v=ws.11).aspx)

[24] Microsoft Developer Network, Device and
Driver Technologies, Jan. 9, 2017. (https:
//msdn.microsoft.com/en-us/library/windows/

hardware/ff539082(v=vs.85).aspx)
[25] A. Patrascu, M. Togan, and V. Patriciu, “Dedupli-

cated distributed file system using lightweight cryp-
tography,” in IEEE International Conference on In-
telligent Computer Communication and Processing
(ICCP’15), pp.501-506, 2015.

[26] A. Suresh, G. Gibson, and G. Ganger, Shingled Mag-
netic Recording for Big Data Applications, Technical
Report CMU-PDL-12-105, Parallel Data Laboratory,
Carnegie Mellon University, May 2012.

[27] W. Tang, Y. Xu, G. Wang, and Y. Zhang, “An ille-
gal indirect access prevention method in transparent
computing system,” in The International Conference

on Algorithms and Architectures for Parallel Process-
ing, vol. 9532, pp. 264-275, 2015.

[28] A. Tayal, N. Mishra and S. Sharma, “Active mon-
itoring & postmortem forensic analysis of network
threats: A survey,” International Journal of Elec-
tronics and Information Engineering, vol. 6, no. 1,
pp. 49–59, 2017.

[29] Z. Xiaosong, L. Fei, C. Ting, and L. Hua, “Research
and application of the transparent data encryption
in intranet data leakage prevention,” in International
Conference on Computational Intelligence and Secu-
rity (CIS’09), pp. 376-379, 2009.

[30] P. Zhang, and Z. Wei, “Application of intelligent
transparent encryption model on intranet security,”
in IEEE International Conference on Information
Theory and Information Security, pp. 268-270, 2010.

[31] C. Zhang, Y. Wu, Z. Yu, and Z. Li, “Research and
Implementation of File Security Mechanisms Based
on File System Filter Driver,” in IEEE Annual Reli-
ability and Maintainability Symposium, 2017.

[32] L. Zheng, L. Feng, Y. Li, and X. Cheng, “Research
on digital rights management model for spatial data
files,” in The 2nd International Conference on Infor-
mation Engineering and Computer Science, pp. 1-4,
2010.

[33] Z. Zhongmeng, and Y. Hangtian, “A data backup
method based on file system filter driver,” in
The 2nd World Congress on Software Engineering
(WCSE’10), vol. 2, pp. 283-286, 2010.

[34] G. Zhu, Z. Liangchen, L. Guonian, and Z. Liangchen,
“The access control technology of spatial data files
based on file system filter driver,” in The 11th IEEE
International Conference on Communication Tech-
nology (ICCT’08), pp. 734-737, 2008.

Biography

Osama Khashan received his B.S degree in Computer
Science from Irbid National University, Jordan in 2005,
M.S in Information Technology from University Utara
Malaysia in 2008, and the Ph.D in Computer Science from
the National University of Malaysia in 2014. He is cur-
rently an assistant professor in the College of Computing
and Informatics, Saudi Electronic University, KSA. His
research works focus on information and network secu-
rity, digital image processing, and performance analysis.

Nour Khafajah received her B.S degree in Computer
Science from Al-Balqa Applied University, Jordan in 2011,
and the M.S in Information Security and assurance from
the Islamic Science University of Malaysia in 2014. She
is currently a lecturer in Imam Abdulrahman Bin Faisal
University, KSA. Her research intrests in information and
cyber security.


