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Abstract

Nowadays, virtualization has been widely used in the
design of application systems. In this paper, we outline
the characteristics of an intrusion tolerance system based
on virtualization. The semi-Markov process of discrete
time is used to model the system. The security of the
system is analyzed and evaluated quantitatively from a
number of perspectives such as time and space. Some
new indicators are proposed to evaluate the security per-
formance of the intrusion tolerance system more compre-
hensively and appropriately. We present the methods how
to calculate the indicators. The simulation results showed
that our methods are more accurate and comprehensive
than the previous methods in describing the performance
of such intrusion tolerance systems.
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Analysis; Virtualization

1 Introduction

Intrusion tolerance [1, 5] is the popular third-
generation network security technology. It assumes that
the mission can be completed within a limited time even
if there are intrusions in a system. The confidentiality, in-
tegrity, and availability of the system are still ensured in
case attacks, failures and accidents have occurred. Classic
intrusion tolerance models use the Byzantine fault toler-
ance (BFT) protocol to ensure system security. The BFT
protocol requires 3f+1 replicas to ensure the continual-
ity of a service. If attackers have enough time to attack
the system, the redundant replicas can always be broken
one by one to lead the failure of the intrusion tolerance
mechanism. To address the problem, an approach called
proactive recovery is used to recover replicas to their pris-
tine states in order to block intrusions. Self-cleaning in-
trusion tolerance (SCIT) [9] is one of such approaches.
In SCIT, the online replica providing a service is peri-
odically forced offline to clean up malwares. A backup

replica will go online to provide the service. The offline
replica will be cleaned and recovered to a pristine state.
Some solutions added intrusion detection mechanism to
the system to trigger the reaction recovery. The online
replica is immediately forced offline if a malicious intru-
sion is detected. The combination of the two recovery
ways improves the security of self-cleaning intrusion toler-
ance. With the development of virtualization technology,
a replica can be replaced by one instance of virtual ma-
chine images. The virtualization technology can quickly
generate an instance for accelerating the recovery process
and easily provide more replicas. Furthermore, providing
several virtual machines in a physical server can reduce
the implementation cost for intrusion tolerance and pro-
vides better scalability.

The main work of this paper is to analyze the security
performance of an improved self-cleaning intrusion toler-
ance system based on virtualization. The system com-
bines proactive recovery with reactive recovery. But the
trigger conditions and recovery strategies of the two re-
covery methods are quite different. In order to refine the
evaluation indicators, we propose MTTPR and MTTRR
which correspond to the two recovery mechanisms respec-
tively. Rotation recovery requires to provide backup repli-
cas. We introduce the system virtual machine threshold
to ensure the number of required replicas for system ser-
vices. Instead of the single server level, we calculate the
maximum tolerance time at the system level to evaluate
the intrusion tolerance ability of the entire system. These
security analysis parameters and their evaluation meth-
ods aim at evaluating the self-cleaning intrusion tolerance
systems based on virtualization from new perspectives.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the relevant work. In Section 3,
the semi-Markov model construction is described in de-
tail. Section 4 introduces quantitative evaluation meth-
ods. Section 5 analyzes the experimental results. Finally,
the summary is concluded in Section 6.
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2 Related Work

Since Gong [21] proposed an extended intrusion tol-
erance distributed service model SITAR, intrusion toler-
ance gradually entered the people’s vision and has been
widely concerned. Various types of intrusion tolerance ar-
chitecture have mushroomed. In 2003, Singh proposed the
multi-replicas system of intrusion tolerance [19]. In 2006,
Sord proposed the self-cleaning intrusion tolerance model
(SCIT) [9]. In 2015, Zhang et al. designed an intrusion
tolerance architecture for SCADA systems [22]. Nowa-
days, the intrusion tolerance architectures based on virtu-
alization, such as SOA service architecture [13] and cloud-
based SCIT model [14], have been widely used. Marco et
al. proposed a multiple-replicas system which uses the
Byzantine agreement to provide a theoretical basis for
SCIT cluster security [18]. Iman et al. used the rotation
model to serve cloud data centers citeMir2015Security.
Georges [17] proposed an attack tolerance model serving
for Web applications. Basing on the work, he further
designed an intrusion detection and attack tolerance ap-
proach called CLARUS for cloud environments [16]. Sy-
rine and Habib used intrusion tolerance in a cloud of
databases environment [2, 3].

It is very important to analyze the security perfor-
mance of intrusion tolerance systems before they are put
into use. In order to describe the performance of an intru-
sion tolerance system better, F. Gong proposed a generic
state transition model [6]. He divides the behavior of the
system into nine different states. In 2004, Madan [11] et
al. considered the relationship between the existence time
of vulnerabilities and the probability of state transition,
and proposed a semi-Markov process (SMP) model based
on state transition matrix. They proposed the mean time
to security failure as the security measure for evaluating
the system. SMP based on state transition can more ef-
fectively describe the security attributes of intrusion tol-
erance systems than previous models. The presentation
of MTTSF is of great significance in the security analysis
of intrusion tolerance systems, which provides a basis for
many researches. Inspired by the SITAR model and the
SMP method, many scholars have also proposed their own
methods. For example, Yang [8] proposed an evaluation
approach based on attack behavior model and introduced
the tolerability as a new quantitative indicator. Mir [12]
proposed the combination of preventive recovery and the
existing SCIT to improve the security of the system. He
simulated the behavior of the system through the semi-
Markov process, and quantified the cost of a single system
recovery. Che [4] proposed a security quantitative analy-
sis method for access control based on security entropy.

The shortcoming of state transition and SMP models is
that the state transition probability and the mean sojourn
time cannot be accurately determined. To address this
problem, Sord used SMP to model SCIT [15] and intro-
duced the concept of exposure window time for more ac-
curate quantitative analysis. Based on this work, Gan [7]
proposed a method for calculating evaluation parameters

more accurately. This method considered the relationship
among the exposure window time, attack success rate and
the shielding rate. Luo [10] used SMP to analyse the in-
trusion tolerance capacity of systems. He proposed a kind
of SMP model parameters algorithm. Tanha [20] designed
a self-healing control center of critical infrastructures and
analysed its security by using SMP.

Although the intrusion tolerance architectures based
on virtualization have been well developed, the security
evaluation on these architectures still uses several tradi-
tional methods. They only consider the states of a single
virtual machine, but ignore the effect of recovery mecha-
nism, multi-virtual machines, cluster and other character-
istics. In this paper, some new security analysis param-
eters and evaluation methods are proposed to improve
these shortcomings.

3 Intrusion Tolerance Architec-
ture Based on Virtualization

3.1 Architecture

Virtualization technology can simplify software recon-
figuration and allow multiple operating systems to run on
the same physical platform at the same time. Applica-
tions can run in a separate space without affecting each
other. The Low-cost and on-demand virtualization tech-
nology provides a good distributed environment for self-
cleaning intrusion tolerance. The combination of proac-
tive and reactive recovery ways improves the security of
the system. Figure 1 shows a virtualization-based self-
cleaning intrusion tolerance system combined with proac-
tive and reactive recovery.

In Figure 1, each service implements its intrusion toler-
ance through self-cleaning mechanism. The Online VM is
the primary replica which connects with the outside world
via the network. It accepts requests from users and pro-
vides the appropriate services. In the architecture, there
are two different kinds of recovery methods: proactive re-
covery and reactive recovery. The proactive recovery will
make the online primary replica go offline at regular in-
tervals. It will be replaced by a clean virtual machine
to continue to provide services. When the intrusion de-
tection system (IDS) detects a malicious behavior, the
reactive recovery will be triggered to force the primary
online replica into self-cleaning ahead of time. The inter-
val time that the online replica provides services is called
the online time To. If some requests have not yet been
completed when the online VM is offline, the online VM
has to go into the grace period to process the requests,
but not accept any new requests. This period is called
the grace time Tg. To and Tg together constitute the
exposure time window. If a virtual machine is exposed to
the network for a long time, it will be vulnerable to at-
tacks. The virtual machine will go into self-cleaning after
the grace period. Self-cleaning include deleting the mal-
ware and putting a patch. After the self-clean process,
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Figure 1: Intrusion tolerance architecture based on virtu-
alization

the virtual machine is recovered to the initial clean and
healthy state and the machine is ready for the next on-
line service. There are several prepared VMs which are
ready to go online. The combination of the two recovery
methods can not only reduce the possibility of intrusions,
but also will respond immediately after an attack. The
mechanism improves the overall security of the system.

3.2 Modeling

The state transition model can clearly describe dy-
namic behaviors and state transition of a system, but
it lacks the description of the state transition probabil-
ity. The Markov process not only describes the states,
but also describes the transition probability between ad-
jacent states. Because the sojourn time in each state is
associated with the malicious attack frequency, exposure
window time, network environment and many other fac-
tors, the duration staying in each state is random and
not exponential. It is appropriate to use the semi-Markov
process of discrete time to describe this kind of self-clean
intrusion tolerance system.

Based on the state transition model, this paper
presents a semi-Markov state transition model, as shown
in Figure 2. This model is used to describe the transi-
tion of the various states and the relationships between
them. It is also used as a basic framework for quantitative
analysis of security.

The states of the analyzed system include good state
(G), attack state (A), masked compromised state (MC),
normal recovery state (N), undetected compromised state
(UC), triage state (TR), failed state (F), graceful degrada-
tion state (GD), fail-secure state (FS), self-cleaning (C),
prepared state (P). The system is in good state (G) when
it starts working. If no attack exists, it will enter the
normal recovery state (N) which belongs to the grace pe-
riod after the online time expires. When the system is
attacked, it goes into the attack state A and then the
intrusion detection mechanism will go into effect. If the
detection mechanism cannot find the attack (minimum
probability), the system will go into the undetected com-

Figure 2: SMP model

promised state (UC). And it will go into the state N after
the online time expires. When the attack is detected,
if the system can shield damage through some preven-
tive mechanisms (such as firewalls, repair vulnerabilities,
etc.) to make the system unaffected, the system will enter
the state MC. Then it will go into good state (G) after
damage is completely shielded. Otherwise the system ini-
tiates the redundancy mechanism and enters the triage
state (TR). Depending on the actual situation and the
security policy, the system may choose to only keep the
critical service and enter the graceful degradation state
(GD). Or the system will stop all services into the fail-
secure state (FS) to protect the data confidentiality and
reliability. If the system has been significantly damaged
and its confidentiality and reliability have failed, then it
will enter the failed state (F). Finally, the offline virtual
machine will start self-cleaning (state C). The system will
enter the prepared state (P) after recovering to a secure
and clean state.

States G, A, MC and UC together form the active pe-
riod in the life cycle of a virtual machine. States TR, F,
GD, FS and N form the grace period. States C and P cor-
respond to the self-cleaning and prepared period respec-
tively. The state transition diagram describes the com-
plete life cycle of the virtual machines in detail. It lays
a solid foundation for the numerical analysis and evalua-
tion.

4 Quantitative Analysis

4.1 Availability Analysis

Based on the method in [11], system availability can
be calculated.

Let {X(t) : t ≥ 0} be the underlying stochas-
tic process with a discrete state space Xs =
{G,A,MC,UC, TR,GD,F, FS,N,C, P}. To analyze a
SMP, we need to determine a sets of parameters:

1) Mean sojourn time hi in state iεXs;
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2) The transition probabilities pi between different
states iεXs.

For computing the availability measure, we first need
to compute the steady-state probabilities {πi, iεXs} of the
SMP states. π’s in turn can be computed in terms of the
embedded discrete time Markov chain (DTMC) steady-
state probabilities vi’s and the mean sojourn times hi’s:

πi =
vihi∑
j

vjhj
, i, jεXs (1)

The DTMC steady-state probabilities vi’s can be com-
puted as:

v̄ = v̄ ·Q , vε{vG, vA, vMC , vUC ,

vTR, vFS , vGD, vF , vN , vC , vP } (2)

Q is the DTMC transition probability matrix which
can be written as:

Q =

G
A
MC
UC
TR
GD
F
FS
N
C
P



G A MC UC TR GD F FS N C P
0 pa 0 0 0 0 0 0 p̃a 0 0
0 0 pm pu ˜pmu 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 pg pf ˜pgf 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0

 (3)

Where p̃a = 1 − pa, ˜pmu = 1 − pm − pu and ˜pfg =
1− pf − pg. In addition,∑

i

vi = 1, iεXs (4)

The transition probability matrix Q describes the
DTMC state transition probabilities between the DTMC
states as shown in Figure 2. Rewriting Equation (2) into
the elemental form yields relationship between DTMC
steady-state probabilities as:

vG = vMP + vP , vA = vGpa,

vMC = vApm = vGpapm,

vUC = vApu = vGpapu,

vTR = vA(1− pm − pu) = vGpa(1− pm − pu)

vGD = vTRpg, vF = vTRpf ,

vFS = vTR(1− pg − pf ),

vN = vG(1− pa) + vUC = vG(1 + pa(pu − 1)),

vC = vP = vGD + vF + vFS + vN = vG(1− papm).

(5)

Solving the above equations, in conjunction with the
total probability relationship given by Equation (4) we
obtain:

vG =
1

2 + pa(2− 3pm)
(6)

Substituting Equation (5) into Equation (6) will
yield the expressions for the remaining v’s. The

states {G,A,MC,UC, TR,GD,F, FS, N,C, P} are as-
sumed to have mean sojourn times {hG, hA, hMC ,
hUC , hTR, hGD, hF , hFS , hN , hC , hP }, respectively. The
SMP steady-state probabilities π’s can now be easily com-
puted by using Equation (1). In the case of calculating
the steady-state probabilities, the availability of the sys-
tem can be easily obtained:

Availability = 1− πF − πFS − πGD (7)

4.2 Mean Time to Proactive Recovery
and Mean Time to Reactive Recov-
ery

The system presented in this paper has two recovery
methods: proactive recovery and reactive recovery. [14]
evaluated the recovery-based self-cleaning system by cal-
culating MTTSF. In this paper, the security of the pro-
posed system can be evaluated by calculating the mean
time of two recovery methods. We refine the evaluation
indicator by calculating mean time to proactive recovery
(MTTPR) and mean time to reactive recovery (MTTRR).

Set the state space of proactive recovery method Xp =
{G,A,MC,UC,N} and the state space of reactive recov-
ery method Xr = {G,A, TR, F,GD,FS}. The proactive
recovery state transition matrix PRM can be obtained:

PRM =

G
A
MC
UC
N


G A MC UC N
0 pa 0 0 1− pa
0 0 pm pu 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (8)

MTTPR can be calculated as follows:

MTTPR =
∑
iεXp

Vihi (9)

The reactive recovery state transition matrix RRM can
be obtained:

RRM =

G
A
TR
GD
F
FS



G A TR GD F FS
0 pa 0 0 0 0
0 0 ˜pmu 0 0 0
0 0 0 pg pf ˜pgf
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(10)

MTTRR can be calculated as follows:

MTTRR =
∑
iεXr

Vihi (11)

Where Vi denotes the average number of times which
state iεX is visited before the DTMC reaches one of the
absorbing states and hi is the mean sojourn time in state
i. The visit count elements Vi can be obtained by solving
the following equation:

Vi = qi +
∑
j

VjPRMji, i, jεXp (12)
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Where qi is the probability that the DTMC starts in
state i. In our case, we assume that G is the initial state,
that is, [qi] = [1, 0, 0, 0, 0].

According to the above formulas, we can calculate
MTTPR and MTTRR as:

MTTPR =

hG + pahA + papmhMC + papmhUC + (1− pa)hN
1− papm

(13)

MTTRR = hG + pahA + pa(1− pm − pu)∗
(hTR + pghGD + pfhF + hFS(1− pg − pf ))

(14)

If proactive recovery is triggered, it means that there
is no malicious attack or malicious attacks are masked
before the damage occurs. The system is still in a healthy
state. If reactive recovery is triggered, it shows that the
system is compromised by malicious attacks and has to
force the virtual machine to go offline. We can calculate
the ratio of MTTPR and MTTRR:

R =
MTTPR

MTTRR
(15)

The higher the ratio R is, the longer the system stays
in the proactive recovery cycle. It means that the system
is less vulnerable to malicious attacks and more secure.
This parameter is important while evaluating the security
of the system.

4.3 Virtual Machine Threshold N

Ideally, assuming that the system has an infinite num-
ber of virtual machines. Whenever an intrusion occurs,
the online virtual machine will be forced to go offline to
recover. There will be a clean virtual machine to replace
it immediately. Therefore, the entire system can endless
rotate and always guarantee services. But the reality is
not nearly satisfactory. The number of offline virtual ma-
chine replicas may be limited sometimes. This paper in-
troduces the virtual machine threshold N that meets the
endless rotation of the system in a given environment.

Assuming that the deal-failure rate of virtual machines
is µ, then the duration of the self-cleaning state is TC =
1/µ. It represents the time from the beginning of the
virtual machine offline to the end of self-cleaning. After
that the virtual machine is recovered to state P and ready
to go online again.

Assuming that the total attack frequency is λ. The
attack frequency which causes the system to enter the
self-cleaning state is:

λC = λpa(1− pu − pm) (16)

Then the number of the attacks that cause the system
to enter the self-cleaning state in time TC is λCTC .

Assuming that attacks are independent of each other.
When attacks cause the system to enter the self-cleaning

state, a new virtual machine must be enabled online. The
number N of virtual machines must meet:

N ≥ λCTC + 1

≥ λpa(1− pu − pm) + µ

µ

(17)

According to literature [15], the online time To has a
great impact on pa. The probability distribution of these
attack behaviors satisfies the Poisson distribution. There-
fore, the attack behaviors and the response of the system
are determined as a Poisson process N(t) with a rate of λ.
The probability being attacked by k times per unit time
is

P (X = k) = (λk/k)e−λ (18)

The random variable Y denotes the interval between
two attacks. It obeys the exponential distribution: f(t) =
λe−λt. In time t, we get the probability P (Y ≤ t) =
1−e−λt. When time t is equal to the online timTo, P (Y ≤
To) = 1 − e−λTo . P (Y ≤ To) indicates the probability
that the time interval between two attacks is less than
the online time. When the attack frequency is λ, the
probability pa that the system is compromised can be
replaced by P (Y ≤ To). Equation (17) can be written as:

N ≥ λ(1− e−λTo)(1− pu − pm) + µ

µ
(19)

So the ability of systems resisting intrusion in a par-
ticular environment can be evaluated by calculating the
threshold value N and comparing with the actual number
of virtual machines. If the number of virtual machines
which the system provides for each service is greater than
or equal to N, the system can resist the intrusion for a
long time through the rotation mechanism. On the other
hand, the smaller the N is, the stronger the resistibility
of the system is and the less the resource required is.

4.4 Maximum Tolerance Time T

Assuming that the system does not meet the thresh-
old N. It means that the system cannot provide enough
virtual machine resources for rotation. All the virtual
machines will enter the self-cleaning state. The system
will not be able to continue to guarantee the services and
go into the crash state. At this moment the system has
to stop the services until the failed virtual machines are
recovered. So there exists a maximum tolerance time T.
It represents the total time that a system can provide for
regular rotation. We can evaluate the persistence of a
system against intrusion by the maximum tolerance time
T.

When the number of actual virtual machines n ≥ N
and T = ∞, the system can rotate continuously. When
n < N and λCT ≤ n − 1, the system will not crash. It
means that the number of attacks that cause the system to
enter the self-cleaning state is less than the total number
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of virtual machines. The maximum tolerance time T can
be calculated:

T ≤ n− 1

λC

≤ n− 1

λpa(1− pu − pm)

(20)

When the number of actual virtual machines cannot
reach the threshold, the constancy of the system to resist
intrusion can be evaluated by calculating the maximum
tolerance time T. The greater the T is, the stronger the
ability for the system to resist the intrusion is.

5 Experimental Evaluation

Now we analyze a typical system with rotation re-
covery architecture. In this section we illustrate the
evaluation of the security attributes through numer-
ical examples. In order to reflect the relationships
among the quantification parameters, we use the MAT-
LAB software in the simulation experiment. The pa-
rameters involved include the state transition proba-
bilities pi, iε{A,MC,UC,GD,F}, the average sojourn
time hj , jε{G,A,MC,UC, TR,GD,F, FS,N,C, P} and
the online time To that can be used to express pa.

5.1 Availability Analysis

Figure 3 shows the relationship between system avail-
ability and attack success rate pa. It compares the model
availability presented in this paper with the other two
models. Curve 1 represents the rotation-based compos-
ite architecture proposed in this paper. Curve 2 rep-
resents the classical SCIT [15]. Curve 3 represents the
improved SCIT in [12]. The results in the figure show
that the availability of the three models decreases with
the increase of the attack success rate. It indicates that
pa is the main factor affecting the availability of the sys-
tem.When the system is in a more secure network envi-
ronment (pa < 0.2), the availability of our model is more
than 0.95. Even in a more malicious network environment
(pa > 0.8), the availability can remain at 0.65 or more.
This shows that our model has a high degree of tolerance.
The availability of the proposed model is overall greater
than the other two and the descending speed is slower. It
indicates that the ability to deal with the intrusion has
been improved. Compared with the other two models, the
proposed model has a richer state space. It is the major
reason for its performance improvement.

5.2 MTTPR/MTTRR

As shown in Figure 3, in a typical system based on
rotation recovery mechanism, the greater the attack suc-
cess rate pa is, the more easily the system is compromised.
Once the system is compromised and the detection mech-
anism detects the intrusion, the system will force the vir-

Figure 3: Comparison of model availability before and
after improvement

Figure 4: Ratio of MTTPR and MTTRR vs. attack suc-
cess rate

tual machine to be offline for self-cleaning. Proactive re-
covery is converted to reactive recovery. Subsequently,
the corresponding MTTPR will decrease and the MT-
TRR will increase. It results in a decrease of the ratio
R. The higher the ratio R is, the longer the system stays
in the proactive recovery cycle. It means that the system
is less vulnerable to malicious attacks and more secure.
The slope of the curve decreases with the increase of pa,
indicating that the change rates of MTTPR and MTTRR
are also decreasing. The ability for the system to tolerate
high-intensity intrusion is saturated and stabilized. When
pa = 1, the ratio R remains above 0.6. It indicates that
the system can still maintain normal rotation under high-
intensity intrusion. This parameter is important while
evaluating the security of the system. If pa=0, the sys-
tem will only use proactive recovery and the ratio R will
tend to infinity. Figure 4 only considers the case that the
system is attacked. So we set paε[0.1, 1].
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Figure 5: Virtual machine threshold vs. online time

5.3 Threshold N

Figure 5 shows the relationship between the online time
and the rotation virtual machines threshold. The follow-
ing three cases are considered:

1) Attack frequency 100 times/unit time, recovery ca-
pacity 10 times/unit time;

2) Attack frequency 200 times/unit time, recovery ca-
pacity 10 times/unit time;

3) Attack frequency 100 times/unit time, recovery ca-
pacity 20 times/unit time.

With the increasing of online time To, the three curves
are on the rise. The greater the threshold N is, the more
virtual machines are required to ensure rotation. The
requirement of virtual machine resources continues to in-
crease. The λ of curve 2 is twice that of curve 1 and the
N of curve 2 is always greater than the value of curve 1.
It shows that the threshold is related to the attack fre-
quency λ. The higher λ is, the higher the threshold is. It
can be seen from the figure that the µ of curve 1 is twice
that of curve 3 and the overall trend of curve 1 is greater
than curve 3. It shows that the stronger the system re-
covery capability is, the less virtual machine resources are
required. Therefore, in the application environment, the
requirement of rotation virtual machines can be reduced
by shortening the online time and improving the ability
of system recovery.

5.4 Tolerance Time T

Figure 6 shows the relationship between maximum tol-
erance time and attack success frequency. The following
two cases are considered:

1) Attack frequency 100 times/unit time;

2) Attack frequency 200 times/unit time.

Both curves show a downward trend, indicating that
the maximum tolerance time T which the system can

Figure 6: Maximum tolerance time vs. attack success rate

maintain the regular service will decrease with the attack
success frequency pa increasing. The λ of curve 2 is twice
that of the curve 1 and the maximum tolerance time T is
one-half of curve 1, indicating that the increase of attack
frequency will cause the system’s tolerance time to drop.
The simulation results show that the tolerance time de-
creases sharply with pa when pa is less than 0.5. Because
the higher the attack frequency is, the faster the virtual
machine rotates. The curve tends to be gentle when pa is
greater than 0.5. Because the system’s tolerance ability
has reached saturation and the tolerance time has been
reduced to a minimum. It means that the simulation sys-
tem is less resistant to intrusion.

6 Conclusion

In view of the self-cleaning intrusion tolerance model
based on virtualization, this paper builds a comprehensive
SMP model which considers a variety of characteristics:
the virtual machine rotation, the self-adaption, the combi-
nation of proactive and reactive recovery and etc. We add
self-cleaning, prepared and normal recovery states to the
model, so the architecture’s unique life cycle is described
in more detail. Most of the existing evaluation meth-
ods only evaluate single virtual machine behaviors and
cannot be adapted to the comprehensive system. This
paper focuses on modeling and evaluating the entire clus-
ter architecture. We highlight the characteristics of vir-
tual machine rotation from different perspectives such as
time and space. The MTTPR, MTTRR, virtual machine
threshold and maximum tolerance time are put forward.
It enriches the methods of security evaluation of intru-
sion tolerance systems. The experimental results show
that the improved model is more comprehensive to eval-
uate the security of the system than other models. The
proposed indicators give us more way to evaluate the in-
trusion tolerance capability of the system, which provides
a new way for the system security evaluation. But the
evaluation process of these parameters needs to be an-
alyzed and perfected by a lot of practice. We need to
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further consider the dynamic self-adaptability of virtual
machines and the evaluation effect of these parameters in
more complex cloud environment. These still need to be
resolved in future research.
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