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Abstract

This paper proposed a new method to point scalar multi-
plication on elliptic curve and it is defined in a finite field
with a characteristic greater than 3. It is based on the
Transformed Fibonacci type sequence like (2P + Q) and
it can resist the Simple Power Attack (SPA). Although
the sequence quite easier to calculate, expressing any k
using the sequence remains a very difficult problem, so
we proposed the Alternate-Zeckendorf representation and
given the proof of this view.The NewADD algorithm is
also added to the new algorithm and in meanwhile we also
listed (2P + Q) results as a table to reduce the compu-
tation cost.The performance comparisons show that our
algorithm is less costly than other algorithms 12.7 % to
27.9 % at least.

Keywords: Addition Chain; Elliptic Curve; Fibonacci Se-
quence; Scalar Multiplication; Simple Power Attack

1 Introduction

Since the Koblit [8] and Miller [15] firstly applied the ellip-
tic curve in the encryption system, Elliptic Curve Cryp-
tography (ECC) has received more and more attention. It
gradually become a mainly standard in public key cryp-
tography and widely used in various areas of information
security, such as message encryption, authentication and
digital signatures [2, 6, 9, 16, 17, 21]. The literature [20]
proposed a combination of RSA and ECC. Compared with
RSA, the advantages and benefits of the ECC as follows:

• High security. RSA’s security level is sub-exponential
and ECC is exponential.

• Shorter key. At the same level of security, the secret
key length of ECC is much smaller than that of RSA
and ElGamal, which makes the ECC is applied in the
storage-constrained environments.

• Small storage space,lower bandwidth requirements.
This advantage allows ECC have a good prospect in

many limited areas.

• The faster computational speed. Due to the small
size of the finite field bottom of ECC and the deep-
ening of related research, it is much faster than RSA’s
computational speed.

The SET agreement which is introduced by the Visa and
Master card has set its default public key cryptography
algorithm to ECC. That means with the development of
ECC it will be gradually replace the status of RSA main-
stream application algorithms.

Although the existing ECC is much faster than RSA,
with the development of information technology, the ex-
isting computing speed has been unable to meet peo-
ple’s need [22]. So it is imperative to improve the com-
putational efficiency of ECC. However, In elliptic curve
calculation the most basic and time-consuming opera-
tion is the elliptic curve scalar multiplication (ECSM),
which calculate the [k ]P, i.e., the computation of the
point kP = P + P + · · · + P , where the integer k is
in the known domain, the P is a point on the elliptic
curve. The literature [19, 23] introduced a fast scalar
multiplication algorithm. In fact, the entire process of
computing ECSM on two levels: top level and bottom
level. Among them, the top level operation refers to the
scalar multiplication is converted to the double and addi-
tion operation on the elliptic curve. On the other hand,
the bottom level operation refers to through the multi-
plication, square, inversion, addition operation to achieve
double and addition operation on top level. Therefore,
there are two aspects of the research of scalar multipli-
cation: The top level seeks the efficient representation of
scalar k, and the bottom level find the methods achieved
the fast calculation of point doubling and addition. Ob-
viously the top level is the operation on the elliptic curve
E and the common methods are double-and-add, NAF,
sliding window method and so on. The literature [5, 11]
were introduced separately improving Miller’s Algorithm
using NAF, Window NAF algorithm and extend Φ-NAF
algorithm. The literature [10] introduced the bottom al-
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gorithm on Jacobian coordinates. Our algorithm select
the former to research.

In this paper, we will devote to the two levels. Firstly,
we proposed a new addition chain based on the defor-
mation of the Fibonacci sequence [12, 13] and prove the
theory that any integer can be expressed by the sum of
this sequence. Secondly, we presented a new scalar mul-
tiplication algorithm based on the transformed Fibonacci
sequence and the algorithm form is like (2P + Q). By
the method of combining the NewADD algorithm with
new algorithm and calculating the results of (2P + Q)
form the table we improved the efficiency of the calcula-
tion greatly. In addition to that, our algorithm can resist
Simple Power Attack (SPA) [7, 18] naturally, SPA is a
type of side channel attack discovered by Kocher et al.
Literature [1] introduced a method that resist SPA using
the addition chain.

The paper is organized as follows. Section 2 gives some
relevant conception and definition for the ECC. Section 3
is about addition chain definition. Section 4 introduce
our new algorithm and some examples to description. Sec-
tion 5 we compare and analysis with the other algorithms.
And the summary is given in Section 6.

2 Elliptic Curve Arithmetic

2.1 Definition of Elliptic Curve

An elliptic curve E over a finite field K is defined by the
equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

where a1, a2, a3, a4, a6 ∈ K, and ∆ 6= 0. It is defined as

∆ = d22d8 − 8d34 − 27d26 + 9d2d4d6

d2 = a21 + 2a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − 4a1a3a4 + a3a
2
2 − a24.

When the characteristic of K is not equal 2 or 3, the
equation can be written in another form, such that

y2 = x3 + a4x+ a6. (2)

where a4, a6 ∈ K, and ∆ = −16(4a34 + 27a26) 6= 0.
In practice, we simplified the formula to

y2 = x3 + ax+ b. (3)

where a, b ∈ K and 4a3 + 27b2 6= 0, over the charac-
teristic greater than 3. The set of points of E(K) is an
Abelian group.

2.2 Addition on Elliptic Curve

People proposed several algorithms to compute the addi-
tion of two points and also found the many coordinate

systems to improve the addition efficiency, you can refer
to [4]. Algorithm 1 is executed in the Jacobian coordi-
nates.

Algorithm 1 EACCD

1: Input: P = (X1, Y1, Z1) , Q = (X2, Y2, Z2)
2: Output:P +Q
3: A← X1Z

2
2 , B ← X2Z

2
1 , C ← Y1Z

2
2 , D ← Y2Z

2
1

4: E ← B −A,F ← D − C
5: X3 ← F 2 − E3 − 2AE2

6: Y3 ← F (AE2 −X3 − CE3)
7: Z3 ← Z1Z2E
8: Return(X3, Y3, Z3)

If one of the point given the form like (X,Y, 1), we can
obtain the addition cost is 12 multiplications(M) and 4
square(S), the cost of the doubling is 4 multiplications(M)
and 6 square(S).

However, if we assume that P and Q sharing the
same Z-coordinate, P = (X1, Y1, Z) and Q = (X2, Y2, Z).
Then P+Q=(X3, Y3, Z3) = (X

′

3Z
6, Y

′

3Z
9, Z3

′
Z3) ∼

(X
′

3, Y
′

3 , Z
′

3). Where A = (X2 − X1)2, B = X1A,C =
X2A,D = (Y2 − Y1)2, therefore

X
′

3 = D −B − C
Y

′

3 = (Y2 − Y1)(B −X3)− Y1(C −B)

Z
′

3 = Z(X2 −X1)

The cost is reduced to 5M+2S.

3 Addition Chain Theory

Addition Chain: The addition chain is defined as a se-
quence v = (v1, · · · , vl), where v1 = 1, vl = k, vi =
vi−1 + vi−2(1 ≤ i ≤ l). And the l is a length of the
addition chain [3].

Euclidean Addition Chain: The Euclidean addition
chain (EAC) of k is defined as an addition chain
which satisfies v1 = 1, v2 = 2, v3 = v1 + v2 and
∀3 ≤ i ≤ s− 1, if vi = vi−1 + vj , some j < i− 1, then
vi+1 = vi + vi−1 or vi+1 = vi + vj [14].

Theorem 1. We denotes the average number of
steps to compute gcd(k, g) using the subtraction Eu-
clid’s algorithm when g is uniformly distributed in
the range 1 ≤ g ≤ k [14].

S(k) = 6π−2(lnk)2 +O(logk(logk)2). (4)

This formula shown that the chain length of the EAC
is determined by random g and the chain length is
about (lnk)2, the chain length is too long to practical
application. Even if we choose the g close to the k/φ,
where φ = (1 +

√
5) ÷ 2 is the golden section, the

average chain length is still nearly 1100. So we need
to find the appropriate addition chain, however how
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to seek the shortest addition chain is NP complete
problem and solving this problem is very difficult for
us. In order to avoid the effect of g, we choose the
Fibonacci sequence and the definition is shown as
follows.

Fibonacci Sequence: The Fibonacci sequence is de-
fined as F0 = 0, F1 = 1, Fi = Fi−2 + Fi−1 [13].

Fibonacci Type Sequence: All sequences satisfied the
Fibonacci condition Fi = Fi−2 + Fi−1 collectively
called Fibonacci type sequence.

We use the example to illustrate the difference be-
tween the Fibonacci Sequence and the Fibonacci
Type Sequence, the sequence {0, 1, 1, 2, 3, 5, 8,
· · · } is the Fibonacci sequence, but the Fibonacci
type sequence like {4, 5, 9, 14, 23, · · · }, this means
that the Fibonacci sequence is a special form of the
Fibonacci type sequence. Fibonacci type sequences
have a greater range and form. Thus we can compute
the Fibonacci type sequence of arbitrary integers.

4 A New Algorithm about 2P+Q

In previous section we have presented various addition
chain forms. Notice that the Fibonacci type sequence is
a special EAC and no gap in the application, and inher-
ited all the advantages of EAC. Based on this idea, we
proposed a new Transformed Fibonacci type sequence in
this section and introduced how to apply this algorithm
in the elliptic curve.

4.1 Transformed Fibonacci Type Addi-
tion Chain

Transformed Fibonacci Type Addition Chain: A se-
quence which satisfied the formula Ti = 2Ti−2 + Ti−1

(4 ≤ i ≤ l), where T1 = 1, T2 = 2, T3 = 3. We
called this sequence as Transformed Fibonacci Type
Addition Chain(TFTAC), marked as T. For example
T = {1, 2, 3, 7, 13, · · · }.

Alternate-Zeckendorf Representation: Let k be an inte-
ger and Ti(i ≥ 0) is the Transformed Fibonacci Type
(TFT) sequence, the k can be written in the form:

k = Σdi[2Ti−2 + Ti−1]. (5)

with di ∈ {0, 1}. This representation is similar
to that the Zeckendorf representation, we called it
Alternate-Zeckendorf (A-Z) representation method.

Proof. We use the inductive deduction to prove it. For
the i = 1, 2, 3, there is no doubt that it is correct since
these are Transformed Fibonacci definition numbers, for
i = 4 we get 7 = 2 ∗ 2 + 3. Now suppose each i ≤ k
can be represented correctly. If k + 1 is a Transformed
Fibonacci number then we’re done. Otherwise hypothesis
there exists j and Tj < k + 1 < Tj+1, making the a =

Figure 1: The flow chart of the addition chain

k + 1 − Tj . Since a < k and a can be represented, so
k + 1 = a + Tj . At the same time Tj + a < Tj+1, a <
Tj+1 − Tj = 2Tj−1. Taking into account the relationship
between 2Tj−1 and Tj we obtained that the a ≤ Tj , now
consider the following two cases:

Case 1: where a = Tj , a is represented as a = 2Tj−2 +
Tj−1, the k + 1 can be represented as a and Tj .

Case 2: where a < Tj , so representation a does not con-
tain Tj . As a result, k + 1 can be represented as the
sum of Tj and representation a.

In summary, k + 1 can be represented with this method.
Therefore, for any k, it can be represented using A-Z rep-
resentation.

4.2 Specific Algorithm

4.2.1 Generated the A-Z Representation Se-
quence

Now, we discuss how to generate a sequence represented
by A-Z. Firstly, we set the third number of the sequence is
equal to the second number plus the doubling of the first
number , in this way we can gain the next result until
all the T number are calculated. Then we calculate the
addition chain of the k. For any integer k, we calculate
the k − Ti, where i is the last element of T. Case 1: if
k − Ti ≥ 0 , then set k = k − Ti, mark di = 1, until the
k = 0. Case 2: if k − Ti < 0, mark di = 0 then calculate
k− Ti−1, till the k− Ti ≥ 0 using Case 1. The flow chart
is shown in Figure 1.

Algorithm 2 is a specific TFTAC algorithm. Through
a large number of experiments we found that the num-
ber of T is generally related to the number of the binary
bits of k. For example, if we select 160-bits integer to
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Algorithm 2 Transformed Fibonacci Addition Chain

1: Input: A positive integer k and n
2: Output: d={d1, d2, · · · , dn}.
3: T = {1, 2, 3}, d={},Set i = 4
4: while i ≤ n do
5: Ti = Ti−2 + Ti−1

6: Output T.
7: end while
8: while j ≥ 1 and j ≤ n do
9: if k − Tn < 0 then

10: Output n is not appropriate, return 1.
11: end if
12: if k − Tj ≥ 0 then
13: dj = 1
14: d = d

⋃
dj

15: k = k − Tj
16: j = j − 1
17: end if
18: if k − Tj < 0 then
19: dj = 0
20: d = d

⋃
dj

21: j = j − 1
22: end if
23: end while
24: Output d.

execute our experiment, the number of the T is 160 as
well. That means the chain length of the k obtained by
this method is the same as the binary length. But if we
use the Zenkendorf method to represent the k, the chain
length is about 230. It needs 44 % more digits than the A-
Z representation and the binary representation. In fact,
we can see that the definition of the A-Z representation
is similar to the binary method. Here we use an example
to illustrate our algorithm in Example 1.

Example 1. k = 567, n = 10, T ={1,2,3}
T4 = 2T2 + T3 = 7
T5 = 2T3 + T4 = 13
T6 = 2T4 + T5 = 27
T7 = 2T5 + T6 = 53
T8 = 2T6 + T7 = 107
T9 = 2T7 + T8 = 213
T10 = 2T8 + T9 = 427
We get the T = {1, 2, 3, 27, 53, 107, 217, 427} , then
k − T10 = 567− 427 > 0, d10 = 1, k = 567− 427 = 140
k − T9 = 140− 213 < 0, d9 = 0
k − T8 = 140− 107 > 0, d8 = 1, k = 140− 107 = 33
k − T7 = 33− 53 < 0, d7 = 0
k − T6 = 33− 27 > 0, d6 = 1, k = 33− 27 = 6
k − T5 = 6− 13 < 0, d5 = 0
k − T4 = 6− 7 < 0, d4 = 0
k − T3 = 6− 3 > 0, d3 = 1, k = 6− 3 = 3
k − T2 = 3− 2 > 0, d2 = 1, k = 3− 2 = 1
k − T1 = 1− 1 = 0, d1 = 1, k = 1− 1 = 0
Output d = {1010100111}

4.2.2 Application of Elliptic Curve

In previous section, we discussed how to compute the ad-
dition chain sequence of k, and now we describe the ap-
plication of this algorithm on elliptic curves. It is shown
in Algorithm 3.

Algorithm 3 Scalar Multiplication Algorithm using TF-
TAC
1: Input: P ∈ E(K), k = (dl, · · · , d1)
2: Output: W = [k]P ∈ E(K)
3: Begin W=0
4: if d1 = 1 then
5: W ← W + P
6: end if
7: (U, V)←(2P, 3P)
8: for i = 2, · · · , l do
9: if di = 1 then

10: W←W + U
11: end if
12: (U,V)←(V, 2U+V)
13: end for
14: Return W

In Section 2 we know that the NewADD algorithm
can be used as long as two points sharing the same Z-
coordinates. In the later content, we will use this theory
and the specific algorithm is shown in Algorithm 4.

Algorithm 4 Scalar Multiplication Algorithm using
NewADD
1: Input: P ∈ E(K), k = (dl, · · · , d1)
2: Output: W = [k]P ∈ E(K)
3: Begin W=0
4: if d1 = 1 then
5: W← P
6: end if
7: (U, V)←(2P, 3P)
8: for i = 2, · · · , l do
9: if di = 1 then

10: upgrade W
11: (· · · ,W)← NewADD(W,U)
12: end if
13: Calculate 2U
14: upgrade V
15: (U,V)← NewADD(2U,V)
16: end for
17: (· · · ,W)← NewADD(W,U)
18: Return W

Now we need to analyze the cost of the algorithm. Sup-
posing the U= (XU , YU , Z) , V= (XV , YV , Z) and P=
(x, y, 1). When d1 =1, W= (x, y, 1), upgrade the W=
(xZ2, yZ3, Z) and the cost is 3M+S. At this time we can
add W and U using the NewADD algorithm with the
cost is 5M+2S. And then doubling the U needs 4M+4S.
Since the Z2U = 2YUZ, thus the X

′

V = (XV (2YU )2,
YV (2YU )3, 2YUZ) only costs 2M. Because of the density
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of ”1” is about 0.5, the add step cost is 4M+1.5S. Finally,
the total cost is 15M+7.5S.

Example 2. Computation of
[39]P = 27 + 7 + 3 + 2 = (101110)A−Z :
initialization : W= 0
d2 = 1 : W = 0 + 2P = 2P, (U, V) ← (3P, 7P)
d3 = 1 : W = 2P + 3P = 5P, (U, V) ← (7P, 13P)
d4 = 1 : W = 5P + 7P = 12P, (U, V) ← (13P, 27P)
d5 = 0 : (U, V) ← (27P, 53P)
d6 = 1 : W = 12P + 27P = 39P
Return W = [39]P

Example 3. Computation of
[67]P = 53 + 13 + 1 = (1010001)A−Z :
initialization : W= 0
d1 = 1 : W = 0 + P = P
d2 = 0 : (U, V)← (3P, 7P)
d3 = 0 : (U, V)← (7P, 13P)
d4 = 0 : (U, V)← (13P, 27P)
d5 = 1 : W = P + 13P = 14P , (U, V)← (27P, 53P)
d6 = 0 : (U, V)← (53P, 107P)
d7 = 1 : W = 14P + 53P = 69P
Return W = [67]P

Example 2 and Example 3 are illustrated for Algo-
rithm 4. In Algorithm 4, the elliptic curve scalar mul-
tiplication process has a double and a addition each time.

4.2.3 Improve Algorithm

By the large of statistical analysis, we get the density of
”1” in the A-Z representation is approximate 0.5. That
means representing a 160-bits integer needs 80 Trans-
formed Fibonacci number and the total multiplication is
about 3360. In this part we will introduce how to im-
prove Algorithm 4 to reduce the cost of multiplication.
We known that each iteration of the algorithm needs to
calculate 2P + Q, so we can calculate the results of 2P +
Q in advance and recorded it as a table. That means we
do not need to calculate 2P + Q in the algorithm. The
part table shown in Table 1.

Table 1: Transformed fibonacci type number

Tth num. T1 T2 T3 T4 T5
TFT num. 1 2 3 7 13
Tth num. T6 T7 T8 T9 · · ·
TFT num. 27 53 107 213 · · ·

Now, we recalculate Example 3 using improved Algo-
rithm. As you can see in Example 4 only the di = 1 is
performed, and the amount of computation is reduced by
half.

Example 4. Computation of
[67]P = 53 + 13 + 1 = (1010001)A−Z :
initialization : W= 0
d1 = 1 : TFT num.=1, then W = 0 + P = P
d2 = 0 : Next
d3 = 0 : Next
d4 = 0 : Next
d5 = 1 : TFT num.=13, then W = P + 13P = 14P
d6 = 0 : Next
d7 = 1 : TFT num.=53, then W = 14P + 53P = 69P
return W = [67]P

5 Comparison with Other Algo-
rithms

In this section we will compare with other algorithms
and give some practical results about new algorithm. We
choose mixed coordinates to calculate the cost of the TF-
TAC and the cost of the various mixed coordinates is
shown in Table 2 [4]. In addition, we will also introduce
how to resist the SPA attacks using the new algorithm.

Where A is the Affine coordinates, the J is Jacobian,
Jc is Chudnovsky Jacobian, Jm is modified Jacobian, the
P is Projective coordinate.

5.1 Scalar Multiplication Analysis

In Table 3, We compared our algorithm with others, such
as NAF, 4-NAF and Double-and-add and so on on mixed
coordinates. In Table 4, we compared several algorithms
which used the NewADD. Table 5 shown the chain length
of several algorithms.

In Section 3, we know that there is unnecessary to cal-
culate the cost of (2P+Q). What we just need to do is to
calculate the remaining addition when 1 appears. So the
average cost is 4M+1.5S, the final multiplications are 832.
However, the number of occurrences of 1 dependent on the
specific number, in order to illustrate the advantages of
the TFTAC algorithm clearly, we choose the largest num-
ber to do comparison and the cost is 8M+3S, the final field
multiplications is 1664. On mixed coordinates, TFTAC is
faster at least 6.5 % than NAF, 20.9 % than double-and-
add, 12.7 % than GRAC-258 , 21 % DFAC-160. Although
slower 3.8 % than 4-NAF, most of the TFT numbers are
faster than it.

Table 4 shown the comparisons algorithm using the
NewADD algorithm. From 27.9 % more than the
Fibonacci-and-add, 20.3 % more than the Signed Fib-and-
add and 15.1 % more than the Window Fib-and-add. So
we can see the new algorithm significantly reduces the
addition computation.

Table 5 shown the chain length comparison of the var-
ious algorithms with the 160-bits, the A-Z representation
chain length is 160 and it is same as the binary counter-
part. And compared with other algorithm chain length
the A-Z representation chain length is quite shorter than
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Table 2: The cost of various mixed coordinate

doubling
operation costs

2A = J 2[M] + 4[S]
2Jm = J 3[M] + 4[S]
2A = Jm 3[M] + 4[S]

2Jm 3[M] + 5[S]
2Jm = Jc 4[M] + 4[S]

2J 4[M] + 6[S]
2Jc 5[M] + 6[S]
2P 7[M] + 5[S]

addition
operation costs
P + P 12[M] + 2[S]
Jm + Jm 13[M] + 6[S]
J +A 8[M] + 3[S]

Jm +A = Jm 9[M] + 5[S]
Jm +A = J 8[M] + 3[S]
Jc + J = J 11[M] + 3[S]
Jc + Jc = Jm 11[M] + 4[S]
Jc + Jc = J 10[M] + 2[S]
Jc + Jc 11[M] + 3[S]

Jc +A = Jm 8[M] + 4[S]
Jc +A = Jc 8[M] + 3[S]
J +A = Jm 9[M] + 5[S]
A+A = Jm 5[M] + 4[S]
A+A = Jc 5[M] + 3[S]
J + J 12[M] + 4[S]

Jc + J = Jm 12[M] + 5[S]
Jm + Jc = Jm 12[M] + 5[S]

Table 3: Comparison the classical algorithm for the 160-
bits

Algorithm Costs
4-NAF 1600
NAF 1780

Double-and-add 2104
GRAC-258 1907
DFAC-160 2016

Table 4: Comparisons with different algorithm using the
NewADD

Algorithm Chain length
Fibonacci-and-add 2311
Signed Fib-and-add 2088

Window Fib-and-add 1960
TFTAC 1664

Table 5: Comparisons with the chain length for 160-bit

Algorithm Chain length
Fibonacci-and-add 358
Signed Fib-and-add 322

Window Fib-and-add 292
Binary representation 160

Zenkendorf representation 230
TFTAC 160

others. It is 55 % shorter than the Fibonacci-and-add,
50.3 % shorter than Signed Fib-and-add, 45 % shorter
than Window Fib-and-add, and 44 % shorter than Zenk-
endorf representation.

5.2 SPA Analysis

SPA is a technology which is a direct interpretation of
energy consumption measured value. The system con-
sumption of energy is different that mainly depending on
the instructions executed by the microprocessor. When
the microprocessor operation performed at different part
of the encryption algorithm, some of the energy consump-
tion of the system is very obvious. With this feature, the
attacker can distinguish a single instruction to achieve the
purpose of breaking the algorithm.

We already know that the attacker obtained the key in-
formation by observing the energy curve changing. There-
fore we can utilize the method of fixed sequence to resist
SPA. Our algorithm based on the Transformed Fibonacci
sequence and it is a fixed sequence, therefore it can resist
the SPA as well.

6 Conclusion

In this paper we proposed a new algorithm TFTAC which
is based on the Fibonacci deformation sequence, the new
algorithm combined with the advantages of NewADD and
through the method of generating tables reduced the cost
of scalar multiplication significantly. This method utilized
the space exchange for time achieve the purpose of sav-
ing resources effectively. Among them the multiplication
is less at least 12.7 % than others, the chain length also
reduced from 45 % to 55 %. In addition, the algorithm
against the SPA as well.
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