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Abstract

Security measures for Industrial Control Systems (ICSs),
until recently, have come mainly in the form of a physical
disconnect by implementing an “air-gap”. This discon-
nect isolated the nodes of an ICS network from other net-
works, including the Internet. While connecting an ICS
network to the Internet is beneficial to both the engineers
and companies that operate them, it places these ICSs in
a situation where they are vulnerable to attacks as the
protocols that are used by several of the ICSs have very
little, if any, security mechanisms. This paper focuses on
optimization of the feature extraction algorithms used in
a continuing effort to develop a Network Telemetry based
Intrusion Detection System (IDS). After development and
testing of the optimizations described in this paper, the
developed IDS was able to achieve 99.99% accuracy when
differentiating between machines of an attacker and engi-
neer on the same network.

Keyword: Control System Security; Network Intrusion
Detection; Network Telemetry

1 Introduction

The use of Industrial Control Systems (ICS) has become
common place in many businesses. While typically seen
in the utilities industries (water, gas, oil, electricity), they
are not limited to such. For instance, some factories use
ICSs to control their assembly lines. Theme parks can
use them to control their rides. Even the International
Space Station uses control systems for many different op-
erations. ICSs are designed to take complex data, process
it, and complete designated tasks.

Since ICSs are used to control many sensitive opera-
tions, security is of extreme importance. Early ICSs used
a security scheme known as “air-gap.” Every node in an

air-gapped ICS network was physically disconnected from
other networks [9] and the Internet, as it was not widely
used then. This physical disconnection meant that an at-
tacker would need physical access to the system in order
to perform an attack. Therefore, cyber security for an
ICS was not considered a priority. Instead, the designers
focused on the safety of the physical system operations
and the availability of the ICS network.

“Air-gap” security measures worked well enough as
long as the physical disconnect was maintained. How-
ever, as the Internet became widely used and networking
equipment became more affordable, companies began to
realize that they could save time and money by attach-
ing their ICSs to the Internet. Engineers would no longer
need physical access to the individual ICS networks. They
would be able to monitor the ICS and address critical is-
sues from anywhere.

Although there were benefits, attaching ICSs to the In-
ternet exposed the ICS networks to new security threats.
The main issue was the accessibility of the ICS network
to would-be attackers. No longer did an attacker have
to gain physical access to the network to launch an at-
tack. Instead, they could use the Internet to access and
launch a wide array of attacks against the ICS, such as
non-patched system attacks, DDoS attacks, zero-day at-
tacks, etc. ICS protocols were originally developed assum-
ing “air-gapped” accessibility; therefore, cyber security
measures were not designed into the protocols. By at-
taching these devices to the Internet, they became much
more vulnerable to attacks.

Another issue inherent with an Internet connected ICS
network is the difficulty of verifying the authenticity of
the host sending the data and the data itself. Informa-
tion, such as the sender’s location, connection properties,
configuration and architecture, is kept hidden from the
control applications. This makes it much more difficult to
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authenticate the host transmitting the data [16]. It also
makes it easier for attackers to change the data within
the data packet but make the packet itself appear au-
thentic [26].

As vulnerabilities were exposed in Internet connected
ICSs, it became apparent to the engineers that industry
wide standards were lacking, often not used, and some
companies were even creating their own. Although a few
standards were available, companies were not required to
use them. Having a wide array of ISC protocols made
it hard to determine what the vulnerabilities were for all
ICSs [12]. One protocol might have vulnerabilities that
another protocol does not, and vice versa. Therefore, en-
gineers were forced to use more time, energy and resources
to find and fix the vulnerabilities.

One approach to addressing cyber-security in an ICS
network is a network telemetry-based Intrusion Detection
System (IDS). This approach looks at data that is sent
through the network that is not used by the transmission
protocol. This data is known as network telemetry. It in-
cludes information such as packet size, number of dropped
packets, when the packet arrives, session sizes and times.
The IDS, then, seeks to measure the telemetry data and
verify it. In order to verify the data, the IDS must look
at all the packets that pass through the network. From
these packets, the IDS can calculate the telemetry data’s
running average and look for anomalies. When anomalies
are found, the system triggers an alert for the engineers
to investigate.

2 Background

Many cyber-attacks have been launched against ICSs [14].
Stuxnet is the most well-known example [10]. It was
used to infiltrate the Iranian nuclear facilities’ ICSs and
change the spinning frequencies of the centrifuge motors.
This caused damage to hundreds of Iranian centrifuges.
Stuxnet was a well thought out, well written piece of ma-
licious code that was able to duplicate and spread itself
across a network. While it was able to spread itself over
the Internet, it did not necessarily need an Internet con-
nection. It was able to infect any USB drive that was in-
serted into an infected computer and use that USB drive
to infect other computers [10, 22, 29]. Stuxnet was ex-
tremely difficult to find and made the centrifuge break-
downs look like unfortunate accidents.

Stuxnet opened the eyes of many ICS engineers to the
need for cyber security measures to be added to ICS pro-
tocols. The consequences of a successful ICS cyber at-
tack were too great for engineers to sit back and do noth-
ing. Therefore, significant research is now being done on
how to secure cyber-physical systems. The research has
covered a wide array of approaches. Some focus on pre-
venting a specific type of attack, i.e. denial of service or
man-in-the-middle. Others focus on topics such as state
estimation, traffic analysis, and hardware analysis.

One proposed method is to use a hardware fingerprint

and duration [24–26]. By using patterns found in the
communications of ICS network nodes, the researchers
are able to create a digital fingerprint for each node that
can be used to authenticate the data. In [33], Wallace et
al. propose an IDS that can distinguish between the state
of an ICS under attack and the state of an ICS operating
normally. They suggest that the objects being controlled
by the ICS have distinguishable underlying physical prop-
erties that can be used for state estimation.

Another approach has been to focus on network traf-
fic. Carcano et al. [5] suggest an IDS that looks for state
anomalies using ICS network traffic. It creates an image
of the ICS from the network traffic that flows through it
and uses that image to find state anomalies within the
system. Temporal packet data, as seen in [28], can also
be used to find anomalies in network traffic. The IDS de-
veloped in [28], which focused on the BACnet protocol,
used probability functions to examine packet signatures
and determine if the packet was authentic. The drawback
to their method was the number of false positives result-
ing from anomalies found in the ICS’s physical domain for
which the engineers attempted to fix by reprogramming
the programmable logic controllers (PLCs).

Cheung et al. [7] propose a model-based intrusion de-
tection system for SCADA networks. In their system,
an analysis of the communication model using Modbus is
done to look for signatures of packet fields. When specific
signatures are detected, an alarm is triggered.

Long et al. [17] chose to focus on denial of service at-
tacks. They proposed a packet filtering system to help
mitigate these types of attacks. Oh et al. [23] focused on
man-in-the-middle attacks and suggested some modifica-
tions be made to the ICS protocols. The National Insti-
tute of Standards and Technology recommends using fire-
walls, MAC address locking and encryption, among other
things, to help prevent man-in-the-middle attacks [31].

The latest research by Fovino et al. [11] developed a
critical state based intrusion detection system that is able
to prevent damage to physical plants. For an IDS to fol-
low the state changes of an ICS, protocols used to trans-
mit the data must be parsed, and state changes recorded.
Fovino’s latest IDS can parse Modbus and DNP3 pro-
tocols. Several filtering and monitoring techniques were
developed that can describe unwanted states of the ICS.
However, there is still no single solution that can guaran-
tee the security of an ICS. While a state-based IDS will
monitor the state of the system being secured, some mea-
sures to prevent the attackers from modifying the code
run on PLCs have to be implemented and some of the
control packets have to be blocked. To achieve this, an
IDS provides a packet language that can describe signa-
tures of unwanted Modbus and DNP3 packets.

2.1 Data Mining/Machine Learning in
Network Security

By utilizing principal component analysis in [34], high
accuracy state classification of a power grid was achieved.
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The reduced feature set was compared to new power grid
states using Hotelling’s T 2 value. If the value was too
high, then the new feature set could not exist and was
determined to be malicious.

Mantere et al. [20] states that machine learning IDS
can be very useful in a deterministic network such as an
ICS network. Unlike typical business networks, an ICS
network has a specific periodic packet flow that contains
little to no noise during its normal operation. Mantere et
al. proposes the use of throughput, IP address, average
packet size, timing, flow direction, as well as payload data
as features used for machine learning.

In their further work in [18], Mantere et al. analyzed
many features listed in their original research, including
network timing features - data that is critical to the re-
search that will be presented in this paper. Mantere et al.
was not able to detect useful behavior in timing features
to detect anomalies. However, the presented research did
not target any attacks on the network. The research con-
cluded that ICS networks overall have many anomalies
present in the traffic due to misconfiguration of the hard-
ware.

The most recent research by Mantere et al. [19] focuses
on creating a complementary network security monitoring
using Self-Organizing Maps as a means of machine learn-
ing. Their approach targets restricted IP networks and
does not use any network timing features, but uses packet
data instead. The research concludes that deterministic
properties of ICS networks make machine learning a vi-
able tool for network anomaly detection.

Gao et al. [13] used a Neural Network to classify the
ICS network traffic as normal and abnormal based on the
operation of the MSU SCADA Security Laboratory wa-
ter tank control system. The experiment resulted in a
100% accuracy classification of negative false data injec-
tion, 95% for positive false data injection, and 84.9% for a
random data response injection. Unfortunately, the Neu-
ral Network developed achieved only 12.1% accuracy for
a replay attack.

Network Telemetry based IDSs, such as the one pre-
sented in this paper, are useful in preventing unauthorized
access to ICS PLCs. They are even able to differentiate
between benign and malicious single-packet attack pat-
terns. In order to demonstrate this ability, a specific type
of denial-of-service attack was performed. It is known
as a CPU shutdown attack. For this type of attack,
a single packet is transmitted to the PLC, which com-
mands its CPU to shutdown. For the system to function
properly again, a physical reset of the PLC must be per-
formed. While most systems would ban CPU shutdown
commands, the telemetry based IDS did not need to do
this. It was able to determine when the single packet shut-
down command originated from an attacker and when it
originated from the SCADA system.

2.2 Network Telemetry

The Internet Protocol (IP) forwards packets on a net-
work between multiple nodes using Ethernet frames until
the packet’s final destination is reached. For this to hap-
pen, the Ethernet frame headers must include the media
access control (MAC) address for the destination of the
packet as well as the source. MAC addresses are different
from normal IP addresses. IP addresses are assigned by
self-configuration protocols or network administrators to
different machine interfaces; however, MAC addresses are
set when the controller circuit for the network interface is
manufactured [21].

Because software can be used to spoof both the IP
and the MAC addresses, it is often difficult for the
server to determine where the packet is actually coming
from [30, 35, 36]. To protect data integrity and prevent
illegal access through spoofing, encryption is often used
for security-critical algorithms [3]. While encryption is
an effective method in the deterrence of most attackers,
it can be broken. Encryption can, at the very least, be
attacked through brute force, no matter the level of secu-
rity of the cryptographic function [2]. Passwords that are
weak can be easily cracked, phishing sites can trick users
into giving out their passwords [4], and, like in Stuxnet,
reverse engineering can be used on hashes [22]. Network
telemetry data is very useful when trying to detect net-
work intrusions. It can help to detect anomalies caused
by an attacker using software that is not normally used
or even using different machines.

Chandola et al. [6] provide a survey of multiple studies
focusing on anomaly detection in which machine learning
and data mining methods and techniques are used to de-
tect anomalies. One particular data mining application
that concentrates on traffic data interactions and corre-
lations is NetMine [1]. Though the methodologies imple-
mented are similar to those that are used in the research
effort presented here, their studies are more interested in
improving network stability and traffic quality than net-
work security.

By analyzing derived transport layer statistics, Er-
man et al. [8] successfully clustered together packets that
were similar. Without extracting packet data, they were
able to identify protocols successfully by using DBSCAN
and K-Means algorithms [8]. Using the received signal
strength (RSS) of packets that are transmitted over wire-
less networks and analyzing the statistical fluctuations,
Shen et al. were able to show the ability to detect host
spoofing [30].

Wireshark is a software-based network analyzer that
captures and displays network traffic in real time. One of
Wireshark’s many features is that it gives a system admin-
istrator the ability to keep all network packets that come
in to the network so that they can be analyzed later to
find any useful information. For this research effort, Wire-
shark was used to extract network packet arrival times.
This data was placed in comma separated values format
to interpret and generate graphs of the data [27].
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Although the detection approach that is presented in
this effort may not endure the dynamics of a traditional
enterprise-wide Local Area Network (LAN), it is benefi-
cial in control system LANs for the detection of spoofed
hosts. Control system LANs are unique in their construc-
tion in that the hosts will commonly communicate in set
intervals that are defined by the particular polling proto-
col that is used [15]. The detection method that was de-
veloped for this research effort has the ability to determine
when communication is occurring outside of these set in-
tervals and will trigger a potential intrusion alert when
detected. In addition, with the continued use of open
source tools that can automate the attack process target-
ing control systems [32], this effort proves to be successful
in differentiating between benign and malicious network
packets.

3 Telemetry Based Intrusion De-
tection System

One of the critical components of the developed Intru-
sion Detection System algorithm is the session capture
method. When an attacker is spoofing MAC and IP ad-
dresses, there are two methods for them to inject data
into the control system network - either by using TCP
session spoofing, or instantiating new TCP connections.
This section covers the basics of TCP sessions, and dis-
cusses experiments performed to evaluate different session
instantiation techniques.

The possibility of spoofed addressing, as well as TCP
session injections, makes it impossible to differentiate be-
tween communication sessions as defined by the TCP flow
model. Therefore, to logically group incoming traffic into
sessions, a new session definition must be created. Several
session aggregation techniques were selected and tested
for this research.

3.1 TCP Session Flows

An example TCP session flow is shown in Figure 1. TCP
is a connection oriented protocol that utilizes internal
state variables in order to maintain the connection. TCP
session begins with a TCP handshake. The TCP hand-
shake includes a 3-way packet exchange that is commonly
explained as SYN, SYN/ACK, ACK. SYN is a synchro-
nization packet sent from the client to the server. This
packet starts a TCP session and asks the server to es-
tablish a connection. The server then responds with a
SYN/ACK packet, acknowledging the connection request.
Afterwards, the client acknowledges the server’s acknowl-
edgment with an ACK packet. This completes the TCP
handshake and allows the data exchange to be started.
The TCP session is closed with a FIN, ACK, FIN, ACK
sequence. When the client decides to terminate the con-
nection, it sends a FIN packet to the server. The server
then sends an ACK packet, acknowledging the request to
terminate the connection. After sending the ACK packet,

the server has time to release all of the resources used by
the connection, and sends a FIN packet of its own to no-
tify the client that all of the resources have been cleared.
The client then sends its final packet - ACK - to acknowl-
edge the connection termination. TCP sessions are sets
of all of the packets between two nodes that start with
the TCP handshake and end with the FIN, ACK, FIN,
ACK packet sequence.

Figure 1: Client-server session graph

Whenever an attacker wants to spoof and inject in-
formation into the TCP session, he has to inject packets
in the middle of an already established TCP connection;
therefore, proper network telemetry can only be obtained
if the data is extracted from a session flow model, rather
than a by-packet basis because there is no performance
information present in the analysis of a single packet. A
single packet will only have the time stamp of its arrival
to the server. In order to capture relevant performance in-
formation of the TCP communication, two methods have
been created and tested for this research.

3.2 Session Duration Based Instantiation

Session duration based instantiation seeks to identify peri-
ods of communication silence when silence is larger than
a time threshold. New sessions are defined as a set of
packets between the detected silence intervals when the
next packet is sent towards the server (PLCs). This
method was selected to match the periodical silence of
the polling nature of Modbus/TCP SCADA architecture.
Silence time threshold was determined experimentally by
using 0.1 second interval increments to maximize the C4.5
based classifier accuracy. Table 1 and Figure 2 show ses-
sion counts for a given time interval, while Table 2 and
Figure 3 show accuracies achieved by the C4.5 algorithm,
as well as Model Build Times (MBT) in seconds.

A malicious session defines a session that has at least
one malicious packet. As the length of the inter-session
silence increased, the count of benign sessions decreased,
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Table 1: Generated session counts for varying silence in-
tervals

Interval (s) Malicious Benign Total
Sessions Sessions Sessions

0.1 51156 89943 141099
0.2 51021 42125 93146
0.3 50893 29972 80865
0.4 50893 24458 75351
0.5 50891 19430 70321
0.6 50891 14454 65345
0.7 50888 9648 60536
0.8 50886 4869 55755
0.9 50508 403 50911

Figure 2: Silence interval detection session counts

Figure 3: Silence interval detection accuracy

while the count of malicious sessions increased. This trade
off happened due to the definition of the malicious session.
This is shown in Table 1 where the number of benign ses-
sions drop from 89943 for a silence interval of 0.1 to only
403 as the interval increases to 0.9. A similar drop is also
seen in the total number of sessions. Figure 2 pictorially
shows this dramatic drop in the number of sessions. A
benign session could not have any malicious packets at
all, while a malicious session could have any number of
benign packets, as long as it had at least one malicious
packet.

Table 2 provides accuracies for two different classifica-
tion experiments: 10-Fold validation, and 10% data split,
as well as the time in seconds the C4.5 classifier took to
build its model (MBT). The 10-Fold validation experi-

Table 2: Classification results of varying silence intervals

Interval (s) 10-Fold 10% Split MBT (s)
1Accuracy (%) Accuracy(%)

0.1 99.9922 99.9189 3.33
0.2 99.9914 99.8831 0.87
0.3 99.9913 99.9808 0.42
0.4 99.9920 99.8909 0.33
0.5 99.9986 99.9984 0.29
0.6 99.9985 99.9915 0.25
0.7 99.9983 99.9486 0.17
0.8 100.000 99.9701 0.49
0.9 99.9980 99.9978 0.11

Figure 4: Silence interval session duration and class dis-
tributions for 0.3s silence interval

ment takes the dataset and splits it into 10 chunks. The
classifier uses the first 9 chunks for training, and the last
chunk for accuracy verification. The chunks are then ro-
tated and the experiment is repeated ten times. The ac-
curacy value in Table 2 is the average accuracy of classifi-
cation for all ten experiments. While this accuracy is not
a good estimate of the overall classifier accuracy, it can be
used to verify the information distribution of the dataset.
If some parts of the dataset contained lower information
about the subject, the 10-Fold accuracy would be a lower
number. Unlike 10-Fold validation, the 10% Split exper-
iment uses the first 10% of the dataset for training, and
the other 90% for validation. The 10% Split accuracy
recorded in Table 2 refers to the classifier accuracy when
classifying 90% of the dataset. 10% of the dataset trans-
lates to approximately 2.5 hours of captured traffic.

The interval of 0.9 was the last usable interval. Inter-
vals above 0.9 are not listed because only malicious ses-
sions were created while using such a large interval. While
Classification accuracy seems to increase as the interval
increases (Figure 3), the amount of malicious sessions in
the dataset starts to outweigh the amount of benign ses-
sions drastically. For example, if we take the amount of
sessions for the 0.9 second interval, just choosing a ma-
licious class over all of the data will result in 99.208%
accuracy, as there are 50508 malicious features and only
403 benign features. However, selecting a malicious class
for the 0.3 second interval would result in an accuracy
of 63.936%, while the C4.5 classifier was able to achieve
99.9808% accuracy for a 10% Split experiment.

Examining the results presented in Table 2 and Fig-
ure 3 across all intervals shows an accuracy achievement
of between 99.8909% and 99.9984% for the 10% Split ex-
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Table 3: Generated session counts for varying conversa-
tion lengths

Length Malicious Benign Total
(packets) Sessions Sessions Sessions

1 343202 255209 598411
2 283280 157384 440664
3 183664 99144 282808
4 167121 53786 220907
5 132017 49889 181906
6 133396 21106 154502
7 120452 16223 136675
8 112428 3897 116325

periment and an accuracy between 99.9913% and 100%
for the 10-Fold experiment. As shown in Table 2, the
MBT are low and are relative to the total session size as
noted in Table 1.

For the use of the silence interval as a session separa-
tion method, the best value is determined to be 0.3 sec-
onds, as it provides high classification accuracy (99.9913%
and 99.9808% for the 10-Fold and 10% Split experiments
respectively) as well as approximately equal amounts of
malicious and benign features. Figure 4 shows the distri-
bution of features based on session duration and features
class for the value of the 0.3 second interval. In addition,
Figure 4 shows a duration based distribution of sessions
based on the silence interval of 0.3 seconds.

3.3 Session Length Based Instantiation

Session length can be used as an alternative method of
extracting sessions from a non-interruptible TCP traffic
flow. In these experiments, sessions were separated by
counting the amount of packets already in the session. If
that number is larger than a given length and the next
packet was sent to the server, a new session was instanti-
ated. Table 3, as well as Figure 5, present the data from
varying session length separation values.

The same trend found in Table 1 can be noticed in Ta-
ble 3 for the silence based extraction - the larger the ex-
tracted sessions are, the less benign features are extracted
due to the benign session being defined as having no mali-
cious packets. However, the amount of malicious sessions
extracted is not as stationary as with the silence based ex-
traction. As the session length increases, the amount of
extracted malicious sessions decreases from 343,202 ma-
licious sessions for a packet length of 1 down to 112,428
malicious sessions for a packet length of 8, as seen in Fig-
ure 5.

At no point of using session length as a session detec-
tion parameter was there a comparable amount of mali-
cious and benign sessions extracted as seen in the silence
intervals. Moreover, when the amount of extracted ses-
sions was compared to each other, the classification accu-
racy was significantly lower than that of a silence based
extraction.

Table 4: Classification results of varying conversation
lengths

Length 10-Fold (%) 10% Split (%) MBT (s)
(packets)

1 97.0796 97.1679 41.6
2 97.3172 97.2468 20.9
3 99.9346 99.7929 13.5
4 99.9570 99.8521 8.31
5 99.9082 99.7306 6.47
6 99.9663 99.8698 4.28
7 99.9188 99.5699 4.34
8 99.9003 99.8147 1.62

Figure 5: Session length based extraction counts

Figure 6: Session length extraction accuracy

Figure 7: Session length of 3 session duration and class
distributions
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Similar to the results presented above for silence in-
tervals, Table 4 and Figure 6 present classification and
accuracy results for varying conversation lengths respec-
tively. Examining the results presented across all intervals
show an accuracy achievement of between 97.1679% and
99.8698% for the 10% Split experiment and an accuracy
between 97.0796% and 99.9663% for the 10-Fold experi-
ment. As shown in Table 4, the MBT are low and are
relative to the total session size as noted in Table 3.

Comparable accuracy to that of the silence interval
is achieved when the session has at least 3 packets.
10% Split Accuracy of 99.7929 and 10-Fold Accuracy of
99.9346 are achieved, however, it takes 13.5 seconds to
build the model. When the distribution of extracted ses-
sions is graphed (Figure 7), the majority of the sessions
span very little time in contrast to silence based session
extraction.

4 Discussion and Future Work

Through the use of different methods there may be im-
provement in the accuracy of the session classifier. One
way to increase the classifier accuracy is by being able
to make a distinction between delays that are introduced
by a client machine’s software and/or hardware and the
delays that are introduced by networking hardware, such
as routers. Because of idiosyncrasies of a given network’s
routing algorithm, the number of hops calculated and the
delay measurement may not always be directly propor-
tional. As an example, a router may select a connection
path with a higher number of hops because of latency
due to line congestion. As the separation decreases be-
tween the client and server, this problem diminishes, but
the problem still needs addressing at the increased sepa-
ration distances. The detection accuracy for the IDS that
is developed and presented in this paper achieved high re-
sults. Furthermore, by using a specific set of features for
which the attacker has little control over, the IDS provides
robustness in network intrusion detections.

There are several threads of future work for this ef-
fort. These include looking at how changes in software
will affect the detection accuracy, assessing how different
hop counts from the target effect the accuracy curve, and
expanding the variety of attacks to test against the IDS.
Due to the fact that different variations of software and
hardware can create unique delays in the propagation of
the traffic, a possibility exists to create delay fingerprints
that would identify nodes that communicate with the IDS.
Work will be done to see if this fingerprinting technique
can be accomplished.

5 Conclusions

When an attacker is spoofing their machine’s addresses
and injecting traffic in the middle of an already-
established TCP session, it becomes impossible to isolate

the attacker’s TCP sessions from TCP sessions from a be-
nign machine. In order to collect the information that can
be used for an intrusion detection, two session aggregation
methods were created and tested. Overall, silence based
feature extraction presents better accuracy and efficiency
of detecting network intrusions. Both classification accu-
racy and model build time were better for this method in
comparison to session length based extractions. Results
presented provide accuracies at 99% when differentiating
between the machines of an attacker and an engineer on
the same network.
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