
International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 827

Scalable Approach Towards Discovery of
Unknown Vulnerabilities

Umesh Kumar Singh1, and Chanchala Joshi2

(Corresponding author: Chanchala Joshi)

School of Engineering and Technology, Vikram University Ujjain1

Institute of Computer Science, Vikram University Ujjain2

University Road, Madhav Bhavan, Near Vikram Vatika, Ujjain, Madhya Pradesh 456010, India

(Email: chanchala.joshi@gmail.com)

(Received Apr. 8, 2017; revised and accepted July 2, 2017)

Abstract

Of all the hazards confronting enterprise IT systems, zero-
day vulnerabilities are among the most harmful. Zero-day
vulnerabilities are flaws that leave users exposed to net-
work attacks before a patch or work around is available.
Every day an exploit remains unpatched, our risk of a
data breach increases dramatically. Only a multi-layered
approach that fully integrates with organization's IT de-
fense stands a chance of stopping them. This paper pre-
sented a novel hybrid three layer architecture framework
for zero-day attack detection and risk level assessment
with respect to likelihood of exploits. The first layer of
the proposed framework is liable to detect the unknown
vulnerability which is based on statistical, signature and
behavior based techniques; the second layer focuses on
risk measurement; and the third physical layer contains
centralized database and centralized server that are used
during processing of first two layers. The proposed frame-
work is analyzed in network environment of Vikram Uni-
versity Ujjain, India in order to evaluate the performance;
experimental results show detection rate of 89% with 3%
false positive rate.

Keywords: Attack Graphs; Attackrank; Intrusion Detec-
tion; Vulnerability Analysis; Zero-day Attacks

1 Introduction

In today's network system, organizations have taken great
care to secure their network but even with responsible
and sustained investment in defenses, they're still at risk.
Attackers can bypass organization security through un-
known vulnerabilities that are not listed by security per-
sons. In a well-guarded network, a loophole may reveal by
the persistent probing of a determined hacker. Attackers
can leverage vulnerabilities present in network configu-
ration to penetrate the target network [11, 21]. Besides
known vulnerabilities, attackers find a zero-day through

hours, weeks or months of painstaking effort through lines
of code, to find some weakness, some flaw that methodi-
cally barrages the target application, for which even de-
velopers are not aware of. Attackers can force the network
to reveal a small crack in the defense that provides them
access to secretly execute their code. This is how a net-
work is breached trough zero-day.

Zero-day is a vulnerability that has previously un-
known and unpatched and therefore can be exploited by
a threat actor to gain entry to a target network. Cy-
ber criminals are increasing the success rate of attacks by
finding and exploiting Zero-day vulnerabilities. In most
of the cases, information about vulnerability is not avail-
able until attacks have already taken place. As a result,
attacks using zero-day exploits are hard to identify and
analyze. With zero-day vulnerability in hand, the hacker
has a choice that, he may either help the software vendor
by providing them information about the discovered vul-
nerability or sell it to the black market broker who may
further sell the invented exploit at highest rate. Zero-day
exploits have an element of surprise as they are previously
unrevealed; an attacker incorporates the zero-day exploit
into their charted list of vulnerabilities and once the pene-
tration program process and payload is concocted, attack
is launched.

There is actually no protection against zero-day when
the attacks were first observed. Traditional security ap-
proaches discover the vulnerabilities by generating signa-
tures, but in case of zero-day this information is unknown,
so it is extremely difficult to detect zero-day with tradi-
tional defenses [18]. Attackers are highly skilled therefore
their discovered vulnerability remains unknown to public
for months or even years, which provides plenty of time
to attacker to cause irreparable harm [20, 22]. Accord-
ing to FireEye [2], a typical zero-day attack may last for
310 days on average. Therefore, dealing with zero-day is
clearly a challenging task.

This paper presents a three-layer, two-phase architec-
ture framework for zero-day attack detection and analysis.

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 828

The framework consists of three layers: zero-day attack
path generator, risk analyzer and physical layer. The first
layer is liable to detect the unknown vulnerability; the
second layer is an analyzer layer, which is assigned to an-
alyze the generated attack and the third layer is physical
layer which consists of centralized database and central-
ized server that are used during processing of first two
layers.

The proposed framework performs two-phase working
and follows a probabilistic approach for identification of
the zero-day attack path and further to rank the severity
of identified zero-day vulnerability. During first phase an
attack graph is built from captured network scenario at
any time stamp by levering the favorable attack condi-
tions collected from various information sources. These
conditions represent the abnormal system and network
activities that are noticed by security persons or secu-
rity sensors such as Intrusion Detection Systems. Based
on the generated attack graph during first phase, second
phase discovered the most probabilistic hosts by the pro-
posed AttackRank algorithm to rank the severity of dis-
covered vulnerability. In the proposed layered approach,
once the basic network graph is generated, layers are sup-
posed to execute dedicated functionality in parallel. Par-
allel work of each layer improves the performance of our
proposed approach.

2 Related Work

Many research groups have proposed various methodolo-
gies to protect against Zero-day attacks. These meth-
ods are classified as statistics, signatures and behavior
techniques [19]. Statistical based zero-day detection ap-
proaches [7] cannot be applied for real-time instantaneous
detection and protection. They relying on static attack
profiles therefore require a manual modification of detec-
tion settings. Signatures based techniques are broadly
used yet they need an improvement to generate high class
signatures. Kaur and Singh [8] proposed a hybrid ap-
proach for identification of zero-day although it is appli-
cable only for polymorphic warm detection. In this pa-
per we proposed a probabilistic approach for detection of
zero-day attacks. The proposed approach integrates the
signature based and behavior based methods of zero-day
identification. The next part of our work focuses on mea-
suring the risk level of identified malicious activity.

In the field of vulnerabilities’s risk level calculation
many researcher have made attempts to measure secu-
rity risks of vulnerabilities [6, 17]. In our previous work
we provide an approach for measuring the risk level of
vulnerabilities using Hazard metric [15] with the involve-
ment of frequency [16] and impact [14] factors. However,
zero-day attacks risks level measurement is like measur-
ing an immeasurable. We cannot measure the severity
of vulnerability while it is not known. Therefore, we are
considering the degree of exploitability, while measuring
the risks of zero-day. The approach is based on link anal-

ysis algorithm [3] used for personalized web. We made an
assumption that, an attacker can only advance his attack
position to a node that has connectivity and vulnerabil-
ity to be exploited. The proposed framework provides a
method for zero-day detection and estimates the likeli-
hood of system being intruded by attacker.

3 Proposed Approach

A three-phase architecture of Zero-day attack analysis is
proposed in the paper which is shown in Figure 1. The
architecture consists of three layers: zero-day attack path
generator and risk analyzer. The first layer is liable to
detect the unknown vulnerability, the second layer is an
analyzer layer, which is assigned to analyze the generated
attack graph in order to measure the risk of vulnerability
and the third layer is physical layer, consists of centralized
database and centralized server.

In the proposed three-layer architecture layers are sup-
posed to execute dedicated functionality in parallel. Par-
allel work of each layer improves the performance of pro-
posed approach.

3.1 Zero-day Attack Path Generator
Layer

The first layer of proposed framework is liable to detect
the unknown vulnerability. The main components of first
layer are: Snort anomaly detector, attack-graph gener-
ator, detection engine and zero-day attack path genera-
tor. To capture intrusion propagation, we first build the
attack graph by capturing the network scenario at spe-
cific timestamp. The attack graph is generated by sensing
the anomalous behavior or abnormal activities of network
that are noticed by security persons or security sensors
such as IDS. These anomalies represent the probability of
host being infected in an attack graph. Detection engine
analyses the mysterious anomalous activities in parsed
attack-graph that could be an attack and suspicious ac-
tivities are preserved as zero-day exploit.Zero-day attack
path generator layer consist of four modules:

3.1.1 Parsing and Dependency Extraction
trough Snort

The purpose of this module is to detect and filter known
attacks from the captured network scenario, which is done
through parsing by defining a set of malicious behavior
rules that are set up or configured by an administrator.
By establishing a good network profile, it is easier to iden-
tify anonymous bad behavior. For this purpose, Snort
2.9.7.6 is programmed as an anomaly detector. Snort is
used to detect and filter the known attacks, by implement-
ing a good network setup [9,12]. The packets that match
with the Snort profile are known attacks and after storing
their information in centralized database these packets are
discarded. The packets that are partially matched or not
matched are forwarded to next step for further analysis.

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 829

Figure 1: Proposed three layers architecture for zero-day attack detection and analysis

3.1.2 Attack Graph Generation

After filtering the known attacks through parsing, further
analysis is done by Snort tagger on extracted mysterious
packets which didn’t trigger any alert. Tagging packets is
a way to continue logging packets from a session or host
that generated an event in Snort [13]. Tagged traffic is
logged to allow analysis of response codes and post-attack
traffic. The function of tagger is to monitor the traffic,
tag the packets and send it to detection engine for fur-
ther analysis. The tagger creates a new identifier based
on 16-bit hash of a packet. The tag value and label for
the filtered packet is stored in a table < Tag, Label > for
later use. The Tag value is calculated for the 6 attributes
(arvl time, source ip, destination ip, source port, destina-
tion port, protocol). The tag value is stored for later use
and an attack graph of extracted nodes and mysterious
conditions is generated in this module.

3.1.3 Detection Engine

The parsing module is not able to respond to an un-
known attack; therefore run-time analysis is performed
by Snort NIDS (Network Intrusion Detection System) to
monitor network traffic in order to detect suspicious ac-
tivity, which could be an attack or unauthorized activity.
Detection engine receives the parsed packets, compares
them with existing good traffic and detect unknown obser-
vations. The good traffic is the collection of safe machines
on which all possible security mechanisms are applied.
Security privileges and policies are defined for these safe
systems and they do not participate in any malicious ac-
tivity. A trust value has been assigned to these machines

based upon the past experience. Algorithm 1 explains the
procedure of detection engine.

Algorithm 1 zero day detection

1: Begin
2: Capture network scenario.
3: while Not end of packet in network scenario do
4: if (equals(packet content,snort rules)) then
5: drop current packet;
6: else
7: preserve filtered packet ⇐ current packet;
8: end if
9: tag ⇐ hash(preserve filtered packet (arvl time,

source ip, destination ip, source port, destina-
tion port, protocol))

10: update database(tag);
11: tagged packet ⇐ preserve filtered packet
12: if (NOT (is Malicious (tagges packet))) then
13: Capture good traffic network scenario from safe

systems
14: Extract features and update Snort NIDS

database
15: else
16: unknown ⇐ tagges packet;
17: insert unknown;
18: update zero day database(unknown);
19: end if
20: end while
21: End

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 830

3.1.4 Zero-day Attack Graph Generator

In an attack graph, each node represents a host behav-
ior at specific timestamp. For example, let us assume
that the network scenario, captured in a time window
T[tbegin, tend] is denoted as

∑
T and the set of hosts in-

volved in
∑

T is denoted as OT , then the attack graph
is a directed graph G(V, E),where:

• V is the set of nodes that represent hosts in a given
time window.

• E is the set of directed edges that represent condi-
tions or dependencies.

• If an attacker at given timestamp navigates in be-
tween two hosts outi, inj , i, j >= 1, and a depen-
dency relation depc : outi− > inj , where outi is the
ith instance of host out ∈ OT , and inj is the jth in-
stance of host in ∈ OT , then V = V ∪{outi, in}, E =
E ∪ {depc}.

Figure 2 depicts an attack graph.

3.2 Risk Analyzer Layer

The first phase of our proposed methodology built an
attack graph as chains of possible vulnerability exploits,
which can help security persons to locate security flaws.
The second phase of the proposed framework focuses to
rank the nodes of attack graph based on likelihood of an
attacker reaching these states. The ranking determines
more vulnerable attack paths which require more imme-
diate attention for network security. The proposed ap-
proach is based on link analysis algorithm used for per-
sonalized web [3]. We are considering three prominent
attributes: Attack Vector, Attack Complexity and Au-
thentication, of severity matrix [10] while determining the
exploitability of vulnerability.

Attack Vector: Access vector represents difficulty
from the access location (e.g. local, network accessible or
remote) required to exploit the vulnerability. The more
remotely an attacker can exploit the vulnerability, the
greater the exploitability value will be.

Attack Complexity: It indicates the level of effort
required to exploit the vulnerability after an access to
the target point is gained. It’s range in between low,
medium and high. For example, a Denial of Service in
a network has low complexity since the vulnerability can
be exploited once an attacker gains access of the network.
The lower the complexity is, the higher the exploitability
will be.

Authentication: Authentication is defined to mea-
sure the number of authentications required (e.g., multi-
ple instances, single instance or no instance) before net-
work vulnerability can be exploited.

The assumption behind measurement of likelihood is
that a highly exploitable vulnerability is more likely to
be misused by attackers and consequently should have a
higher frequency.

3.2.1 AttackRank Algorithm

To reveal attack paths of the higher risks zero-day vul-
nerabilities from the massive attack graph, the nodes
with high probabilities are to be preserved, while the link
between them should not be broken. We implemented
an AttackRank algorithm based on the PageRank algo-
rithm [1] to tag each node in the attack graph as either
possessing high probability itself, or having both an ances-
tor and a descendant with high probabilities. The tagged
nodes are the ones that actually propagate the infection
through the network, and thus should be preserved in the
final graph. Proposed AttackRank algorithm is based on
PageRank and measures the likelihood of exploit in an
attack graph. However network attacker behavior is dif-
ferent than web surfer behavior in a manner as during an
attack, an attacker has options to continue or quit attack-
ing on a current path (because of security privileges and
policies it is too hard to lead to his goal). AttackRank
algorithm made an assumption as if the attacker dump
the current attack path then he will find an alternative
path by backtracking (from one of the set of previous
states) and if he continues attacking then he will attempt
to each of the possible navigational states with a probabil-
ity based on how hard its vulnerabilities can be exploited.
With this assumption we proposed an AttackRank algo-
rithm to find frequency of exploit.

Algorithm 2 AttackRank algorithm for likelihood detec-
tion of exploit

1: Begin
2: Initialize the Graph AttackRank G(V,E)
3: I: set of initial states V
4: while u, v ∈ V do
5: if u ∈ inlink(v) then
6: attackrank(v)⇐ attackrank(in(u))/ out(v)
7: else
8: if v ∈ out(v) then
9: attackrank(v)⇐ 1 - (attackrankin((u))/ out

(v))
10: else
11: attackrank(v)⇐ 1
12: end if
13: end if
14: end while
15: End

3.3 Physical Layer

The third layer of the proposed framework, the physical
layer contains centralized database and centralized server
that are used during processing of first two layers. All
of the information (malicious or non-malicious activities,
known or unknown exploits) is stored in the database
server of physical layer. Database is continuously updated
by the records in the audit network data repository that
do not yet have any sort of context profile.

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 831

Figure 2: An attack graph

4 Experimental Setup

The experimental analysis of the proposed model has been
conducted in the network of Vikram University, India
campus. Vikram University campus consists of diverse
multi-disciplinary departments, has a network of more
than 500 computers, providing connectivity to different
users in various institutes and hostels. Overall structure
of the campus network is shown in Figure 3,

To test performance of proposed framework, a group of
7 hosts, playing miscellaneous roles are selected from the
campus network that forms the testbed for this case study.
Testbed is comprised of hosts in diverse physical locations
(as shown in Figure 4 that includes network server located
at academic block within the contact range of firewall
(208.91.191.121), server located at School of Engineering
and Technology (128.168.1.4), and other machines. The
structure of testbed is shown in Figure 4.

The External scan is done through a router or fire-
wall by the means of Nessus [4] vulnerability scanner.
The internal scan took place at the School of Engineering
and Technology (SoET) location, and was plugged into
a server that resides inside Vikram University network.
In Figure 4 the placement of the blue scanner is inside
the firewall, so it can scan internal vulnerabilities and
the red scanner is used for external vulnerabilities scan.
These internal and external vulnerability scans are used
to collect data to assess the effectiveness of current secu-
rity measures taken at the Vikram Universitys network.
The internal scan took place at the School of Engineering
and Technology (SoET) location, and was plugged into a
server that resides inside Vikram University network. The
objective is to avoid external security counter measures to
get a detailed view at system configurations. The exter-
nal scan is for determining the security posture through
Internet users view. The point behind external scanning
is to identify what a hacker would see if he were trying to
probe Vikram University network.

To measure the performance of proposed work four
standard terminologies TP, FP, FN and TN were used,
True Positive (TP) means the number of correctly iden-
tified malicious codes; True Negative (TN) refers to the

number of correctly identified benign codes, means the
non-malicious code that is classified as genuine code. FN
and FP refers to misjudgments: False Positive (FP) shows
that the alarm is generated when there is no actual at-
tack, means the number of incorrectly identified trusted
code as malicious code. False Negative (FN) is when the
system fails to detect the malware activity due to it being
similar to expected activity or no signature being avail-
able in the database. Table 1 summarizes the possible
cases of classification scheme.

The rates of TP, FP, FN and TN will be
computed by using four standard metrics to
evaluate the performance of our technique:
True Positive Rate (TPR): This is the percentage
of correctly identified malicious codes which is measured
as the ratio between the number of events that have
accurately classified as positive and the total number of
events that can be classified as positive, which is given
by:

TPR = (|TP |)/(|TP |+ |FN |)

False Positive Rate (FPR): This is the percentage of
wrongly identified benign codes, measured as the ra-
tio between the numbers of events that were consid-
ered positive on the number of events that should
have been negative, which is given by:

FPR = (|FP |)/(|FP |+ |TN |)

False Negative Rate (FNR): This is the rate of incor-
rectly rejected malicious code.

FNR = (|FN |)/(|TP |+ |FN |)

True Negative Rate (TNR): This is the percentage
of correctly identified benign codes.

TNR = (|TN |)/(|FP |+ |TN |)

Accuracy, Precision and Recall will be used to evaluate
the filtering accuracy of zero-day attack path. Accuracy is
used to evaluate the accuracy of the classification results,

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 832

Figure 3: Network architecture of Vikram University, India campus

Table 1: Judgment cases
Classification Malicious Code Non-Malicious Code
Malicious Code True Positive (TP) False Positive (FP)
Non-Malicious Code True Negative (TN) False Negative (FN)

namely, the proportion of the malicious codes that are ac-
curately classified to their own categories. It is calculated
through the following formula:

Accuracy = (|TP |+ |TN |)/(|TP |+ |FP |+ |FN |+ |TN |)

Precision is the positive detection value which measures
the effectiveness of zero-day detection system. Precision is
used to evaluate the proportion of malicious codes among
all the network activities that are judged to be malicious
in nature. It is calculated through the following formula:

Precision = (|TP |)/(|TP |+ |FP |)

Recall is used to evaluate the proportion of the malicious
code that are accurately classified as malicious

Recall = (|TP |)/(|TP |+ |FN |)

F-measure, is the harmonic mean of precision and recall,
is adopted as one of the measuring indexes of the filtering
mechanism, and calculated as:

Fmeasure = 2×(Precision×Recall)/(Precision+Recall)

F-measure is thus a means of evaluation that could
combine precision and recall effectively.

Receiver Operating Characteristics (ROC) Curve is a
very popular technique for measuring the relationship be-
tween the TP and FP rates of the anomaly detection sys-
tem. The ROC curve uses a function of the FP rate on
which the TP rate is plotted for different points. Closer
the value off ROC area is to 1, it is good and when it is
closer to 0.0, it is poor.

5 Evaluation of Proposed Model

In this section, we designed performed experiments to
confirm the accuracy and efficiency of the proposed
method. We built a test-bed network and launched an
attack towards it. Since zero-day exploits are not readily
available, we emulate zero-day vulnerabilities with known
vulnerabilities. E.g., we treat CVE-2016-5387 as zero-
day vulnerabilities by assuming the current time is Dec
31, 2015. The strategy of emulation also brings another
benefit. The information for these known zero-days vul-
nerabilities can be available to verify the correctness of
our experiment results.

The basic components of the testbed (Figure 4) are 2
servers for network vulnerabilities scan. 208.91.199.121
performs the external scanning through a router or fire-

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 833

Figure 4: Experimental setup of the testbed

wall, by the means of the Nessus vulnerability scanner.
Nessus placed within contact range of University, and
generates details about active services, credentials and
successful attacks. Scanning activities result that the
server 208.91.199.121 has two open ports, tcp80 listen-
ing to HTTP traffic and tcp22 listening to SSH traffic.
The SSH connection allows system administrators to do
maintenance work remotely from within the subnet ad-
ministration. The SSH service has vulnerabilities CVE-
2012-5975, CVE-2014-6271 and CVE-2015-5600. CVE-
2012-5975 allows remote attackers to bypass authentica-
tion via a crafted session involving entry of blank pass-
words; CVE-2015-5600 does not properly restrict the pro-
cessing of keyboard-interactive devices within a single
connection, which makes it easier for remote attackers to
conduct brute-force attacks or cause a denial of service;
and CVE-2014-6271 allows remote attackers to execute
arbitrary code via a crafted environment. HTTP service
has vulnerabilities CVE-2016-5387 and CVE-2015-3183.
CVE-2016-5387 allows remote attackers to redirect an ap-
plication’s outbound HTTP traffic to an arbitrary proxy
server via a crafted Proxy header in an HTTP request;
and CVE-2015-3183 allows remote attackers to conduct
HTTP request smuggling attacks via a crafted request.
Both of these HTTP service vulnerabilities are present in
the Apache HTTP Server.

We have also generated an attack environment that
contains real exploit code as well as normal network traf-
fic to web servers. Strong efforts were undertaken to make
environment as realistic as possible. Acunetix, Nexpose
and Metasploit [5] were used for internal scanning of vul-
nerabilities. Polymorphic engines ADMmutate, clet, Al-
pha2, CountDown, JumpCallAdditive and Pex were ap-
plied to the unencrypted exploits. True Positive Rate
(TPR), False Positive Rate (FPR) and Receiver Operat-
ing Characteristics (ROC) Curve parameters are used to
evaluate performance and accuracy of proposed layered
architecture. Figure 5 and Figure 6 represent true detec-
tion rate and false positive rate of Zero-day attack.

Figure 5: True positive rate

Figure 6: False positive rate

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 834

Figure 7 represents ROC curve. It is drawn by taking
the average value of TPR, and in the figure, it is clearly
shown that ROC is closer to 1 which proves the efficiency
of our proposed approach.

Figure 7: Average value of receiver operating character-
istics curve

6 Conclusions

Zero-day vulnerability refers to the hole in the software
or network system that is unknown to user and has no
patch available. An attacker may take advantage of zero-
day vulnerability by creating an exploit to gain access to
the target network for stealing sensitive data, legal doc-
uments and other crucial information. This paper an-
alyzed the lifecycle of zero-day vulnerabilities and pro-
posed a three layer architecture framework for zero-day
exploit identification and assessment; all three layers of
proposed architecture have assigned specific functional-
ities to operate and execute in parallel to increase the
performance. The first layer identifies the malicious ac-
tivity that is not previously known, the second layer rank
the identified vulnerability with respect to frequency of
exploit, the third layer consists of database server and
the centralized server. We designed our experiments to
verify the efficiency of our proposed approach by using
various standard parameters. In our experiments, it was
observed that the best or truest detection rate was 89%
and the false positive rate was 3%.

Acknowledgments

Authors are thankful to MP Council of Science and Tech-
nology, Bhopal, for providing support and financial grant

for the research work.

References

[1] S. Brin, L. Page and R. Motwani, “The pagerank
citation ranking: bringing order to the web,” Tech-
nical Report, 1998.

[2] FireEye, “Zero-day danger: A survey of zero-day
attacks and what they say about the traditional se-
curity model,” Technical Report, 2015.

[3] C. Joshi and U. K. Singh, “A novel approach towards
integration of semantic web mining with link analy-
sis to improve the effectiveness of the personalized
web,” International Journal of Computer Applica-
tion, vol. 128, pp. 1–5, Oct. 2015.

[4] C. Joshi and U. K. Singh, “Analysis of vulnerabil-
ity scanners in quest of current information security
landscape,” International Journal of Computer Ap-
plication, vol. 145, pp. 1–7, July 2016.

[5] C. Joshi and U. K. Singh, “Performance evaluation of
web application security scanners for more effective
defense,” International Journal of Scientific and Re-
search Publications, vol. 6, pp. 660–667, June 2016.

[6] C. Joshi and U. K. Singh, “Information security risks
management framework- a step towards mitigating
security risks in university network,” Journal of In-
formation Security and Applications, vol. 35, p. 128–
137, June 2017.

[7] R. Kaur and M. Singh, “Automatic evaluation and
signature generation technique for thwarting zero-
day attacks,” in Proceedings of the Second Inter-
national Conference (SNDS’14), pp. 298–309, Mar.
2014.

[8] R. Kaur and M. Singh, “Efficient hybrid technique
for detecting zero-day polymorphic worms,” in Pro-
ceedings of IEEE International Advance Computing
Conference (IACC’14), pp. 95–100, Feb. 2014.

[9] X. Liu and Y. Ye, “Intrusion detection system based
on snort,” in Proceedings of the 9th International
Symposium on Linear Drives for Industry Applica-
tions, Lecture Notes in Electrical Engineering, vol.
272, Springer-Verlag, 2014.

[10] P. Mell and K. Scarfone, “CVSS: A complete guide
to the common vulnerability scoring system version
2.0,” Technical Report, 2007.

[11] A. A. Orunsolu, A. S. Sodiya, A. T. Akinwale, B.
I. Olajuwon, M. A. Alaran, O. O. Bamgboye, and
O. A. Afolabi, “An empirical evaluation of security
tips in phishing prevention: A case study of nigerian
banks,” International Journal of Electronics and In-
formation Engineering, vol. 6, no. 1, pp. 25-39, 2017.

[12] M. Roesch, “Snort- lightweight intrusion detection
for networks,” in Proceedings of 13th Systems Admin-
istration Conference Seattle (LISA’99), pp. 229–238,
Nov. 1999.

[13] V. Shah, N. Patel and K. Pancholi, “An analysis of
network intrusion detection system using snort,” In-
ternational Journal for Scientific Research and De-
velopment, vol. 1, no. 3, pp. 410–412, 2013.

International Journal of Network Security, Vol.20, No.5, PP.827-835, Sept. 2018 (DOI: 10.6633/IJNS.201809 20(5).03) 835

[14] U. K. Singh and C. Joshi, “Information security as-
sessment by quantifying risk level of network vulner-
abilities,” International Journal of Computer Appli-
cation, vol. 156, pp. 37–44, Dec. 2016.

[15] U. K. Singh and C. Joshi, “Quantifying secu-
rity risk by critical network vulnerabilities assess-
ment,” International Journal of Computer Applica-
tion, vol. 156, pp. 26–33, Dec. 2016.

[16] U. K. Singh and C. Joshi, “Quantitative security
risk evaluation using cvss metrics by estimation of
frequency and maturity of exploit,” in Proceedings
of the World Congress on Engineering and Com-
puter Science (WCECS’16), San Francisco, USA,
Oct. 2016.

[17] U. K. Singh and C. Joshi, “Information security risk
management framework for university computing en-
vironment,” International Journal of Network Secu-
rity, vol. 19, pp. 742–751, Sep. 2017.

[18] U. K. Singh, C. Joshi, and S. K. Singh, “Zdar sys-
tem: Defending against the unknown,” International
Journal of Computer Science and Mobile Computing,
vol. 5, pp. 143–149, Dec. 2016.

[19] U. K. Singh, C. Joshi, and S. K. Singh, “Zero day at-
tacks defense technique for protecting system against
unknown vulnerabilities,” International Journal of
Scientific Research in Computer Science and Engi-
neering, vol. 5, pp. 13–18, Feb. 2017.

[20] D. Song, J. Caballero, T. Kampouris and J. Wang,
“Would diversity really increase the robustness of the
routing infrastructure against software defects?,” in
Proceedings of the Network and Distributed System
Security Symposium, 2008.

[21] D. Stiawan, M. Y. Idris, A. H. Abdullah, M.
AlQurashi, R. Budiarto, “Penetration testing and
mitigation of vulnerabilities windows server,” Inter-
national Journal of Network Security, vol. 18, no. 3,
pp. 501-513, 2016.

[22] S. Zhu Y. Yang and G. Cao, “Improving sensor net-
work immunity under worm attacks: a software di-
versity approach,” in ACM Proceedings of the 9th
ACM international symposium on Mobile ad hoc net-
working and computing, pp. 149–15, 2008.

Biography

Umesh Kumar Singh received his Doctor of Philosophy
(Ph.D.) in Computer Science from Devi Ahilya University,
Indore(MP)-India. He is currently Associate Professor in
Computer Science and Director in School of Engineering
& Technology, Vikram University, Ujjain(MP)-India. He
has authored 6 books and his about 150 research papers
are published in national and international journals of re-
pute. He was awarded Young Scientist Award by M.P.
council of Science and Technology, Bhopal in 1997. He is
reviewer of various International Journals and member of
various conference committees. His research interest in-
cludes Computer Networks, Network Security, Internet &
Web Technology, Client-Server Computing and IT based
education.

Chanchala Joshi received her Master of Science in Com-
puter Science and Master of Philosophy in Computer Sci-
ence from Vikram University, Ujjain(MP)-India. Cur-
rently, she is Junior Research Fellow and doctoral stu-
dent in Institute of Computer Science, Vikram University,
Ujjain(MP)-India. Her research interest includes network
security, security measurement and risk analysis.

