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Abstract

Kerberos is a widely used authentication and authoriza-
tion protocol that allows a client to communicate with
servers to authenticate mutually, and obtain authoriza-
tion and tickets to access application services securely
with encryption over a non-secure network. It is designed
to provide strong confidentiality, integrity, and authen-
tication through symmetric key cryptography. However,
Kerberos system itself needs to be monitored and pro-
tected. In this paper, we present the implementation of
an intrusion detection system (IDS) that monitors a Ker-
beros network, and reports and responds to malicious ac-
tivities or policy violations. The designed IDS system
performs anomaly activity detection using a Markov fin-
gerprinting scheme that builds a Markov chain model of
the normal Kerberos session messages and applies the ma-
chine learning technique to detect deviations from the
model of normal traffic. We mainly focus on detecting
and averting intrusion attempts on File Transfer Protocol
(FTP) applications for corporate systems. The proposed
scheme can be extended to support other applications on
a Kerberos network. The results of our experiments show
that implementing Markov fingerprinting with Kerberos
can improve the security in terms of prevention and de-
tection of malicious behaviors.

Keywords: Encrypted Traffic; File Transfer Protocol;
Kerberos; Markov Model

1 Introduction

Secure data transfer sessions in corporate networks using
File Transfer Protocol (FTP) is becoming a vital pro-
cess. The traditional authentication scheme that simply
verifies a user through a login name and password trans-
mitted across the network with plain text is vulnerable
in terms of security and privacy because information sent

across the network may be intercepted and subsequently
used to impersonate the user maliciously. In addition,
different services are provided to multiple users on the
corporate networks, which requires the ability to iden-
tify the authorization of the user to access different ser-
vices [8,16,17]. Kerberos is a network authentication and
authorization protocol that allows clients and servers to
authenticate each other, and a client to obtain autho-
rization and tickets to access application services securely
with encryption over a non-secure network. It is designed
to provide strong confidentiality, integrity, and authenti-
cation through symmetric key cryptography [11, 15, 30].
The main idea under Kerberos is to send a hash of the
user’s password over the network instead of the actual
password itself. The password is checked on both sides of
the connection for authentication and authorization, and
is also used as a key for symmetric hash encryption. A
timestamp is used with the assumption that clients have
loosely synchronized time. Kerberos enables a client to be
authenticated and authorized to access multiple servers
spontaneously. It also has very strong protection against
eavesdropping and replay attacks.

Kerberos has been widely used. For example, Windows
networking uses Kerberos as its preferred authentication
method, with which a client joins a Windows domain,
proves its identity for authentication, and obtains the au-
thorized services in the domain and all domains with trust
relationships to that domain.

Note that Secure Sockets Layer (SSL), or Transport
Layer Security (TLS) is another known network secu-
rity protocol that provides privacy and data integrity
between two communicating computer applications [3].
SSL is a standard security technology for authentication
and establishing a secure link between the web server and
browser. However, we consider enterprise applications in
this paper for which Kerberos provides a simple and gen-
eral framework for securing the network applications.

Kerberos system itself needs to be monitored and pro-
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tected. In this paper, we present an implementation of
an intrusion detection system (IDS) that monitors a Ker-
beros network, and reports and responds to malicious ac-
tivities or policy violations. The designed IDS system
detects anomaly activities using a Markov chain to build
a stochastic model to represent Kerberos session states.
Markov chains [2,9] have been utilized in information pro-
cessing by taking an advantage of its ability to capture
statistical regularities in the behavior of systems and al-
lowing state estimation and pattern recognition. The ses-
sion states reflects the Kerberos protocol and messages
in single-directional traffic flows from client to server or
from server to client for an application. Based on the
Markov chain model of a normal Kerberos session for
a particular application, we perform anomaly detection
by detecting deviations from the model of normal traffic
using a learning technique, which forms Markov finger-
printing. We seek to implement the state estimation and
pattern recognition provided by the Markov chain model
to come up with a more pro-active approach for the de-
tection and avoidance of malicious behaviors in Kerberos
protocol communications. By establishing a fingerprint
through identifying the possible sequence of messages, we
would be able to detect abnormal behaviors that might be
attempts of intrusion. We mainly focus on detecting and
averting intrusion attempts on the FTP type of applica-
tions as it is popular for corporate systems. The proposed
scheme can be extended to support other applications on
a Kerberos network.

The remainder of this paper is organized as follows:
Section 2 discusses the related work. Section 3, presents
the design methodology. Experimental results are given
in Section 4, and Section 5 concludes the paper.

2 Related Work

Computing and software development have evolved from
the noble objectives of providing solutions for daily prob-
lems to more malicious intents. Disrupting and stealing,
or harming, have been obfuscations items for quite a while
and calls for stricter implementations on data security.
Computer systems are still human driven, and as such,
there is an element of unpredictability. This then led
to quite a growing effort to infuse some pattern and be-
havioral recognition capabilities in the applications and
the protocols they are running on. In the study of in-
trusion detection, and probabilistic techniques have been
used which would be represented as decision trees.

Ye et al. made several tests for Markov chain which was
applied to set of computer audit data to investigate the
frequency and ordering property of the information [28].
The study gave answers to questions on which proper-
ties were critical to detect intrusions techniques that were
based on the frequency property provided solution that
resulted to good intrusion detection.

Abraham et al. conducted a study of implementing an
attack graph that was very similar in characteristics to

a decision tree [2]. With the combination of vulnerabili-
ties observed in a network configuration, several scenarios
were built where an attacker can reach the goal state [10].
Based on the attack graph, Markov chain simulation was
conducted.

Other studies focused on the encrypted network traffic
flow and their classifications. Korczynski et al., on traffic
encryption, postulated a method that uses the size of first
few packets of data as a basis to enable early application
recognition [2, 12, 19, 23]. Another method tried identifi-
cation of SSL/TLS encrypted application layer protocols
using a signature-based and a flow-based statistical anal-
ysis process.

Signature recognition technique is the term that Ye et
al. used for the ability to identify anomalies in behavior
and signal intrusions. He developed an anomaly detec-
tion process that corresponds to the norm profile of a
temporal behavior via Markov model [5, 27]. Qassim et
al. [21] proposed a network anomalies classifier which uti-
lizes machine learning to classify activities detected and
to monitor network behavior by a packet header based
anomaly detection system.

The aforementioned works have all been centered on
the utilization of the Markov chain to be able to come up
with signatures of behavior that can be used to identify
intent. Our work, however, is an advance approach in this
direction to enhance the traditional way which would be
revolving around the same concept.

3 Methodology

In this section, we describe the implementation of the
Markov chain based intrusion detection scheme for Ker-
beros sessions.

3.1 Kerberos Overview

As shown in Figure 1, a Kerberos system consists of Au-
thentication Server (AS), Ticket Granting-Ticket (TGT),
and application server [24]. A client sends a Ticket-
Granting-Ticket (TGT) request to the AS, the AS verifies
the access right in database based on the user’s ID, gener-
ates a TGT and session key, and send them to the client
in a reply message. The TGT is a token which enables
the user to request access to application services without
re-supplying its credentials. The TGT is encrypted by a
TGS key that TGS knows, but the user would not know.
The session key is encrypted using a key derived from the
user’s password. The client will ask for the user’s pass-
word and use it to decrypt the incoming reply message to
get the client-TGS session key after it receives the reply
from the AS. When the client first attempts to access an
application service, it sends the request message for the
application service granting ticket to the TGS. This re-
quest message contains TGT and an authenticator that
contains user ID, network address, and timestamp, and is
encrypted by the client-TGS session key.
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The TGS decrypts the TGT and authenticator, verifies
the request, generates a granting ticket for the particu-
lar requested application server if it is authorized, and a
client-application server session key, and sends the reply
to the client. The ticket is encrypted by an application
server key that knows by the application server but not
the client, and the client-application server session key
is encrypted with the client-TGS session key. After the
client receives the reply message from TGS, it obtains the
application service granting ticket. To access the applica-
tion service, the client sends the request message to the
application server, which contains the application service
granting ticket and authenticator. The authenticator is
encrypted with the client-application server session key.
The application server verifies the ticket and authentica-
tor, and grants access to the application service accord-
ing to the authorization data specified in the ticket. The
connection between the user and the application service
is thus established. If mutual authentication is required,
the server returns an authenticator to the client. Table 1
summarizes the Kerberos messages exchanges, and Ta-
ble 2 presents the notation of the negotiation parameters
between the server and client [24,26].

Table 1: Summary of Kerberos message exchanges

(1) C � AS Options || IDc || Realmc || IDtgs || Times || Nonce1

(2) AS � C Realmc || IDC || Tickettgs || E(Kc,|| Kc,tgs || Times || Nonce1 || Realmtgs || IDtgs])

Tickettgs = E(Ktgs, [Flags || Kc,tgs || Realmc || IDC || ADC || Times]) 

(a)Authentication Service exchange to obtain ticket-granting
ticket

(3) C � TGS Options || IDv || Times || Nonce2 || Tickettgs || Authenticatorc

(4) TGS � C Realmc || IDC || Ticketv || E(Kc,tgs, [Kc,v || Times || Nonce2 || Realmv || IDv])

Tickettgs = E(Ktgs, [Flags || Kc,tgs || Realmc || IDC || ADC || Times])

Ticketv = E(Kv, [Flags || Kc,v || Realmc || IDC || ADC || Times])

Authenticatorc = E(Kc,tgs, [ IDC || Realmc || TS1])

(b)Ticket-Granting Service exchange to obtain service-granting
ticket

(5) C � V Options || Ticketv || Authenticatorc

(6) V � C EK,c,v [TS2 || Subkey || Seq#]

Ticketv = E(Kv, [Flags || Kc,v || Realmc || IDC || ADC || Times])

Authenticatorc = E(Kc,v, [IDC || Realmc || TS2 || Subkey || Seq#])

(c) Client/Server Authentication exchange to obtain service

Table 2: Notation

Notation Description
AS Authentication Server
C Client
V Server
IDC Identifier of user on C
IDV Identifier of V
PC Password of user on C
ADC Network address of C
|| String concatenation operation
KV Secret encryption key shared by AS and V

The remaining attributes are described as follows [24],
Realm: Indicates realm of user. Options: Used to request
that specific flags be sent in the returned ticket. Times:
Used for time settings in the ticket e.g. desired start time,
and expiration time for the requested ticket. Nonce: A
random value to be repeated in message to assure that
the response is fresh and have not been replayed by an
opponent. Subkey: This field is omitted, since the session
key from the ticket (KC,V) is used. Seq: This optional
field that specifies the starting sequence number to be
used by the server for messages sent to the client during
this session.

Client

Service

Ticket-Granting 

Server

Authentication 

Server

(1) C � AS

(2) AS � C

(3) C � TGS

(4) TGS � C

(5) C � V

(6) V � C

Client Side Server Side

Figure 1: Overview of kerberos

3.2 Markov Model Fingerprint

In this section, we illustrate an approach based on Markov
chains to model possible sequences of message types ob-
served in a single-directional Kerberos session.

Consider a discrete-time random variable Xt for any
t = t0, t1, . . . , tn ∈ T such that Xt where 1≤t≤n. It takes
values it ∈ {1, . . . , s} that corresponds to the observed
Kerberos message types during a session. Assuming that
Xt is the first-order Markov chain [12, 13, 29], and P is
denoted as the transition matrix then:

P (Xt = it | Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0) =

P (Xt = it | Xt−1 = it−1) .
(1)

Assuming further that the Markov chain is homogeneous,
i.e. state transition is time-invariant:

P (Xt = it | Xt−1 = it−1) = P (Xt = j | Xt−1 = i) = pi,j
(2)

Using the transition matrix:

P =


P1,1 P1,2 · · · P1,s

P2,1 P2,2 · · · P2,s

· · · · · ·
. . .

...
Ps,1 Ps,2 · · · Ps,s


Where:

s∑
j=1

Pi,j = 1.

The function:
Q = [q1, q2, · · · , qs], (3)
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is denoted as the Initial Probability Distribution (IPD)
where qi=P(Xt=i) at time t=0, and the following func-
tion:

W = [w1, w2, · · · , ws], (4)

is denoted as the Exit Probability Distribution (EPD)
where wi characterizes the probability that the Kerberos
session finishes when if it is in state i at time tn. How-
ever, both initial and exit probability distributions are
independent of the Markov chain.

Lastly, the probability that a sequence of states
X1,. . . ,XT corresponding to a single Kerberos session oc-
curs is denoted by:

P (X1, . . . , XT ) = qi

T∏
t=2

Pit−1 , it ×WiT . (5)

The observed transition probability matrices and the IPD
for the Kerberos sessions can be used by the Markov Clas-
sifier to classify traffics and identify traffic anomaly as
described below. For example, an attacker may steal or
forge a Kerberos TGT and attempts to gain the applica-
tion services with is called Golden Ticket attack [8]. Such
a Golden Ticket attack can be detected based on the Ker-
beros traffic anomaly it creates, an attacker sends a valid
TGT to the TGS with no prior successful AS requests to
obtain a TGT.

3.2.1 Markov Classifier (MC)

The Markov Classifier (MC) uses a first-order homoge-
neous Markov chain to build a stochastic model that re-
flects the Kerberos session states. A Kerberos session
model is obtained per flow direction that corresponds
to each transaction or process used. The decimal codes
shown in Table 3 are used to represent the states during
a Kerberos session.

Table 3: Kerberos states codes

SID Description
20: Username Exist (Username Exits)
21: Check Active Director (AD Check)
22: Request for TGT (Ticket request)
23: Generation of TGT and Session Key (TGT SessionKey)
24: Request for Service Ticket (GS Success)
25: Generation of Service Ticket and Another Session Key

(e h Session Key)
26: Present Service Ticket to Server (Tkt http)
27: Authenticate and Approve the use of Service

(Kerberos Success)
28: Authenticated Users (Kerberos Success = 1)
29: Check for Attackers (Alert Exit)
30: Unknown Users (Username Exits = 0)

As shown above, the state of check username ex-
ist decimal code is 20: and decimal code 21: is for
checking the active directory of the clients (AD Check).
The initial user authentication request (Ticket request)
is represented by a decimal code of 22: The reply of
the (TGT SessionKey) is denoted by 23: which con-
tains the TGT and the client-TGS session key. Decimal

code 24: is the request to the TGS (GS Success) by the
client for an application service ticket. The TGS reply
(e h Session Key) to the request is denoted by 25: which
contains the application service ticket and application ser-
vice session key created by TGS. Decimal code 26: is the
client’s request to the application server (Tkt http), which
includes the ticket and client authenticator to access the
application service. The application server that authenti-
cates the user which is represented by the decimal code 27:
The process may also respond (Kerberos Success) to per-
form mutual authentication and indicate completion of
the process with a code 28: In addition, the alert state
decimal code is 29: and the state of unknown users deci-
mal code is 30.

3.2.2 Learning and Ranking Mechanisms

We utilize the rule-based learning algorithm to classify the
Kerberos session Markov state parameters for different
types of users [4, 18,31]. Table 4 shows the variables.

Table 4: Notation and description of each variable

Notation Description
q(n) Represents each Kerberos parameter
q Sum of indexed Kerberos values
x
(m)(n) x=values in session, n=counter, and

m=user type

y(n) Sum of previous session
? Queries of summed sessions
hx Results of desired queries
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Figure 2: Classification architecture

Figure 2 shows the learning and classification archi-
tecture. To build the Markov models of the Kerberos
session behaviors for different type of users, the Markov
classifier is first trained. We use the Kerberos session data
for normal users and known attacks to train the MC and
build the Markov models. The messages of Kerberos ses-
sions are collected and pre-processed. Essential features
that can differentiate one session from the other such as
user IDs, IP addresses and ports are identified. The MC
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analyzes the messages, calculates the Markov model pa-
rameters for each type of users, and builds the models for
normal authorized users and known attacks as discussed
later in this section. The trained classifier is used to detect
malicious activities on the test data. The data captured in
the test phase is classified based on the Markov chain state
transition fingerprints of different types of users, normal
users and adversaries which will have different parameters
of the Markov models. The decision process for session
classification and anomaly detection is based on both the
likelihood criterion and the likelihood ratio criterion as
described in the next subsection.

Figure 3 illustrates an overview of the MC-based clas-
sifier operations. It consists of data flow which records ev-
ery single activities messages exchanged during Kerberos
sessions into a log and control flow to estimate the execu-
tion of the following operations: likelihood criterion and
the likelihood ratio criterion.

START

END

Secure Login

Not Registered 

User
New UserRegistered User

Check

L
o

g

Request for TGT
TGT + Session 

Key

Request for 

Service Ticket

Service Ticket + 

Another Session 

Key
Present Service 

Ticket to Server

Authenticate + 

Approve the 

user of Service
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Generation

Negotiate

Monitor

Record

Negotiation 

Pass

Yes

Record

Record

Terminate 

No

Alert

Successful Pass Record

Legend

Data Flow

Control Flow

Traffic 

Classification 

Engine

Figure 3: Overview of operational architecture

To begin with data flow (new session), a user is re-
quired to enter the granted username and password on
the login page. The client has three attempts to login. If
the user fails the attempts, the account will automatically
be locked out and a notification will be sent to both origi-
nal client and system administrator. If the client has been
successfully logged in, the system checks for the previous
user’s information recorded in the database for further se-
curity purpose. Each client should have one secure login
page, in case the client changes the workstation, another
secure login page must be generated by the system ad-
ministrator, otherwise it begins a Kerberos negotiation
process. For each user attempt: first, second or third, a
new Kerberos session is created. Hence, a new Kerberos
ID is related to each attempt. The negotiation process is
as flows: the client requests for TGT, if there is no re-
sponse from either the client or the server, the data flow

connection will be terminated and the data of this activity
is recorded into a log. The mechanism process applies the
same for other Kerberos parameters. More precisely, ev-
ery single activity in data flow is recorded into a log either
if its succeed or failed. The determination of data flow is
maintained by control flow for further execution process
to classify a session. The execution of control flow will be
studied in the next section.

Algorithm 1 shows how the MC classifier computes the
transition matrix based on the messages exchanged during
Kerberos sessions.

Algorithm 1 Working of Markov
1: Begin
2: Choose Initial parameter estimates

Q = [q1, q2, · · · , qs],

3: if Username Exit is invalid then
4: Drop the message
5: else
6: Compute:

P (Xt = it | Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0) =

P (Xt = it | Xt−1 = it−1) .

7: Compute:

P (X1, . . . , XT ) = qi

T∏
t=2

Pit−1
, it ×WiT .

8: Verify the completed negotiated messages:
9: if negotiated messages = True then

10: Accept the user session
11: else
12: Drop the message
13: Compute:

W = [w1, w2, · · · , ws],

14: end if
15: end if
16: End

3.2.3 Session Classification and Anomaly Detec-
tion

In order to classify a session and detect potential attacks,
the trained MC classifier will process the network traf-
fic and extract the message exchange for a Kerberos ses-
sion based on the user ID, IP address and port. It ana-
lyzes the messages exchanged for a session and makes a
classification decision. The message exchanges behavior
and Markov model parameters may be known for some
kinds of attacks, but unknown for new types of attacks.
Thus, the decision process is based on two test crite-
ria [6, 7, 14,25]:

1) The likelihood to be a normal authorized session;

2) The likelihood ratio of being a normal session to be-
ing abnormal session. If one tests fails, it is assumed
that the session is potentially an abnormal session.

For likelihood test, the null and alternative hypotheses
are:

H0: A session is normal (Null Hypothesis);
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Figure 4: Parameters of the fingerprint for normal users

H1: A session is abnormal (Alternative Hypothesis).

Given the input data sequence corresponding to the
observed Markov states during a session,{x1, . . . , xT }, the
likelihood function of being a normal session is equal to:

L(H0|x1, x2, . . . , xT ) = P (x1, x2, . . . , xT |H0) (6)

The decision rules are if L(H0|x1, x2, . . . , xT ) ≥ ∆,
don’t reject H0; if L(H0|x1, x2, . . . , xT ) < ∆, reject H0.
We can select an appropriate value of likelihood criterion
∆. The impact of the likelihood criterion ∆ will be stud-
ied in the next session.

For likelihood ratio test, we consider the null and al-
ternative hypotheses which are:

H0: A session is normal (Null Hypothesis);

H1: A session is one of the known attacks (Alternative
Hypothesis).

Assume that Markov model parameters of the Ker-
beros sessions for a set of attack types, {Ω1,Ω2, . . . ,Ωk}
have been known. Given the observed Markov states dur-
ing a session, {x1, . . . , xT }, we can find the maximum
value of the likelihood function of being one of the known
attack types that is:

L(H1|x1, x2, . . . , xT ) = argΩi
maxL(Ωi|x1, . . . , xT ) (7)

The likelihood being a type of attacks is the probability
of the Markov state sequence computed over such a type
of attacks, L(Ωi|x1, . . . , xT ) = P (xi, . . . , xT |Ωi). Then,
the likelihood ratio is:

Λ =
L(H0|x1, x2, . . . , xT )

L(H1|x1, x2, . . . , xT )
=

L(H0|x1, x2, . . . , xT )

argΩi
maxL(Ωi|x1, . . . , xT )

.

(8)
The likelihood ratio test provides the decision rule as fol-
lows: {

If Λ ≥ Γ, do not reject H0

If Λ < Γ, reject H0

The values Γ is chosen to obtain a specified significance
level, and its impact will be studied in the next section.

Finally, we consider H0 is rejected if either the above
likelihood test or the likelihood ratio test fails.

4 Experimental Results

In this section, we show the experimental results and eval-
uate the performance of the Markov chain model based
on anomaly detection scheme.

4.1 Examples of Markov Fingerprints

We have conducted the experiments to obtain Markov
chain models for two different types: normal users and
attackers. We have also examined the scheme to detect
a special type of attack which is known as Golden Ticket
attack.

Figure 4 demonstrates the observed parameters of the
Markov chain model for normal users. The change of state
from decimal code 20: which is check Username Exits
to decimal code 21: which is AD Check is probable by
99.97% of sessions, whereas 0.03% are sessions represent-
ing failure and closing prior to authentication process.
A TGT is set to be valid for 10 hours in our experi-
ments. Hence, this would prevent the client from having
any further login issues, instead of going through the en-
tire process of requesting for a new ticket. It is managed
through the Active Directory which keeps active record
of the clients who logged in within the 10 hours. When-
ever a user logs in, the Active Directory (AD) is checked
for record, if a TGT exists, the user is allowed to pro-
ceed to the server; otherwise, the user has to request for
a TGT. From the above Figure 4, 28.1% out of 99.97%
requires a new request for TGT and 71.9% out of 99.97%
does not. However, at state decimal code 22: which is
Ticket request has 99.37% probability to continue to the
next state of decimal code 23: which is TGT SessionKey.
Furthermore, the flow from the state of decimal code 23:
to the state of decimal code 24: which is GS Success is
probable by 99.7% of sessions. Consequently, successful
authentication state which is decimal code 27: has an
99.97% probability to continue to the next state of dec-
imal code 28: which includes all the successful Kerberos
sessions. We observe that the success rate at each state
for the normal users is considerably high.
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Figure 5: Parameters of the fingerprint for attackers

Figure 5 demonstrates the observed parameters of the
Markov chain model for abnormal users (attackers).

As shown above in Figure 5, the change of state from
decimal code 20: which is check Username Exits to deci-
mal code 29: which is Alert Exit is probable by 99.87%.
At the Alert state, past record of the user’s session is
checked including the number of attempts compared with
the previous successful attempts. Meanwhile, the change
of state from decimal code 20: to decimal code 30: which
is for unknown users, is probable by 25% which no record
exists. We observe that the success rate at each state for
the attackers is much lesser.

Golden Ticket Attack, is a special type of attack partic-
ularly on the Kerberos approach. In Kerberos, every TGT
is valid for certain period of time (10 hours in our case).
A golden ticket attacker with get hold of this TGT, has
the ability to edit it and reuse it. Typically, the attacker
either increases the validity of the ticket or increases its
privileges or uses TGTs of deleted users. Since privileges
are not used in our case, we have considered the validity
of the ticket and TGTs of deleted users. These types of
golden attacks are considered on the following criteria:

• Attempts of validity is increased of existing user.

• Attempts of validity is increased of deleted user.

Basically, the attackers edit the TGTs. So there is no
original Ticket request associated with the TGTs. To de-
tect the attacks, we examine a Ticket request associated
with every TGT, if it is not available, corresponding ses-
sion which is probable by 00.14% of golden ticket attacks.

This demonstrates the observed parameters of the
Markov chain model for golden ticket attacks, with which
the adversaries have forged Kerberos TGTs. The adver-
saries can control every aspect of the forged ticket includ-
ing the Ticket’s user identity, permissions and ticket life
time. Since the adversaries use the forget TGT in a TGS-
REQ message, they do not need to go through the authen-
tication transaction to create the TGT, or the authenti-
cation and authorization transaction does not match the
TGT [8].

4.2 Performance of MC-based Classifica-
tion and Anomaly Detection

We have established a dataset, which was used to eval-
uate our scheme, consists of 4330 records represents the
number of flows identified in Kerberos data.

We conducted the experiments in order to evaluate and
to assess the performance of the Markov based classifica-
tion and anomaly detection: the True Positive Rate de-
noted as TPR and False Positive Rate denoted as FPR,
respectively. True Positive occurs as a class of user Ker-
beros sessions is correctly classified as the given user ses-
sion. False Positive arises as another class of user ses-
sions is incorrectly classified as the given class of session.
More specifically, the True Positive represents the num-
ber of actual attacks classified as attacks, False Positive
corresponds to the number of actual normal sessions clas-
sified as attacks, True Negative represents the number of
actual normal sessions classified as normal sessions, and
False Negative corresponds to the number of actual at-
tacks classified as normal sessions [4, 12]. The True Pos-
itive Rate (TPR) also represents the detection rate, and
can be calculated as [1, 20,22]:

TPR =
TP

TP + FN
(9)

The False Positive Rate (FPR) can be calculated as:

FPR =
FP

FP + TN
(10)

4.3 Classification Results

We report the classification results of MC classification
experiments below. Table 5 shows the results for MC on
the dataset.

Using Equation (9), the TPR result is 0.9801, and
Equation (10) for FPR which is 0.0264. We notice that
the TPR is very large with relatively small rate of FPR.

Figure 6 shows the performance results of evaluat-
ing the trade-offs between the prospective true positive
rate and false positive rate. The higher the area under
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Table 5: Comparision standard martix

Predicted Label
Positive Negative

Actual
Class

Positive True Positive
(3352)

False Negative
(68)

Negative False Positive
(24)

True Negative
(886)

the curve top left corner, the better performance of the
scheme.

Figure 6: True positive rate vs. False positive rate

A major improvement is noticed with the true positive
rate as the curve is very close to the perfect classification
point (0,1). Thus, the Markov based classification is very
effective.

5 Conclusion

In this paper, we have presented the implementation and
evaluation of a Markov chain model based scheme for
classification and anomaly detection of Kerberos sessions.
The fingerprints of the Kerberos messages are classified
based on first-order homogeneous Markov chain and used
to detect the anomaly. The evaluation results show that
implementing Markov fingerprinting with Kerberos can
improve the security in terms of detection of malicious
behaviors.
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