
International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 617

Diffie-Hellman Type Key Exchange, ElGamal
Like Encryption/Decryption and Proxy
Re-encryption Using Circulant Matrices

Chitra Rajarama1, Jagadeesha Narasimhamurthy Sugatoor2, and T. Yerri Swamy3

(Corresponding author: Chitra Rajarama)

Information Science, Engineering, NIE Institute of Technology1

Mysuru-570018, Karnataka, India

Electronics, Communications Engineering, PES Institute of Technology, Management2

Shimoga-577204, Karnataka, India

Computer Science, Engineering, KLE Institute of Technology3

Hubli - 580030, Karnataka, India

(Email: chitramanuel@yahoo.co.in)

(Received Mar. 22, 2017; revised and accepted Nov. 11, 2017)

Abstract

New methods for Diffie-Hellman type key exchange, ElGa-
mal like encryption decryption and proxy re-encryption,
using circulant integer matrices as the private keys, are
described. Arithmetic operations are carried out using
modular arithmetic to provide secrecy as well as to limit
the size of the elements of the key matrices. Here Bidi-
rectional proxy re-encryption is realized using circulant
matrices. In the proposed proxy re-encryption technique,
we use only matrix multiplication and inversion. Here, the
proxy re-encryptors can be easily cascaded. Our scheme
is efficient and simple to implement.

Keywords: Circulant Integer Matrices; Diffie-Hellman
Type Key Exchange; ElGamal-like Encryption Decryp-
tion; Proxy Re-encryption

1 Introduction

The most popular key exchange technique over an unse-
cure channel is Diffie-Hellman (DH) Key Agreement pro-
tocol [5, 11, 21]. In our scheme we use integer matrices
as the parameters of the cryptosystem so that the effec-
tive size of the keys can be large with smaller sized inte-
gers as the elements of the key matrices. The elements
of the matrices used belong to the finite field Zp where
in all the numbers are integers in the range 0 to (p–1)
and all the arithmetic operations are carried out with re-
spect to modulo p where p is a suitable prime number. In
our scheme the private keys used are circulant matrices.
ElGamal [6] encryption/decryption is a public key cryp-
tosystem where the cipher text has two components. We
use circulant matrices to realize the ElGamal scheme.

Proxy re-encryption [2, 3] basically delegates the de-
cryption process to a third party by re-encrypting the
ciphertext. Proxy re-encryption has become an impor-
tant tool in digital rights management schemes in cloud
computing. Our main contribution is the application of
circulant matrices in a new way for bidirectional proxy
re-encryption and decryption.It involves matrix multipli-
cation and inversion in Zp.

The paper is organized as follows. Section 2 contains
brief information about previous work in this field. Sec-
tion 3 gives preliminary symbols, notations and defini-
tions. Section 4 describes the Diffie-Hellman key ex-
change using matrices. In Section 5, ElGamal encryp-
tion/decryption is given. Section 6 describes proxy re-
encryption using matrices. In Section 7, we discuss ma-
trix keys versus scalar keys in cryptography, vulnerabil-
ities of circulant matrices and a brief comparison with
other methods. Conclusion is presented in Section 8.

2 Previous Work

Hill Cipher [9] is the earliest work where a square non-
singular matrix is used as the symmetric key. Matrix
multiplication is used for encryption and multiplication
by the inverse of that matrix is used for decryption. All
arithmetic operations are carried out in the finite field do-
main. Maximum Distance Separable matrices have been
proposed for cryptography by a few authors [8,12]. Use of
circulant matrices in cryptography is described and dis-
cussed in several research works [10, 15, 17, 18]. Products
of commutative matrices as public keys are used for Diffie-
Hellman type key exchange [19, 20]. Our work also uses
product of matrices but in a different way as described



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 618

UserA 

Private 

Key : 

A

UserB 

Private 

Key : 

B

U = G*A

V = G*B

Figure 1: Diffie-Hellman type key exchange

later.
Several authors have based their proxy re-encryption

algorithms on bilinear maps [1,2,14,22,23]. But we could
not find any earlier work on the use of matrices for proxy
re-encryption.

3 Symbols, Notations and Defini-
tions

Consider a two user system as shown in Figure 1. The two
users are designated as User A and User B. We assume
a bidirectional communication link between User A and
User B.

3.1 Circulant Matrix

A circulant matrix [4,13] is a square matrix where, given
the first row, the successive rows are obtained by cyclically
right shifting the present row by one element. Thus the
ith row of a circulant matrix of size (n x n) is obtained by
cyclically right shifting the (i− 1)th row by one position,
for i = 2 to n, given the first row. Let the first row be
the row vector, [c(1), c(2), ..., c(n–1), c(n)]. Then the
circulant matrix C is obtained as

C =


c(1) c(2) · · · c(n)
c(n) c(1) · · · c(n− 1)
· · · · · · · · · · · ·
c(2) c(3) · · · c(1)


The elements of the first row are chosen such that gcd

(elements of first row) = 1. This condition assures that
the rank of the circulant matrix C is n. The most im-
portant property of circulant matrices is they are mul-
tiplicatively commutative. In our proposed method, we
use circulant matrices which belong to the closed linear
group GL(n, p) [3]. A Linear group GL(n, p) [16] repre-
sents non-singular matrices of size nxn over a finite field
(Galois Field) GF(p) or Zp.

3.2 Members of The Cryptosystem

Private keys of User A and User B are A and B respec-
tively which are circulant matrices of size (nxn). Matrices

A and B belong to GL(n, p). The elements of the first
rows of A and B are chosen so that the rank of both A
and B is n. The generator matrix for this DH system is
G which is a rectangular matrix of size (n–1) x n. The
elements of G belongs to Zp. The elements of the gener-
ator matrix G are so chosen that the rank of G is (n–1).
That is, rank(G) =(n–1). The public key of User A is
denoted by matrix U and it is generated as

U = G*A (1)

The size of U is ((n–1) x n) x (n x n) = (n–1) x n. By
knowing U and G, the private key A cannot be deter-
mined, because the left modular multiplicative inverse of
G does not exist. In our scheme, G and A are so chosen
that the rank of U = G*A is (n–1). The public key of
User B is denoted by matrix V and it is given by,

V = G*B (2)

The size of V is ((n–1) x n) x (n x n) = (n–1) x n.
The matrix B is so chosen that the rank of G*B is (n–
1). Here also, B cannot be determined by knowing V
and G. In our scheme, U, V, G and scalars n, p are in
public domain while A and B are held private. All matrix
multiplications are carried out in the finite field Zp.

4 Diffie-Hellman Type Key Ex-
change

User A sends matrix U to User B and User B sends ma-
trix V to User A over the unsecured channel. User A
calculates the common key KA as

KA = V*A (3)

The size of KA is ((n–1) x n) x (n x n) =(n–1) x n.
Similarly, User B calculates the common key KB as

KB = U*B (4)

The size of KB is ((n–1) x n) x (n x n) = (n–1) x n.
From Equations (2) and (3),

KA = G*B*A (5)

From Equations (1) and (4),

KB = G*A*B (6)

Since A and B are circulant matrices of size (n x n), they
are multiplicatively commutative [13] as

G*B*A = G*A*B (7)

From Equations (5), (6) and (7), the common keys of
User A and User B are equal and the system common key
K is

K = KA = KB = G*A*B = G*B*A (8)



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 619

The size of K is (n–1) x n. In Equations (3), (4), (5),
(6) and (7), the results of the matrix multiplications are
with respect to modulo p, even though the mod operation
is not explicitly shown in those equations. Therefore, K,
KA and KB also belong to Zp. Matrices A, G and B
are so chosen that K given by Equation (8) has a rank of
(n–1) so that its right modular inverse exists.

Example 1. Let n = 4. The value of p is taken as 23.
Matrices G, A and B are chosen as

G =

 10 4 11 3
7 9 11 10
3 6 8 0



A =


10 1 3 3
3 10 1 3
3 3 10 1
1 3 3 10

 B =


3 15 6 3
3 3 15 6
6 3 3 15
15 6 3 3


U and V are found to be

U =

 10 0 15 14
2 22 9 21
3 18 3 2

 V =

 15 6 1 21
11 18 10 17
6 18 17 4


Without modulus operation, V*A and U*B are

V*A =

 192 141 124 274
211 272 202 267
169 249 218 129



V*B =

 330 279 147 297
441 249 432 336
261 180 333 198


With modulus p, mod(V*A, p) = mod(U*B, p) = KA

= KB = K and with p=23, we get

K = KA = KB =

 8 3 9 21
4 19 18 14
8 19 11 14


5 ElGamal Type Encryption and

Decryption

ElGamal method [6] is an asymmetric key algorithm for
public key cryptography. It is essentially based on Diffie-
Hellman key exchange principle. ElGamal method that
uses matrix keys is described in this section. All opera-
tions are with respect to mod p.

Let M be the message matrix whose elements are in-
tegers in the range 0 to (p–1). That is, the elements
of M belong to Zp. The size of M is (n–1) x (n–1).
User A encrypts M and sends it to User B. Matrices A,
B, G, U, V and scalar p are same as described in Sec-
tion 4. We assume that User A has already received V

from User B. The encryption by User A is done by gen-
erating two crypto terms U (same as given by (1) ) and
W as

U = G*A

W = M*V*A (9)

From (2), (8) and (9),

W = M*G*B*A = M*G*A*B (10)

In the light of (8), Equation (10) can be rewritten as

W = M*KB (11)

The size of KB is (n–1) x n. Since KB is not a square
matrix, it has no direct inverse. But, (11) can be solved
for M using the pseudo inverse of KB as

M = W*(KB)
†

(12)

Here, (KB)
†

is the pseudo right modular inverse of KB

and is given by,

(KB)
†
= KT

B ∗ (KB ∗ KT
B)
−1 (13)

We choose the crypto-parameters G, A and B such that
KB is a full rank matrix. Now, User A, the encrypter,
sends the pair (U, W) to User B who is the intended
decrypter.

5.1 Decryption at User B

On receiving (U, W), User B calculates KB using (4).

Then, he determines (KB)
†

using (13) and consequently
recovers M from (12). Results of all operations are cal-
culated with respect to mod p.

5.2 Matrix Inverse in finite field Zp

Consider a square integer matrix E of size mxm and rank
m, whose elements belong to Zp. We calculate the ma-
trix L, the inverse of E with respect to mod p using the
MatModInv(E, p) function [18] as

L = MatModInv(E, p) (14)

Here, L is found such that,

mod(E*L, p) = mod(L*E, p) = Im = eye(m) (15)

where, Im = eye(m) is the Identity Matrix of size mxm.
Then L is the Matrix Inverse of E in the finite field Zp.
The elements of L are integers in Zp.

Now, consider W = M*KB as given by (11). The size
of KB is (n–1)xn. Since KB is not a square matrix, it
has no direct inverse. But,(11) is solved for M by post

multiplying both sides of (11) by (KB)
T

which is the
transpose of KB, to get

W ∗ KT
B = M ∗ KB ∗ KT

B (16)



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 620

The size of (KB ∗ KT
B) is ((n–1)xn) x (nx(n–1)) which

is equal to (n–1)x(n–1).
The elements KB have to be so selected that the rank

of (KB ∗ KT
B) is (n–1) and that it has mod inverse. Then

we have

(KB ∗ KT
B)
−1 = MatModInv((KB * KT

B), p) (17)

Post multiplying (16) by (KB ∗ KT
B)
−1 gives

M = W ∗ KT
B ∗ (KB ∗ KT

B)
−1 (18)

The term KT
B ∗ (KB ∗ KT

B)
−1 is the right modular

pseudo inverse of KB which is designated by (KB)
†

which
has been specified in (13). From (13) and (18), Equation

(12) follows. The size of (KB)
†

is nx(n–1).

Example 2. The message matrix M, at User A, is taken
as,

M =

 9 10 10
9 7 6
10 6 2


Other matrices and p are same as in Example 1.
W and (KB ∗ KT

B) are calculated and found to be,

W=M*V*A =

 8 16 3 9
10 21 20 3
5 21 13 0



KB ∗ KT
B =

 20 16 8
16 0 5
8 5 6


(KB ∗ KT

B)
−1 and (KB)

†
as given by (13), are found to

be,

(KB ∗ KT
B)
−1 =

 7 12 19
12 11 17
19 17 22



(KB)
†

=


3 0 5
12 16 16
5 10 6
6 0 2


All values are calculated with respect to mod p. Then, M
is recovered using (12) as M = W ∗ (KB)

†
.

6 Proxy Re-encryption

Proxy re-encryption [4] is the process of re-encoding a
given cipher text so that now, it can be decoded by an-
other receiver other than the original one. The process is
so designed that the re-encrypter itself cannot recover the
plain text or it can not get hold of the private keys of the
concerned parties.

Consider the model shown in Figure 2. Here, A, B
and C are the private keys of User A, User B and User C
respectively. Matrices A, B, G, U, V, KA, KB, M and
W are same as described in Section 4. C is a circulant
matrix of size nxn.

Message: M

Public Key Available: V = G*B

PrivateKey: A

User A

??

??

Public Key: H ∗ C2

User C

Additional

Private Key: C2

Public Key: H ∗ B2

User B

Additional

Private Key: B2

into (UCD,WCD)

Re-encrypts (UBC,WBC)

C ∗ LCD and D ∗ LCD

has access to:

Proxy Server C→D (PSCD)

into (UBC,WBC)

Re-encrypts (U,W)

B ∗ L and C ∗ L

has access to:

Proxy Server B→C (PSBC)

?
(UCD,WCD)

(UBC,WBC)

(U,W)

Figure 2: Proxy Re-encryption and decryption

6.1 Common Secret Key between User B
and User C.

Here, the DH type common secret key between User B
and User C is designed to have the size of nx(n+1) which
is bigger compared to that of KA or KB. The reason
for using this bigger size is explained later in this section.
This bigger common key is derived as follows.

We select one more public generator matrix H. The
size of H is chosen as nx(n+1) and its elements belong
to Zp. User B and User C select additional private cir-
culant matrices (keys) B2 and C2 of size (n+1)x(n+1).
The corresponding public keys are H ∗ B2 and H ∗ C2

respectively. By knowing H and H ∗ B2, we cannot de-
termine B2 because H has no left inverse. Similarly, C2

cannot be determined by knowing H and H*C2.
On receiving H ∗ B2, User C calculates the secret com-

mon key between User C and User B as:

LC = (H ∗ B2) ∗ C2 (19)

Similarly, User B calculates the secret common key be-
tween User B and User C as:

LB = (H ∗ C2) ∗ B2 (20)

Since B2 and C2 are multiplicatively commutative
B2 ∗ C2 = C2 ∗ B2 and then, LB and LC are equal as:

L = LB = LC = H ∗ C2 ∗ B2 = H ∗ B2 ∗ CB2 (21)



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 621

The size of L is nx(n+1). The matrices H, B2 and C2

are so chosen that the rank of L is n.

6.2 Encryption by User A

Encryption by User A is same as described in Section 4.
User A generates the two matrices U and W (See (1) and
(10)) as repeated here.

U = G ∗ A

W = M ∗ V ∗ A = M ∗ G ∗ B ∗ A

= M ∗ G ∗ A ∗ B.

User A sends the encrypted data (U, W) to User B and
to the proxy server B→C. From (4) and (12),

M = W ∗ (U ∗ B)
†

(22)

User B can decrypt cipher data (U, W) as given by Equa-
tion (22).

6.3 Re-encryption at Proxy Server B→C

Now the Proxy Server B→C (PSBC) is requested by
User A (or by User B) to send the same data M to User C
with proper re-encryption so that User C can decode it
correctly. Here, PSBC has to translate the cipher text
meant for User B to a new format so that the trans-
lated cipher text can be decoded by User C. Basically
the PSBC accepts (U, W) as the input and re-encrypts
it to generate (UBC, WBC) which is sent to User C. The
re-encrypted term WBC is so constructed that it can be
decoded by User C only. Also, PSBC itself should be
incapable of recovering M, B or C. During initialization,
User B sends (B ∗ L) to PSBC and similarly User C sends
(C ∗ L) to PSBC. The size of (B ∗ L) as well as (C ∗ L)
is nx(n+1).

6.4 Formulation of UBC and WBC at
PSBC

For the purpose of re-encryption, PSBC formulates UBC

and WBC from U and W as,

UBC = U = G ∗ A (23)

WBC = W ∗ (C ∗ L) ∗ (B ∗ L)†. (24)

Here, (B ∗ L)† is the right modular inverse of (B ∗ L).
The size of (B ∗ L) is nx(n+1). By definition,

(B ∗ L)† = (B ∗ L)T ∗ ((B ∗ L) ∗ (B ∗ L)T)−1 (25)

Reducing the parantheses on the RHS of (25), we get,

(B ∗ L)† = LT ∗ BT ∗ (B ∗ L ∗ LT ∗ BT)−1 (26)

Taking the inverse operator on the RHS of (26) inside the
paranthesis we get,

(B ∗ L)† = LT ∗ BT ∗ (BT)−1 ∗ (L ∗ LT)−1 ∗ B−1

(27)

Now, the RHS of Equation (27) is simplified as,

(B ∗ L)† = LT ∗ (L ∗ LT)−1 ∗ B−1 (28)

By definition,

LT ∗ (L ∗ LT)−1 = L† (29)

from (28) and (29),

(B ∗ L)† = L† ∗ B−1 (30)

substituting this in (24), we get,

WBC = W ∗ (C ∗ L) ∗ L† ∗ B−1 (31)

On cancelling L ∗ L† in (31), we have,

WBC = W ∗ C ∗ B−1 (32)

Since C and B−1 are circulant matrices, they are multi-
plicatively commutative. Therefore,

C ∗ B−1 = B−1 ∗ C (33)

From (32) and (33),

WBC = W ∗ B−1 ∗ C (34)

On substituting for W from (10) in (34), we get,

WBC = (M ∗ G ∗ A ∗ B) ∗ B−1 ∗ C (35)

On cancelling B ∗ B−1 in (35) we have,

WBC = M ∗ G ∗ A ∗ C (36)

In this way the private key B of User B is eliminated
from WBC and the private key C is inserted in its place.
Now WBC is ready for decryption by User C. The Proxy
Server PSBC sends(UBC, WBC) pair to User C.

6.5 Decryption at User C

Once, User C receives UBC and WBC, M is recovered
from WBC, based on (36). From (36) and (23),

WBC = M ∗ (UBC) ∗ C (37)

Therefore M is recovered by User C as,

M = WBC ∗ (UBC ∗ C)† (38)

Here, (UBC ∗ C)† is the right modular inverse of
(UBC ∗ C). It can be seen that (43) is similar to (22). A
numerical example of proxy re-encryption is given below.

Example 3. The values of G, A, B, U, V, M, W and
p are same as in Example 2. The values of C, H, B2,
and C2 are taken as,

C =


9 15 9 6
6 9 15 9
9 6 9 15
15 9 6 9





International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 622

H =


2 9 7 8 18
15 9 14 11 19
2 16 5 4 9
14 7 22 1 15



B2 =


13 21 3 5 17
17 13 21 3 5
5 17 13 21 3
3 5 17 13 21
21 3 5 17 13



C2 =


9 12 8 1 2
2 9 12 8 1
1 2 9 12 8
8 1 2 9 12
12 8 1 2 9


L is calculated from (21) as,

L =


4 21 4 9 4
14 20 9 17 7
1 20 9 15 4
9 22 1 10 7


B ∗ L is found to be,

B ∗ L =


2 20 20 11 1
8 3 19 18 20
20 1 1 1 1
13 9 6 13 20


(B ∗ L)† and C ∗ L are found to be,

(B ∗ L)† =


14 11 8 8
18 19 11 13
11 16 20 12
7 20 6 6
6 1 11 16



C ∗ L =


10 19 5 2 12
16 22 19 16 3
11 14 2 8 12
20 8 20 8 3


WBC and (UBC ∗ C) are found to be,

WBC =

 7 18 9 18
14 10 3 5
7 22 13 22


UBC ∗ C =

 21 21 10 20
17 11 3 5
20 11 5 11


Matrix (UBC ∗ C)† is found to be,

(UBC ∗ C)† =


2 9 18
8 13 9
10 9 14
11 0 21



Finally, WBC ∗ (UBC ∗ C)† is calculated to get M as,

WBC ∗ (UBC ∗ C)† = M =

 9 10 10
9 7 6
10 6 2


6.6 Re-encryption from User C to User D

The Proxy Server Now the Proxy Server C→D (PSCD)
accepts (UBC, WBC) and generates (UCD, WCD) using
the similar process as described in Section 6.4. The proxy
server should have access to (C ∗ LCD) and (D ∗ LCD)
from User C and User D respectively. (LCD is the com-
mon key between User C and User D similar to as given
in (21). The decryption at User D would be similar as
described in Section 6.5. The above chaining action can
be continued further.

7 Discussion

7.1 Matrix Keys Versus Scalar Keys in
Cryptography

When scalar keys are used their lengths have to be rela-
tively very large, like 1024 bits, 2048 bits etc.as in RSA.
The exponentiation and related arithmetic operations, us-
ing these long keys, are more difficult to implement in the
processors used in wireless sensor nodes. The processors
within the sensor nodes here have limited register sizes
and less memory compared to the conventional proces-
sors. Therefore, long scalar keys are not convenient for
cryptography involving sensor nodes. When integer ma-
trices are used as keys, the length of the individual ele-
ments can be kept as low as 8 bits. The large number of
elements in a matrix key make hacking very difficult and
this very large number will compensate the short length of
the key elements. The effective key length of a matrix of
size nxn is nxnxm where m is the length of the individual
elements of the matrix in bits. The Arithmetic operations
on these small sized integers of the matrix keys are easy to
implement in the processors of the sensor nodes. There-
fore, matrix keys are well suited for the cryptographic
operations involving sensor nodes.

7.2 Vulnerabilities of Circulant Matrices
in Cryptography

In a circulant matrix, only the first row is chosen indepen-
dently. The remaining rows are obtained by the circular
shift of the preceding rows. Thus a hacker has to break
only one row of the circulant key matrix to discover the
entire matrix. Thus the effective key length of a circu-
lant matrix used as a key is, nxm where n is number of
columns of the matrix and m is the length of the individ-
ual elements in bits. Therefore the size of the circulant
matrix itself has to be large to provide a large effective



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 623

key length. One major advantage is, while storing a cir-
culant matrix, it is enough if we store only the first row.
Thus the memory space is saved.

7.3 Comparison with Existing Methods

The closest method to ours is by Keith R Slavin [20], US
patent US 7346162 B2. In that work also, the author
uses closed Linear Group of matrices GL(n, p)’s. But
multiplicatively commutative matrices are obtained in a
different way other than using the circulant matrices. Our
method is quite different from that of [20]. Our scheme is
substantially better because, while generating public keys
or the shared secret key, we use only one matrix multi-
plication compared to two as in [20]. The method used
in [2], overcomes the deficiency of Cayley-Purser Algo-
rithm [7] that uses even values for n, the size of private
keys. But in our case, whether n is even or odd, the secu-
rity of the cryptosystem will not be compromised. In [21],
each user has to store two private keys which are mutually
commutative and the number of matrix multiplications is
more compared to our method. As far as our knowledge,
no earlier work was found on proxy re-encryption using
commutative matrices.

8 Conclusions

A new method of Diffie-Hellman type key exchange using
circulant matrices as private and public keys is presented.
Matrices as keys provide a large number of smaller sized
integer elements which are easy to manipulate than a few
very large sized integers. Circulant matrices are also used
as keys to provide multi-stage proxy re-encryption. Since
we use modular multiplication of matrices rather than
modular exponentiation, our method is faster and less
complex.

References

[1] H. Abdalla, X. Hu, A. Wahaballa, et al., “Integrating
the functional encryption and proxy re-cryptography
to secure DRM scheme,” International Journal of
Network Security, vol. 19, pp. 27–38, 2017.

[2] G. Ateniese, K. Fu, M. Green and S.Hohenberger,
“Improved proxy re-encryption schemes with appli-
cations to secure distributed storage,” ACM Trans-
actions on Information and System Security (TIS-
SEC’06), vol. 9, no. 1, pp. 1–30, 2006.

[3] M. Blaze, G. Bleumer and Martin Strauss, “Divert-
ible protocols and atomic proxy cryptography,” EU-
ROCRYPT, vol. 1403, no. 1, pp. 127–144, 1998.

[4] P. J. Davis, Circulant Matrices (2ed), New York:
Chelsea Publishing, 2012.

[5] W. Diffie and M. Hellman, “New directions in cryp-
tography,” IEEE Transactions on Information The-
ory, vol. 22, no. 6, pp. 644–654, 1976.

[6] T. Elgamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. 31, no. 4,
pp. 469–472, 1985.

[7] S. Flannery and D. Flannery, In code, New York:
Workman publishing, 2001.

[8] K. C. Gupta and I. G. Ray, “On constructions of
involutory MDS matrices,” in International Confer-
ence on Cryptology in Africa (AFRICACRYPT’13),
pp. 43–60, June 2013.

[9] L. S. Hill, “Cryptography in an algebraic alphabet,”
The American Mathematical Monthly, vol. 36, no. 6,
pp. 306–312, 1929.

[10] S. Inam and R. Ali, “A new ElGamal-like cryptosys-
tem based on matrices over groupring,” Neural Com-
puting and Applications, pp. 1–5, 2016.

[11] C. H. Ling, S. M. Chen, and M. S. Hwang, “Crypt-
analysis of Tseng-Wu group key exchange protocol,”
International Journal of Network Security, vol. 18,
no. 3, pp. 590-593, 2016.

[12] J. Nakahara Jr. and E. Abrahao, “A new involutory
MDS matrix for the AES,” International Journal of
Network Security, vol. 9, no. 2, pp. 109–116, 2009.

[13] I. Kra and S. R. Simanca, “On circulant matri-
ces, notes,” American Mathematical Society, vol. 59,
no. 3, pp. 368–377, 2012.

[14] C. Lan, H. Li, S. Yin and L. Teng, “A new security
cloud storage data encryption scheme based on iden-
tity proxy re-encryption,” International Journal of
Network Security, vol. 19, no. 5, pp. 804–810, 2017.

[15] A. Mahalanobis, “The discrete logarithm problem
in the group of non-singular circulant matrices,”
Groups Complexity Cryptology, vol. 2, pp. 83–89,
2010.

[16] J. Overbey, W. Traves and J. Wojdylo, “On the
keyspace of the hill cipher,” Cryptologia, vol. 29,
pp. 59–72, 2005.

[17] A. V. Ramakrishna and T. V. N. Prasanna, “Sym-
metric circulant matrices and publickey cryptogra-
phy,” International Journal of Contemporary Maths
and Sciences, vol. 8, no. 12, pp. 589–593, 2013.

[18] K. A. Reddy, B. Vishnuvardhan, Madhu-
viswanatham and A. V. N. Krishna, “A modified
hill cipher based on circulant matrices,” Procedia
Technology, vol. 4, pp. 114–118, 2002.

[19] M. K. Singh, “Public key cryptography with matri-
ces,” Groups Complexity Cryptology, vol. 2, pp. 83–
89, 2010.

[20] K. R. Slavin, Public key cryptography using matrices,
US Patent 7346162 B2, 2008.

[21] W. Stallings, Cryptography and Network Security
(4ed), India: Pearson Education, 2011.

[22] Y. Wang, D. Yan, F. Li and H. Xiong, “A key-
insulated proxy re-encryption scheme for data shar-
ing in a cloud environment,” International Journal of
Network Security, vol. 19, no. 4, pp. 623–630, 2017.

[23] T. Yoshida and M. Shirase, “A digital content
sharing model using proxy re-encryption without
server access,” in IEEE International Conference



International Journal of Network Security, Vol.20, No.4, PP.617-624, July 2018 (DOI: 10.6633/IJNS.201807 20(4).03) 624

on Consumer Electronics - Taiwan (ICCE-TW’17),
pp. 243–244, 2017.

Biography

Chitra Rajarama received her B.E., in Computer Sci-
ence and Engineering., and M.Tech., in Computer Sci-
ence and Engineering, from Visvesvaraya Technological
University, Belgaum, Karnataka, India. She is currently
pursuing PhD under Visvesvaraya Technological Univer-
sity, Belgaum, Karnataka, India. Her area of interest
is in the field of wireless networks. She has guided
many undergraduate projects. She has attended many
national/international conferences and published several
papers in international journals. At present she is Asso-
ciate Professor in the department of Information Science
and Engineering, NIE Institute of Technology, (affiliated
to Visvesvaraya Technological University) Mysuru, Kar-
nataka, India.

S. N. Jagadeesha received his B.E.,in Electronics and
Communication Engineering, from University B. D. T.
College of Engineering., Davangere affiliated to Mysore
University, Karnataka, India in 1979, M.E. from Indian
Institute of Science (IISC), Bangalore, India specializing
in Electrical Communication Engineering., in 1987 and
Ph.D. in Electronics and Computer Engineering., from
University of Roorkee, Roorkee, India in 1996. He is an

IEEE member. His research interest includes Array Signal
Processing, Wireless Sensor Networks and Mobile Com-
munications. He has published and presented many pa-
pers on Adaptive Array Signal Processing and Direction-
of-Arrival estimation. Currently he is professor and head
in the department of Computer Science and Engineering,
PES Institute of Technology and Management,. (Affili-
ated to Visvesvaraya Technological University), Shimoga,
Karnataka, India.

T. Yerri Swamy received his B.E.,in Electronics
and Comm-unication Engineering, from Gulbarga Uni-
verisity,Gulbarga, Karnataka , India in 2000. MTech in
Network and Internet Engineering, from Visve-svaraya
Technological University, Belgaum, Karnataka. at J. N.
N. College of Engineering, Shimoga, Karnataka in 2005.
and PhD in the Faculty of Computer and Information
Sciences from Visvesvaraya Technological niversity, Bel-
gaum, Karnataka in the year 2013. He is an ISTE
member. His research interest includes Antenna Array
Signal Processing, Statistical Signal Processing, Detec-
tion and Estimation, Cognitive radio comm-unications
,LTE/MIMO. He has published and presented number
of papers in national/international conferences and jour-
nals. Currently he is Professor and Head, in the depart-
ment of Computer Science and Engineering, KLE Insti-
tute of Technology, (Affiliated to Visvesvaraya Technolog-
ical University), Hubli, Karnataka, India.


