
International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 575

Provable Multiple-Replica Dynamic Data
Possession for Big Data Storage in Cloud

Computing

Huiying Hou1, Jia Yu1,2,3, and Rong Hao1

(Corresponding author: Rong Hao)

College of Computer Science and Technology, Qingdao University1

266071 Qingdao, China

Institute of Big Data Technology and Smart City, Qingdao University2

266071 Qingdao, China

State Key Laboratory of Information Security, Institute of Information Engineering3

Chinese Academy of Sciences, 100093 Beijing, China

(Email: hr@qdu.edu.cn)

(Received Feb. 21, 2017; revised and accepted June 20, 2017)

Abstract

In order to avoid the data loss in cloud storage, some
users prefer to store multiple replicas on the cloud server.
Multiple-Replica Provable Data Possession (MR-PDP)
schemes are proposed to check the integrity of remote
multiple-replica data. In most of the previous schemes,
the user has to generate a homomorphism authenticator
based on BLS signature or RSA signature for each block
of each replica before uploading them to the cloud. This
can incur high overhead for the user especially when the
data is very big. In this paper, we make use of the al-
gebraic signature technique to generate authenticator for
each block of each replica. Because most operations of al-
gebraic signature are XOR operations, it only needs mini-
mal computation and communication cost. Moreover, we
design a new data structure named Divided Map-Version
Table (DMVT) to efficiently support full dynamic data
operations. The performance analysis demonstrates that
our scheme is very efficient for verifying the integrity of
multiple-replica dynamic big data.

Keywords: Algebraic Signature; Dynamic Data; Multiple
Replicas; Provable Data Possession

1 Introduction

Cloud storage brings enormous convenience to the cloud
user. However, the user loses direct control of their data
in the cloud storage system. In order to detect whether
the user’s data is unabridged, Provable Data Possession
(PDP) schemes have been proposed [9,10]. In 2007, Ate-
niese et al. [1] firstly presented the definition of Prov-
able Data Possession (PDP). Subsequently, a lot of PDP

schemes have been proposed such as [8, 11, 12, 15, 17–24,
26].

The above PDP schemes are designed for single replica
of user data. If cloud server suffers from some irresistible
disasters, the user may lose some important data perma-
nently. Therefore, it is necessary for the user to store
multiple replicas of important data on multiple servers.

In order to check the integrity of multiple copies
of data, multiple-replica PDP schemes have been pro-
posed [3]. In most schemes, one replication technology
is used to generate multiple replicas in distributed stor-
age system. However, this method cannot resist collusion
attack of cloud servers. Cloud servers can make data
owner believe that they truly stored all replicas while
they only save one replica in fact. In order to solve
this problem, Curtmola et al. [5] proposed a PDP scheme
named Multiple-Replica Provable Data Possession (MR-
PDP). In this scheme, multiple replicas of data are stored
on multiple servers across multiple data center. Subse-
quently, other Multiple-Replica PDP schemes were pro-
posed [7, 13, 27]. However, the above schemes can only
support static data. In many practical applications, the
data owner might frequently update the data stored in
the cloud. In order to solve this problem, Ayad et al. [2]
proposed a provable multi-replica data possession scheme
supporting dynamic data. This scheme adopts the homo-
morphic authenticator to generate the tag for each data
block. The data owner needs to generate m×n homomor-
phic authenticators if the data file is divided into n blocks
and the cloud server stores m replicas. In the process of
calculating homomorphic authenticator, there are a lot of
modular multiplication operations. This may incur high
computation overhead for the data owner. Furthermore,

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 576

this scheme cannot efficiently support dynamic data op-
erations, especially for insert or delete operations. There-
fore, how to design an efficient Multiple-Replica PDP
scheme supporting dynamic data operations is an inter-
esting topic.

The main contribution of this paper can be summa-
rized as follows:

• We propose a provable multiple-replica dynamic data
possession scheme for big data storage. We make use
of algebraic signature to generate authenticator for
each data block, which incurs very low computation
overhead for the user.

• We design a new data structure - Divided Map-
Version Table (DMVT) - to efficiently support full
dynamic data operations (on data block level), such
as insertion, deletion, modification, and append.
When the large-scale outsourced data are frequently
updated, the proposed scheme incurs minimum com-
putation cost.

Organization. The rest of this paper is organized in
the following way: In Section 2, we give the definition
of system model and present our design goals. Then we
introduce the algebraic signature and the proposed data
structure DMVT in Section 3. In Section 4, we describe
our proposed scheme in detail. The security and perfor-
mance analysis of the proposed scheme is presented in
Section 5. In Section 6, we give the conclusions.

2 Problem Statement

2.1 System Model

Figure 1: The system model

As shown in Figure 1, there are three types of entities
in the system model: (1) Data Owner: an entity who can

store large-scale data in the cloud, and then may perform
modify, delete, insert, and append operations to update
their outsourced data. (2) Cloud Storage Provider(CSP):
an entity who provides storage service for the data owner
and is in charge of managing the cloud servers. (3) Au-
thorized Users: a collection of clients gain the access au-
thorization from the data owner firstly, then they have
the right to access the outsourced data and share the de-
cryption key with the data owner. For the simplicity of
description, we assume the data owner is in charge of
checking the integrity of multiple replicas of data in our
system model.

2.2 Design Goals

A Multiple-Replica PDP scheme should satisfy the follow-
ing properties: (1) High efficiency: to allow data owner to
efficiently check the integrity of multiple replicas of data.
(2) Being against collusion attack: to ensure that col-
luded cloud servers cannot cheat users if they don’t have
all copies of data. (3) Supporting dynamic operations: to
allow data owners to frequently update their outsourced
data by performing insert, modify, delete, and append
operations.

3 Preliminaries

In this section, we first introduce the algebraic signature
technique used in our scheme; and then give the definition
of our proposed data structure named DMVT.

3.1 Algebraic Signature

The algebraic signature is a type of hash functions with
algebraic properties. The main property of algebraic sig-
nature is that the signature of the sum of some random file
blocks is equal to the result of the sum of the signatures of
the corresponding blocks. Therefore, we can compute the
algebraic signature of the data block bij which is divided
into s sectors:

Sα(bij) =

s∑
k=1

bijk · αk−1.

Note that α is an element in the Galois field. Moreover,
bij denotes the j -th block of the i -th replica. There are
some important properties of the algebraic signature [14]:

1) The algebraic signature of concatenation of message
m1 with l length and message m2 can be computed
as follows:

Sα(m1||m2) = Sα(m1)⊕ lαSα(m2).

2) The signature of the summation of several file blocks
is equal to the summation of the signature of each
block:

Sα(b1j+b2j+...+bmj) = Sα(b1j)+Sα(b2j)+...+Sα(bmj).

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 577

3.2 Divided Map-Version Table

The data structure named Divided Map-Version Ta-
ble(DMVT) consists of two important components: (1)
The logical index (Lj): a logical number of file blocks.
(2) Version number (Vj): the current version of file blocks.
The initial value of Vj is 1. When the data owner updates
a data block, the corresponding Vj increases one. Assum-
ing the file F is divided into 15 blocks, and 3 DMVTs are
used to support dynamic operations, we display these 3
DMVTs in Figure 2. The DMVTs are stored on the data
owner side.

Figure 2: An example of three DMVTs

4 The Proposed Scheme

4.1 Common Notations

φ : Z∗q × Z∗q → Z∗q , a pseudo-random function (PRF).

π : Z∗q × {1, 2, ..., n} → {1, 2, ..., n}, a pseudo-random
permutation (PRP).

Ek(·), Dk(·): the encryption algorithm and the decryp-
tion algorithm of a symmetric cryptosystem with
symmetric key k.

4.2 Scheme Description

The proposed scheme consists of six algorithms (Setup,
ReplicaGen, TagBlock, DataUpdate, Challenge, ProofGen,
ProofVerify).

Setup: Let G1 be a multiplicative cyclic group generated
by g with prime order q. The data owner randomly
selects a secret key kR←−Z

∗
q , and computes a public

key y = gx ∈ G1.

ReplicaGen: Assume that the file F is divided into
n blocks {b1, b2, ..., bn}. The data owner creates
m differentiable replicas F̂ = {F̂i}1≤i≤m that are

stored on m cloud servers. A replica F̂i is di-
vided into n blocks F̂i = {b̂ij}1≤j≤n, where b̂ij =

Ek(i||bj). Furthermore, the block b̂ij is fragmented

into s sectors with the same length. Denote block
b̂ij = {b̂ij1, b̂ij2, ..., b̂ijs} 1≤i≤m,

1≤j≤n
. So replica F̂i =

{b̂ijk} 1≤j≤n,
1≤k≤s

, where each sector b̂ijk ∈ Zq.

TagBlock: Given the distinct data file replicas F̂ =
{F̂i}1≤i≤m, where F̂i = {b̂ij}1≤j≤n, the data owner

generates a tag Tij for each block b̂ij by computing:

Tij = Sα(b̂ijk||Fid||j||Lj ||Vj)

=

s∑
k=1

(b̂ijk||Fid||j||Lj ||Vj) · αj−1

where Lj is the logical number of the block at phys-
ical position j, Vj is the current version of the block,
and Fid is the unique name of the file F. In order to
avoid the replay attack, the data owner computes:

Cij = Sα(Fid||j||Lj ||Vj)

=

s∑
k=1

(Fid||j||Lj ||Vj) · αj−1

The data owner computes Tj =
m∑
i=1

Tij and Cj =

m∑
i=1

Cij to reduce the storage overhead and the com-

munication overhead of cloud servers. Hence, the
CSP only needs to store n tags for the replicas
F̂ = {Fi}1≤i≤m. Denote the set C as {Cj}1≤j≤n
and the set T as {Tj}1≤j≤n. The data owner sends

{C, F̂ , T} to the CSP, and deletes the local replicas
and tags.

DataUpdate: The dynamic operations include Block
Modification (denoted by BM), Block Insertion (de-
noted by BI), Block Append, and Block Deletion
(denoted by BD).

• Block Modification: Assume that the data
owner wants to modify a block bj with b′j in file

F = {b1, b2, b3, ..., bn} for all file replicas F̂ =
{Fi}1≤i≤m. The data owner does as follows:

1) Finds the corresponding Vj , then updates
Vj = Vj + 1. The data owner recomputes
Cij .

2) Generates m differentiable blocks {b̂′ij}.
Divides b̂′ij = Ek(i||b′j) intossectors

{b̂′ij1, b̂′ij2, ..., b̂′ijs}.
3) Computes a new tag for each block b̂′ij as

follows:

T ′ij =

s∑
k=1

Sα(b̂′ijk ‖Fid ‖j ‖Lj ‖Vj)

=

s∑
k=1

(b̂′ijk ‖Fid ‖j ‖Lj ‖Vj) · αj−1

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 578

And computes an aggregated tag T ′j =
m∑
i=i

T ′ij .

4) Sends a modification message

< Fid, BM, j, {b̂′ij} 1≤i≤m,
1≤j≤n

, T ′j > to the

CSP.

When the CSP receives the modification mes-
sage from the data owner, he replaces the block
b̂ij with b̂′ij for 1 ≤ i ≤ m, and replaces Tj in
the set T with T ′j .

• Block Insertion: Assume that the data owner
wants to insert a new block b̂ after the j -th block
in file F = {b1, b2, ..., bn}, and the new file is

F ′ = {b1, b2, ..., bj , b̂, ..., bn+1}. The data owner
does as follows:

1) Finds the location of the j -th block in the
DMVT table according to the tuples of the
range of Lj .

2) Inserts a new table entry <
Lj+1, Vj+1 >=< n + 1, 1 > in the
DMVT after position j. And recomputes
Cij .

3) Generates m distinct blocks {b̂i}1≤i≤m,

where b̂i = Ek(i||b̂). Each block of

{b̂i}1≤i≤m is fragmented into s sectors.

4) Computes a new tag T̂i for each block b̂i as
follows:

T̂i =

s∑
k=1

Sα(b̂ik||Fid||j + 1||Lj+1||Vj+1)

=

s∑
k=1

(b̂ik||Fid||j + 1||Lj+1||Vj+1) · αj−1

And computes an aggregated tag T ′ =
m∑
i=1

T̂i.

5) Sends an insert message < Fid, BI, j,

{b̂i}1≤i≤m, T ′ > to the CSP.
Upon receiving the insert message, the

CSP inserts the new block b̂ for each
file replica to generate new file replicas
{F̂i}1≤i≤m, and constructs the new file

replicas {F̂ ′i}1≤i≤m. The CSP also inserts
T ′ after the position j of aggregated tags.

• Block Append: The append operation of the
data block is equivalent to performing an insert
operation after the last block of the file.

• Block Deletion: If the data owner hopes to
remove the block at position j from all replicas,
and he deletes the entry at position j from the
DMVT. Meanwhile the number of elements in
Li decreases one. He sends the deletion request
< Fid, BD, j, null, null > to the CSP.

Upon receiving the deletion request, the
CSP deletes the blocks {b̂ij}1≤i≤m and Tj
from T. The CSP outputs the new file repli-
cas F̂ ′ = {F̂ ′i}1≤i≤m and a new set T ′ =
{T1, T2, ..., Tj−1, Tj+1, ..., Tn−1}.

Figure 3 shows the changes of the DMVTs for differ-
ent dynamic operations. The file F is divided into 15
blocks, and 3 DMVTs are used to support dynamic
operations. As shown in Figure 3(a), the initial value
of Vi is 1. As shown in Figure 3(b), when the data
owner modifies f[9], V9 is incremented by 1. To in-
sert a new block after f[9], Figure 3c shows that a new
entry < 16, 1 > is inserted after the position 9, where
16 is the logical index the new inserted block, and 1
is the version number of the new inserted block. As
shown in Figure 3(d), the append operation of the
block is equivalent to performing an insert operation
after the last block of the file. Deleting a block f[3] re-
quires deleting the table entry < L3, V 3 > and shift-
ing all subsequent entries one position up (as shown
in Figure 3(e)).

Challenge:

1) The data owner chooses a random value c as the
number of the challenged blocks.

2) And then picks two random numbers
k1 R←−Z

∗
q , k2 R←−Z

∗
q .

3) Finally, the data owner sends the challenge
chal = (c, k1, k2)to the CSP.

ProofGen:

1) After receiving the challenge from the data
owner, the CSP computes lt = πk1(t) and at =
φk2(t) for 1 ≤ t ≤ c.

2) And then the CSP computes µ=
∑c
t=1 Tlt ⊕Clt

and σk =
∑c
t=1 b̂i,lt,k for 1 ≤ k ≤ s.

3) Finally, the CSP returns a proof (σ, µ).

ProofVerify: Upon receiving the proof from the CSP, the
data owner does as follows:

Firstly, computes lt = πk1(t), at = φk2(t) for
1 ≤ t ≤ c. And then checks whether the following
verification equation holds or not.

Sα(σ)
?
=µ.

If this equation holds, it means that the CSP prop-
erly stores all the replicas of the file. Otherwise, not.

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 579

Figure 3: The changes of the DMVTs for different dynamic operations

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 580

5 The Security and Performance
Analysis

5.1 The Correctness and Security Analy-
sis

5.1.1 The Correctness Analysis

We analyze the correctness and the security of the pro-
posed scheme. In the ProofVerify stage, we firstly extend
by using the properties of the algebraic signature as fol-
lows:

µ =

c∑
t=1

Tj ⊕ Cj

=

c∑
t=1

s∑
k=1

(Sα(b̂ijk||Fid||j||Lj ||Vj)⊕ Sα(Fid||j||Lj ||Vj))

=

c∑
t=1

s∑
k=1

Sα(b̂ijk)⊕ lα ⊕ Sα(Fid||j||Lj ||Vj)

⊕ Sα(Fid||j||Lj ||Vj))

=

c∑
t=1

s∑
k=1

Sα(b̂ijk).

(1)
And then we demonstrate the correctness of the above

verification equation as follows:

Sα(σ) = Sα(

c∑
t=1

s∑
k=1

b̂ijk)

=

c∑
t=1

Sα(

s∑
k=1

b̂ijk)

=

c∑
t=1

s∑
k=1

Sα(b̂ijk)

= µ.

5.1.2 The Security Analysis

Theorem 1. (The auditing soundness) In the proposed
scheme, the cloud can pass the verification only if it ac-
tually stores intact data.

Proof. If the cloud passes the verification but does not
possess the intact data, it means that the cloud can forge
the valid algebraic signature for any message. Algebraic
signature condenses a large block into a bit string. The
bit string can be made long enough to make an acciden-
tal almost impossible to happen. For example, a 64 bits
signature will suffer a collision with probability 2−64 and
a 256 bits signature with probability 2−256. It is proba-
bilistically impossible for a site that does not know any
secret to generate a coherent set of signatures. As a re-
sult, the algebraic signature is secure enough for checking
the integrity of multiple replicas.

Theorem 2. (The resisting collusion attack of cloud
servers) In the proposed scheme, the cloud cannot make
data owner believe that they truly stored all replicas, but
in real they only save one replica.

Proof. In our scheme, the data owner creates m differ-
entiable replicas F̂ = {F̂i}1≤i≤m that are stored on m
cloud servers. The cloud sever can not know the con-
tent of replicas stored on other cloud servers. The proof
(σ, µ) generated by the CSP will be valid and will pass

the verification equation Sα(σ)
?
=µ only if all copies are

intact. Thus, when there is one or more corrupted copies,
the whole auditing procedure fails. So, the cloud cannot
make data owner believe that they truly stored all repli-
cas, but in real they only save one replica.

Theorem 3. (Detectability) Our proposed auditing
scheme is (mn , 1− (n−1n)c) detectable if the cloud stores a
file with n blocks including m bad (deleted or modified)
blocks, and c blocks are challenged.

Proof. Assume that the cloud stores a file with total n
blocks including m bad (deleted or modified) blocks. The
number of challenged blocks is c. Thus, the bad blocks can
be found out if and only if at least one of the challenged
blocks chosen by the verifier matches the bad blocks. We
use a discrete random variable X to denote the number of
blocks selected by the challenger that matches the block-
tag pairs changed by the adversary. We use PX to denote
the probability that at least one block chosen by the chal-
lenger matches the blocks changed by the adversary. So

PX = P{X ≥ 1}
= 1− P{X = 0}

= 1− n−m
n

n− 1−m
n− 1

× ...× n− c+ 1−m
n− c+ 1

.

We can get PX ≥ 1 − (n−mn)c. Thus, the proposed
auditing scheme is (mn , 1−(n−mn)c) detectable if the cloud
stores a file with n blocks including m bad (deleted or
modified) blocks, and c blocks are challenged.

5.2 Performance Analysis

Compared with schemes [2,6,13,25], the proposed scheme
is more efficient and has two advantages. In the following
paragraphs, we will thoroughly explain why our scheme
has two advantages over these schemes.

1) In this work, the computation overhead on the data
owner is greatly reduced. In schemes [2, 6, 13, 25],
the data owner uses BLS signature to generate a
homomorphism authenticator for each block of each
replica. In the process of calculating homomorphic
authenticator, there are a lot of modular multiplica-
tion operations. This incurs high computation over-
head for the data owner. So the data owner needs to

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 581

be powerful enough to perform these costly compu-
tations when the data are outsourced. However, in
the real world, the data owner (eg, using PDAs and
mobile phones) may possess low computation capa-
bilities. Observing this fact, we select to use the al-
gebraic signature technique to generate authenticator
for each block of each replica in this paper. Because
most operations of algebraic signature are XOR oper-
ations, the computation overhead on the data owner
is minimal.

2) Our scheme efficiently supports full dynamic data
operations. As shown in Figure 5, our proposed
scheme is more efficient than the scheme [2] when
the data owner frequently performs data update. In
the scheme [2], the computation overhead during the
insert and delete operations is O(n), where n is the
number of the file blocks. In our scheme, the data
owner only needs to shift a part of the outsourced
data blocks (nk − i) that incurs only O(nk) compu-
tation overhead on the data owner side when he in-
serts or deletes a data block. In the scheme [13],
the data owner uses fully homomorphic encryption
algorithm to generate multiple copies and to sup-
port data block dynamic operations. We know that
fully homomorphic encryption algorithm can incur
heavy computing burden on data owner and is in-
efficiency according to the scheme [4]. So, our pro-
posed scheme is more efficient than the scheme [13].
The scheme [25] supports batch verification based on
identity but not allows data owner stores multiple
replicas on the cloud and not supports data block dy-
namic operations. In the scheme [6], the cloud uses
skip list to support data block dynamic operations
and the computation overhead during the insert and
delete operations is O(n). Moreover, in this scheme,
data file F is split into blocks, and each data block
is split into sectors. In the scheme [6], data file F
is split into blocks, but the data block is not split
into sectors. In fact, the fragment operation of data
blocks can reduce the number of data authentica-
tors. Obviously, our scheme is more efficient than
the scheme [6].

Here we analyze the storage and communication
overhead of our proposed scheme. For a concrete ex-
ample of using our scheme, we consider an algebraic
signature is 256 bits, a 102MB file F is divided into
125,00 blocks (each block is 8KB) and the file F has
10 replicas. In the Setup stage, the data owner only
needs to store one secret key k (160 bits). During the
TagBlock stage, the data owner stores the file and its
tags on cloud servers. The additional storage is less
than 4MB. In the challenge phase, the data owner
sends challenge message to server, and the size of
this message is about 480 bits. If the server deletes at
least 1% of F, the data owner can detect server mis-
behavior with probability over 99% by asking proof
for 460 blocks. The response of server is less than

8KB.

5.2.1 Experiment Results

With the help of Pairing-Based Cryptography (PBC) li-
brary [16], we evaluate the proposed scheme in several
experiments. We conduct these experiments on a Linux
server with Intel processor running at 2.70 GHz and 4
GB memory. We choose a bilinear map that uses a su-
persingular curve to achieve the fast pairing operations.
Therefore, the base field is 160bits, the size of an element
in Z∗q is 20 bytes, and the size of an element is 128 bytes.
In our experiments, the file is set to 102MB consisting of
125,00 blocks, and has 10 replicas.

Figure 4: Computation overhead of data owner in verifi-
cation phase

In our scheme, the most of operations in verification
phase are XOR operations. In scheme [2], the most of
operations are multiplication operations. We show these
two schemes verification time with different number of the
challenged blocks in Figure 4. We can see that the veri-
fication time in scheme [2] is about 0.6s with the 10,000
challenged blocks. In contrast, the verification time in
our scheme is only about 5ms with the 10,000 challenged
blocks. Therefore, the verification time in our scheme is
remarkable efficient than that in scheme [2].

In Figure 5, we demonstrate the efficiency of the
scheme [2] and our scheme when the data owner fre-
quently performs data update. In our scheme, 10 DMVTs
are used to support insert or delete operation. In the ex-
periment, we consider computation time of inserting or
deleting a block(i) with the number of updated blocks
increasing from 100 to 1000. When insert or delete a
block(i) in the scheme [2], the data owner firstly looks for
the precise position of the block(i); and then shifts (n-i)
blocks. This process will incur high computation cost,
when the data owner frequently performs data update.
Our scheme overcomes this weakness because 10 DMVTs

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 582

Figure 5: Comparison of computation cost of frequent
data update

are used to enhance the efficiency. When the data owner
frequently performs data update, our proposed scheme is
more efficient than the scheme [2].

Figure 6: Comparison of computation cost when number
of update requests is 100

In Figure 6, we show the computation cost of dynamic
data update with the file size from 1GB to 10GB. Assume
that 100 blocks are inserted or deleted. In scheme [2], the
data owner needs to shift a large number of data blocks,
so it will incur high computation overhead. When the
data size increases from 1GB to 10GB, the computation
time increases from 0.1s to 1.1s. In contrast, our scheme
can remarkably reduce the computation overhead. For
a 10GB file, the computation time is only 0.05s in our
scheme. Therefore, our scheme is very efficient for large-
scale files.

As shown in Table 1, the storage space of file copies

Table 1: Storage and communication overheads in our
scheme and schemes [2, 3, 26]

(|F| is the size of the file F ; m is the number of file
copies; n is the number of data blocks; s is the number

of sectors of one data block; c is the number of the
challenged blocks.)

in our scheme is equal to that in schemes [2, 3, 26]. The
CSP overheads in both our scheme and schemes [2, 3, 13]
are linear in n. The verifier overheads and the size of the
challenge message in our scheme are equal to those in the
scheme [2, 3]. Especially, the size of response message in
our scheme is almost constant and far less than that in
schemes [2, 3]. Compared with the scheme [13], the size
of challenge message and response message are less than
that in scheme [13].

6 Conclusion

In this paper, we propose a provable multiple-replica dy-
namic data possession for big data storage in cloud com-
puting. In our scheme, we use the algebraic signature to
reduce the computation and communication overhead on
the data owner side. Meanwhile, in order to achieve effi-
cient dynamic operation, we design a new data structure
DMVT. The experimental results demonstrate that our
scheme is efficient.

Acknowledgments

This research is supported by National Natural Science
Foundation of China (61572267, 61272425, 61402245), the
Open Project of the State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese
Academy of Sciences(2017-MS-21, 2016-MS-23).

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 583

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson and D. Song, “Provable data
possession at untrusted stored”, in Proceeding of
ACM CCS, pp. 598-609, 2007.

[2] A. F. Barsoum and M. A. Hasan, “Provable Mul-
tireplica Dynamic Data Possession in Cloud Com-
puting Systems,” IEEE Transactions on Information
Forensics and Security, pp. 485-497, 2015.

[3] A. F. Barsoum and M. A. Hasan, Provable Posses-
sion and Replication of Data over Cloud Servers,
Cryptographic Research, The University of Water-
loo, USA, 2010.

[4] G. Craig, “Computing on encrypted data,” Lecture
Notes in Computer Science, vol. 5888, pp. 477-477,
2009.

[5] R. Curtmola, O. Khan, R. Burns and G. Ateniese,
“MR-PDP: Multiple-replica provable data posses-
sion,” in Proceedings of the 28th International Con-
ference on Distributed Computing Systems, pp. 411-
420, 2008.

[6] M. Etemad, A. Kupcu, “Transparent, distributed,
and replicated dynamic provable data possession,”
in International Conference on Applied Cryptography
and Network Security, pp. 1-18, 2013.

[7] Z. Hao and N. Yu, “A multiple-replica remote data
possession checking protocol with public verifiabil-
ity,” in Proceedings of 2nd International Symposium
Data, Privacy, E-Commerce, Sep., pp. 84-89, 2010.

[8] W. Hsien, C. Yang and M. S. Hwang, “A Survey of
Public Auditing for Secure Data Storage in Cloud
Computing,” International Journal of Network Se-
curity, vol. 18, no. 1, pp. 133-142, 2016.

[9] M. S. Hwang, C. C. Lee, T. H. Sun, “Data error
locations reported by public auditing in cloud storage
service,” Automated Software Engineering, vol. 21,
no. 3, pp. 373–390, Sep. 2014.

[10] M. S. Hwang, T. H. Sun, C. C. Lee, “Achieving
dynamic data guarantee and data confidentiality of
public auditing in cloud storage service,” Journal of
Circuits, Systems, and Computers, vol. 26, no. 5,
2017.

[11] C. Liu, R. Ranjian, X. Zhang, C. Yang, D. Geor-
gakopoulos and J. Chen, “Public Auditing for Big
Data Storage in Cloud Computing–A Survey,” in
Proceeding of 16th IEEE International Conference
Computational Science and Engineering (CSE’13),
pp. 1128-1135, 2013.

[12] C. Liu, W. Hsien, C. Yang and M. S. Hwang, “A
survey of public auditing for shared data storage with
user revocation in cloud computing,” International
Journal of Network Security, vol. 18, no. 4, pp. 650-
666, 2016.

[13] M. Li, L. Wang and J. Wei, “Distributed data
possession provable in cloud,” Distributed Parallel
Databases, vol. 35, pp. 1-21, 2017.

[14] W. Litwin and T. Schwarz, “Algebraic signatures for
scalable distributed data structures,” in Twentieth

IEEE International Conference on Data Engineer-
ing, pp. 412-423, 2004.

[15] Y. Ming and Y. Wang, “On the security of three
public auditing schemes in cloud computing,” Inter-
national Journal of Network Security, vol. 17, no. 6,
pp. 795-802, 2015.

[16] Pairing-Based Cryptography(PBC) library, Feb.
9, 2018. (https://crypto.stanford.edu/pbc/
howto.html)

[17] W. Shen, J. Yu, R. Hao and X. Wang, “A public
cloud storage auditing scheme with lightweight au-
thenticator generation,” in IEEE International Con-
ference on P2P, Parallel, Grid, Cloud and Internet
Computing, pp. 36-39, 2015.

[18] C. Wang, Q. Wang, K. Ren and W. Lou, “Privacy-
preserving public auditing for data storage security
in cloud computing,” in The Proceedings of IEEE
INFOCOM’10, pp. 525-533, 2010.

[19] C. Wang, S. Chow, Q. Wang, K. Ren and W. Lou,
“Privacy preserving public auditing for secure cloud
storage,” IEEE Transactions on Computers, vol. 62,
no. 2, pp. 362-375, 2013.

[20] H. Wang, D. He and S. Tang, “Identity-based proxy-
oriented data uploading and remote data integrity
checking in public cloud,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 6,
pp. 1165-1176, 2016.

[21] G. Yang, J. Yu, W. Shen, Q. Su, F. Zhang and R.
Hao, “Enabling public auditing for shared data in
cloud storage supporting identity privacy and trace-
ability,” Journal of Systems and Software, vol. 113,
pp. 130-139, 2016.

[22] J. Yu, K. Ren, and C. Wang, “Enabling cloud stor-
age auditing with verifiable outsourcing of key up-
dates,” IEEE Transactions on Information Forensics
and Security, vol. 11, no. 6, pp. 1362-1375, 2016.

[23] J. Yu, K. Ren, C. Wang and V. Varadharajan, “En-
abling cloud storage auditing with key-exposure re-
sistance,” IEEE Transactions on Information Foren-
sics and Security, vol. 10, no. 6, pp. 1167-1179, 2015.

[24] J. Yuan and S. Yu, “Efficient public integrity check-
ing for cloud data sharing with multi-user modifica-
tion,” in Proceedings of IEEE INFOCOM, pp. 2121-
2129, 2014.

[25] F. Zhou, S. Peng, J. Xu and Z. Xu, “Identity-based
batch probable data possession,” in International
Conference on Provable Security, pp. 112-129, 2016.

[26] J. Zhang, P. Li and M. Xu, “On the security of an
mutual verifiable provable data auditing in public
cloud storage,” International Journal of Network Se-
curity, vol. 19, no. 4, pp. 605-612, 2017.

[27] Y. Zhang, J. Ni, X. Tao, Y. Wang and Y. Yu, “Prov-
able multiple replication data possession with full dy-
namics for secure cloud storage,” Concurrency Com-
putation, vol. 28, no. 4, pp. 1161-1173, 2016.

International Journal of Network Security, Vol.20, No.3, PP.575-584, May 2018 (DOI: 10.6633/IJNS.201805.20(3).21) 584

Biography

HuiYing Hou received B.S. degrees in School of Com-
puter Science and Technology from Qingdao University,
China, in 2013. She will receive M.S. degree in the college
of Computer Science and Technology from Qingdao Uni-
versity, China, in 2016. Her research is cloud computing
security.

Rong Hao received Master degree in Institute of Net-
work Security from Shandong University. She is work-
ing in the College of Computer Science and Technology,
Qingdao University. Her research interest is information
security.

Jia Yu received the M.S. and B.S. degrees in School
of Computer Science and Technology from Shandong
University, China, in 2003 and 2000, respectively. He
received Ph. D. degree in Institute of Network Security
from Shandong University, China, in 2006. Since 2012,
he has been a full professor and the department director
of information security, at Qingdao University, China.
He was a visiting professor with the Department of
Computer Science and Engineering, the State University
of New York at Buffalo from 2013 to 2014. His research
interests include cloud computing security, key evolving
cryptography, digital signature, and network security.
He has published over 100 academic papers. He is the
reviewer of more than 30 international academic journals.

