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Abstract

A new multipartite secret sharing scheme that uses a su-
per increasing sequence is proposed in this paper. Nov-
elty of the scheme is that, apart from being a multipartite
scheme, it realizes the level ordered access structure [17].
Also, the proposed scheme is reusable in that the shares
of the participants need not be replenished for a new se-
cret after the reconstruction the current secret.
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1 Introduction

A Secret Sharing Scheme consists of two phases: share
distribution and secret reconstruction. In share distribu-
tion phase, each participant is given a share of the secret.
In secret reconstruction phase, authorized subsets of the
set of participants collaboratively recover the secret from
their shares. A secret sharing scheme is said to be perfect
if an unauthorized subset gets no information about the
secret and an authorized subset has complete information
of the secret in the information theoretic sense. The set
of authorized subsets is called an access structure. If the
maximal length of the shares and the length of the secret
are identical, then such secret sharing scheme is said to
be ideal. Several access structures like (t, n)-threshold ac-
cess structure, Multipartite access structure, Generalized
access structure etc., are proposed in the literature.

A (t, n)−Threshold Secret Sharing Scheme is one in
which at least the threshold (t) number of participants
participate in secret reconstruction phase to get the se-
cret. In threshold secret sharing scheme, all participants
are given equal priority and entrust. Threshold secret
sharing schemes were first proposed independently by Adi
Shamir [18] and George Blakley [2] in 1979.

In practice, participants may be served with different
priorities. So each participant is assigned a level. Based
on the level of the participant, the priority, entrust of

the participant varies. In general, the participants in the
higher level get higher priority and entrust over the par-
ticipants in the lower level.

In Multipartite Secret Sharing, the set of participants
are divided into disjoint levels (parts/ compartments)
and all participants in a particular level/compartment
play the same role as all other participants in that
level/compartment. Compartmented threshold secret
sharing and multilevel threshold secret sharing are multi-
partite in nature. Ghodosi et al. [9] proposed an ideal and
perfect secret sharing schemes for multilevel and compart-
mented groups. The scheme we are proposing is a multi-
partite scheme along with a restriction that the low level
participants can recover the implicit compartment (level)
secret bit assigned to them only if the implicit secret bits
assigned to all higher levels are already recovered. The
actual secret of our multipartite scheme can be recovered
only after completion of the recovery of all the compart-
ment secrets. Compartment secrets can be concurrently
reconstructed,but in order to reconstruct the actual se-
cret bit vector/tuple, hierarchy has to be followed. We
use Shamir’s secret sharing scheme for each compartment
to distribute and recover the compartment secret to all
the participants of the compartment. Applications of se-
cret sharing can be found in [1, 5, 14,15,21] etc.

Our scheme supports the property of secret change-
ability without changing the compartment secret shares.
This property makes our scheme secure and robust. All
this is possible because the actual secret is not a function
of compartment shares alone. That means, the secret
can be changed by the dealer any number of times with-
out changing compartment secrets. This property makes
our scheme to be reusable in nature and hence avoids
communication intense phase of share distribution to the
participants whenever the secret is changed. Whenever
the secret is changed, the dealer publishes a public value
based on the secret and compartment shares. Then with
the help of the same compartment secret shares along
with the current public value, the compartments together
can get the original secret. For each change in secret, the
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compartments together has to reconstruct the current se-
cret based on their secret compartment shares and the
current public value, since the old secret is no more valid.

2 Related Work

(t, n)-threshold secret sharing schemes proposed by Adi
shamir [18] and George Blakley [2] do not support any
hierarchy among the participants, but Shamir mentioned
that a hierarchical variant of (t, n)-threshold secret shar-
ing scheme can be introduced by assigning larger number
of shares to higher level participants. But this will not be
ideal. Multipartite secret sharing was introduced by Sim-
mons [3]. Multipartite secret sharing schemes were stud-
ied based on different assumptions by different authors
eg [3, 4, 6–8, 11–13]. Multipartite Secret Sharing schemes
by bivariate interpolation are developed by T. Tassa and
N. Dyn [19]. Multilevel secret sharing scheme based on
the Chinese remainder theorem was discussed in [10]. Hi-
erarchical secret sharing schemes based on MDS codes
was proposed in [20].

Secret sharing in multilevel and compartmented groups
are discussed in [9]. Our scheme is influenced from the
idea of compartmented scheme discussed in [9] in which
the global threshold is equal to the sum of all individual
compartment thresholds. The scheme, proposed in this
paper uses superincreasing sequence, allows concurrency
during compartmental share reconstruction. But secret
reconstruction is strictly hierarchical in nature, i.e., lower
level can get the secret bit(s) information only if all higher
levels get their secret bit(s).

The organization of the paper is as follows: In Sec-
tion 3, the background required like knapsack problem
(restricted to our scenario), algorithms related to super-
increasing sequence are described and describe concisely
the Shamir’s secret sharing scheme. In Section 4, multi-
partite secret sharing scheme based on the superincreas-
ing sequence was proposed. In Section 5, the scheme was
explained with an example. In Section 6, the property
of secret changeability with an example was explained.
In Section 7, a brief note on the security of the scheme
in the presence of an intruder and some observations are
discussed. Finally concluding remarks are in Section 8.

3 Background

This section reviews the knapsack problem, corresponding
instances, algorithms, and the Shamir’s threshold secret
sharing scheme.

3.1 Knapsack Functions

If the elements inside a knapsack are known, then it is easy
to compute the sum of the elements inside the knapsack.
But if the sum of the numbers inside the knapsack is only
known, it is difficult to list out the numbers inside the
knapsack.

Mathematically this observation can be stated as fol-
lows:

Let bagsum be a function that takes two r-tuples as
input and returns an integer value as output. Let w =
[w1, w2, w3, · · · , wr] and s = [s1, s2, s3, · · · , sr] be two r-
tuples. The second tuple s contains Boolean elements
only i.e., si = 0 or 1 for i ∈ {1, 2, 3, · · · , r}. sum =
bagsum(w, s) =

∑r
i=1 wisi = w1s1 + w2s2 + w3s3 + · · ·+

wrsr.

Let bagsum inverse be a function that takes the
sum value and the first tuple w as input and re-
turns the second Boolean tuple s as output i.e., s =
bagsum inverse(sum,w).

Given w and s it is easy to find bagsum, but given
sum and w it is difficult to find s. But if the first tuple
w contains the superincreasing sequence then it is easy to
compute both bagsum and bagsum inverse [16].

3.2 Superincreasing Sequence

A sequence is said to be superincreasing, if every element
(except first) in the sequence is greater than or equal to
the sum of all its previous elements. A tuple is said to be
superincreasing, if it contains a superincreasing sequence.
Thus a tuple w = [w1, w2, w3, · · ·wr] is superincreasing if
and only if wj ≥ w1 + w2 + w3 + · · ·wj−1 for 2 ≤ j ≤ r.

The pseudo codes of bagsum and bagsum inverse for
superincreasing sequence are as follows:

Algorithm 1: bagsum function

1 Function bagsum (w,s);
Input : Two tuples: w = [w1, w2, w3, · · ·wr] and

s = [s1, s2, s3, · · · sr].
Output: sum: an integer.

2 sum← 0;
3 for i = 1 · · · r do
4 sum← sum + wi × si ;
5 end
6 Return sum;

The running time of bagsum is O(r). Applied to the
superincreasing sequence, in our scheme, the dealer uses
this function.

The running time of bagsum inverse applies to the su-
perincreasing sequence (Algorithm 2) is same as bagsum
i.e., O(r). In our scheme, this algorithm is implicitly used
by compartments during secret reconstruction phase.

Let us define another function exor, which takes two
binary tuples (bit arrays) of same size as input and per-
forms bit-wise exclusive or of them and outputs the resul-
tant tuple. Let b, b′ be two bit tuples of same size, then
c = exor(b, b′) such that ci = bi ⊕ b′i, where ci, bi, b

′
i is

the ith bit in the tuples c, b, b′ respectively. We use exor
function to improve security of our scheme by means of
hiding the original secret tuple from compartments.
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Algorithm 2: bagsum inverse Function for superin-
creasing tuple

1 Function bagsum inverse (sum,w);
Input : An integer sum and tuple

w = [w1, w2, w3, · · ·wr].
Output: Boolean Tuple: s = [s1, s2, s3 · · · sr].

2 for i = r · · · 1 do
3 if sum ≥ wi then
4 si ← 1;
5 sum← sum− wi;

6 else
7 si ← 0
8 end
9 Return [s1, s2, s3 · · · sr];

10 end

3.3 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme is a threshold secret shar-
ing scheme. It has two phases: share distribution phase
and secret reconstruction phase. In share distribution
phase the dealer calculates shares and distributes them se-
curely to the participants. In secret reconstruction phase
at least threshold number of participants cooperatively
participate in interpolation to arrive at the corresponding
Lagrange polynomial and recovers the secret. In Shamir’s
secret sharing scheme dealer uses a polynomial and public
identities of the participants to calculate the share values.

Let n be the number, {P1, P2, P3, · · ·Pn} be the partic-
ipants and t(≤ n) be the threshold. Let idi be the public
identity of the participant Pi for i ∈ [1, n], where [1, n]
denote the set {1, 2, 3, · · · , n} . Then the Shamir’s secret
sharing scheme is as follows:

3.3.1 Share Distribution Phase

Dealer performs the following steps:

1) Selects a prime number q > n;

2) Selects a secret s ∈ Z∗q ;

3) Generates a polynomial f(x) = s+a1x+a2x
2 + · · ·+

at−1x
t−1 of degree atmost t − 1 with coefficients in

ai ∈ Z∗q for 1 ≤ i ≤ t− 1;

4) Calculates [s]i = f(idi) mod q for 1 ≤ i ≤ n;

5) Sends [s]i securely to the participant Pi for 1 ≤ i ≤ n.

3.3.2 Secret Reconstruction Phase

• At least t participants are required to cooperate to
reconstruct the secret; which can be done using La-
grange polynomial interpolation formula as follows:

s =
∑t

i=1

(∏
j 6=i

idj
idj − idi

)
[s]i mod q.

In our proposed scheme, Shamir’s secret sharing
scheme is used to share the compartment secret and
to reconstruct it.

4 Multipartite Secret Sharing
Scheme

Our multipartite secret sharing scheme, based on super-
increasing sequence, consists of share distribution phase
followed by secret reconstruction phase. After presenting
pseudo-code, we explain the algorithm with an example.
Let P be the set of all participants and let the participants
be divided into ` disjoint levels. Pi be the set of partic-
ipants at level i. ni be the total number of participants
at level i and ti ≤ ni be its corresponding compartment
(level) threshold. Note that the global threshold t for this
scheme is the sum of all the individual level thresholds.

4.1 Share Distribution:

Dealer performs the following steps:

1) Selects a secret s ∈ Z2`−1 − {0};

2) Converts the secret s into ` − 1 bit binary num-
ber s`−1s`−2s`−3 · · · s3s2s1 and forms the secret tuple
st = [s`−1, s`−2, s`−3 · · · s3, s2, s1];

3) Generates a random bit tuple ′temp′ of length ` −
1, temp = [e`−1, e`−2, e`−3 · · · e3, e2, e1];

4) Calculates st′ = exor(st, temp), let st′ =
[s′`−1, s

′
`−2, s

′
`−3 · · · s′3, s′2, s′1];

5) Generates a superincreasing tuple w of size `−1, w =
[w`−1, w`−2, w`−3 · · ·w3, w2, w1];

6) Calculates u = bagsum(st′, w) and makes u public;

7) Select a prime q, which is greater than the sum w1 +
w2 + w3 + · · ·w`−1 and max(ni) for 1 ≤ i ≤ `, and
make q public;

8) Distributes shares of wi to all the participants in level
i using Shamir’s (ti, ni) share distribution for 1 ≤ i ≤
`− 1 and distribute the shares of decimal equivalent
of bit tuple temp to level ` by means of Shamir’s
(t`, n`) share distribution;

Note:

• q, u is public. s, st, temp, st′, w are not public, but
known to dealer.

• In simple and informal language, the share distribu-
tion phase can be summarized as: st is the binary
tuple for s. st′ = st⊕ temp.

• Since temp is distributed to the compartment `, even-
though remaining `− 1 levels gets the associated bit
values, they cannot get secret tuple st.
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Figure 1: Stepwise pictorial representation of share distribution

4.2 Secret Reconstruction

1) At least ti participants of level i perform (ti, ni)
Shamir’s secret reconstruction and gets the level
share wi for 1 ≤ i ≤ `− 1;

2) Level 1 checks whether u ≥ w1. If true, then Level
1 outputs bit 1 and sends u′1,2 = u − w1 to level 2.
Else it outputs bit 0 and sends u′1,2 = u to level 2
and appends its output bit (which is s′1) to an empty
tuple (say st′′);

3) For 2 ≤ i ≤ `−1, Level i checks whether u′i−1,i ≥ wi.
If true, then level i outputs bit 1 and sends u′i,i+1 =
u′i−1,i−wi to level i+1. Else outputs bit 0 and sends
u′i,i+1 = u′i−1,i and appends the output bit (which is
s′i) to the starting index of the tuple st′′;

4) Level ` performs (t`, n`) Shamir’s secret reconstruc-
tion and converts the result into ` − 1 bit tuple,
which is temp = [e`−1, e`−2, e`−3 · · · e3, e2, e1]. (Ob-
serve that st′ = st′′ and st′′ is not public). level `
performs exor(temp, st′) which results in st;

5) Finally the secret binary tuple st is obtained, which
can be converted to decimal to obtain the secret s.

Note: Steps 2 and 3 corresponds to the bagsum inverse
algorithm discussed earlier.

5 Explanation with an Example

Let the number of levels (`) be 6. Also let the threshold
values and total number of participants for each level be as
follows: (t1, n1) = (2, 5), (t2, n2) = (3, 5), (t3, n3) = (4, 5),

(t4, n4) = (5, 6), (t5, n5) = (3, 6), (t6, n6) = (5, 7). Let
1, 2, 3 · · ·ni be the public identities of the participants in
compartment i.

5.1 Share Distribution:

Dealer performs the following steps:

1) Selects a secret s ∈ Z2`−1 − {0};

Since ` = 6, Z2`−1 − {0} = {1, 2, 3 · · · 31}. Let
s = 21.

2) Converts the secret s into ` − 1 bit binary number
s`−1s`−2s`−3 · · · s3s2s1 and forms secret tuple st =
[s`−1, s`−2, s`−3 · · · s3, s2, s1];

st = [1, 0, 1, 0, 1]

3) Generates a random bit array(tuple) ′temp′ of length
`− 1, temp = [e`−1, e`−2, e`−3 · · · e3, e2, e1];

temp = [0, 1, 1, 1, 0]

4) Calculates st′ = exor(st, temp), let st′ =
[s′`−1, s

′
`−2, s

′
`−3 · · · s′3, s′2, s′1];

st′ = exor(st, temp) =
exor([1, 0, 1, 0, 1], [0, 1, 1, 1, 0]) = [1, 1, 0, 1, 1]

5) Generates a superincreasing tuple w of size `−1, w =
[w`−1, w`−2, w`−3 · · ·w3, w2, w1];

Let w = [10, 11, 30, 60, 130]
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Table 1: Shamir’s share distribution at compartments

Level number (ti,ni) Dealer polynomial Participants share list (Public identity, Share value)
1 (2,5) 130 + x (1, 131), (2, 132), (3, 133), (4, 134), (5, 135)
2 (3,5) 60 + 2x + 3x2 (1, 65), (2, 76), (3, 93), (4, 116), (5, 145)
3 (4,5) 30 + 4x + x3 (1, 35), (2, 46), (3, 69), (4, 110), (5, 175)
4 (5,6) 11 + 2x + 4x3 + 3x4 (1, 20), (2, 95), (3, 368), (4, 502), (5, 232), (6, 447)
5 (3,6) 10 + x2 (1, 11), (2, 14), (3, 19), (4, 26), (5, 35), (6, 46)
6 (5,7) 14 + x + x2 + x3 + 16x4 (1, 33), (2, 284), (3, 267), (4, 407), (5, 431), (6, 450), (7, 418)

6) Calculates u = bagsum(st′, w) and makes u public;

u = bagsum(st′, w) =
bagsum([1, 1, 0, 1, 1], [10, 11, 30, 60, 130]) =

10 + 11 + 60 + 130 = 211

7) Select a prime q, which is greater than the sum w1 +
w2 + w3 + · · ·w`−1 and max(ni) for 1 ≤ i ≤ ` make
u as public;

w1 + w2 + w3 + w4 + w5 =
10 + 11 + 30 + 60 + 130 = 241, max(ni) = 7,

let q = 541

8) Distributes shares of wi to all the participants in level
i using Shamir’s (ti, ni) share distribution for `−1 ≤
i ≤ 1 and distribute the shares of decimal equivalent
of bit tuple temp to level ` by means of Shamir’s
(t`, n`) share distribution;

We have the compartmental shares given in Table 1.

5.2 Secret Reconstruction

1) Performing (ti, ni), 1 ≤ i ≤ ` − 1 Shamir’s secret
reconstruction, we have the compartmental shares
given in Table 2.

2) Carrying out the step 2 of secret reconstruction, we
have the results given in Table 3.

3) Results of the step 3 of the secret reconstruction are
given in Table 4.

4) Step 4 of the reconstruction gives the results given in
Table 5. Also

(14)10 = (01110)2 =⇒ temp = [0, 1, 1, 1, 0]

exor(temp, st′) =
exor([0, 1, 1, 1, 0], [1, 1, 0, 1, 1]) =

[1, 0, 1, 0, 1] = st

5) Converting the binary tuple st to decimal, we have
s = 21.

6 Secret Changeability with an
Example

6.1 Secret Changeability

In our scheme, the shares are reusable, That is, the shares
of the participants can remain same even for a new se-
cret. The following algorithm is to renew the secret by
the dealer.

6.1.1 Secret Renewal

Dealer performs the following steps:

1) Selects a new secret ns ∈ Z2`−1 − {0};

2) Converts the secret ns into ` − 1 bit binary number
ns`−1ns`−2ns`−3 · · ·ns3ns2ns1 and forms new secret
tuple nst = [ns`−1, ns`−2, ns`−3 · · ·ns3, ns2, ns1];

3) Calculates nst′ = exor(nst, temp), let nst′ =
[ns′`−1, ns

′
`−2, ns

′
`−3 · · ·ns′3, ns′2, ns′1];

4) Calculates nu = bagsum(nst′, w) and makes nu pub-
lic.

Table 6 shows the parameters that change after the
secret renewal algorithm.

There is a change in the secret, secret tuple, exor tu-
ple and public value only, all other parameters are intact.
Since w contains the compartment secret shares for lev-
els from 1 to `− 1 and decimal equivalent of temp is the
compartment secret share for level `, the compartment
shares doesn’t change after changing the secret by the
dealer. Since there is no change in compartment shares,
there is no need for distribution phase after the secret
update. There is no change in the secret reconstruction
phase. Based on the new public value nu, the compart-
ment can get the actual secret using their corresponding
secret shares. We explain the algorithm in detail with
an example in next subsection. Pinnacle step for running
time of the above algorithm is 4. So the running time of
the secret renewal algorithm is O(`).

6.2 Example for Secret Changeability

We use the example explained in section 5 to explain share
renewal algorithm. Now, total number of levels (`)=6.
Threshold values and total number of participants for
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Table 2: Shamir’s secret reconstruction at compartments

Level number (ti,ni)
Interested participants
with shares

Compartmental share
(lagrange interpolation)

1 (2,5) (1, 131), (3, 133)
3

2
(131) +

−1

2
(133) = 130

2 (3,5)
(1,65), (3,93),
(5,145)

15

8
(65) +

−5

4
(93)+

3

8
(145) = 60

3 (4,5)
(1,35), (3,69),
(4,110), (5,175)

5

2
(35) + (−5)(69) + 5(110)+

−3

2
(175) = 30

4 (5,6)
(1,20), (2,95),
(3,368), (4,502),
(5,232)

5(20) + (−10)(95) + 10(368)+
(−5)(502) + 1(232) = 552 ≡ 11 mod 541

5 (3,6)
(1,11), (3,19),
(6,46)

9

5
(11) + (−1)(19)+

1

5
(46) = 10

6 (5,7)
(1,33), (2,284),
(3,267), (4,407),
(5,431)

5(33) + (−10)(284) + 10(267)+
(−5)(407) + 1(431) = −1609 ≡ 14 mod 541

Table 3: Output bit from Level 1

Level number u w1 u ≥ w1 Output bit u′1,2 st′′

1 211 130 True 1 211-130=81 [1]

Table 4: Output bits from Level 2 to Level 5

Level number u′i−1,i wi u′i−1,i ≥ wi Output bit u′i,i+1 st′′

2 81 60 True 1 81-60=21 [1,1]
3 21 30 False 0 21 [0,1,1]
4 21 11 True 1 21-11=10 [1,0,1,1]
5 10 10 True 1 10-10=0 [1,1,0,1,1]

Table 5: Shamir’s secret reconstruction at last compartment

Level number (ti,ni)
Interested participants
with shares

Compartmental share
(Lagrange interpolation)

6 (5,7)
(1,33), (2,284), (3,267),
(4,407), (5,431)

5(33) + (−10)(284) + 10(267)+
(−5)(407) + 1(431) = −1609 ≡ 14 mod 541

Table 6: Table showing change in values

Parameter Previous value New value Change in parameter
Secret s ns Yes

Secret tuple st nst Yes
exor tuple st′ nst′ Yes

Random bit tuple temp temp No
Super increasing tuple w w No

Public value(u) u nu Yes
prime number q q No
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each level are as follows: (t1, n1) = (2, 5), (t2, n2) = (3, 5),
(t3, n3) = (4, 5), (t4, n4) = (5, 6), (t5, n5) = (3, 6),
(t6, n6) = (5, 7).

Now dealer executes the following algorithm to change
secret value from s = 21 to ns = 25.

6.2.1 Secret Renewal

Dealer performs the following steps:

1) Selects a new secret ns ∈ Z2`−1 − {0};

ns = 25, Since ` = 6,
Z2`−1 − {0} = {1, 2, 3 · · · 31}.

2) Converts the secret ns into ` − 1 bit binary number
ns`−1ns`−2ns`−3 · · ·ns3ns2ns1 and forms new secret
tuple nst = [ns`−1, ns`−2, ns`−3 · · ·ns3, ns2, ns1];

nst = [1, 1, 0, 0, 1]

3) Calculates nst′ = exor(nst, temp), let nst′ =
[ns′`−1, ns

′
`−2, ns

′
`−3 · · ·ns′3, ns′2, ns′1];

nst′ = exor(nst, temp) =
exor([1, 1, 0, 0, 1], [0, 1, 1, 1, 0]) = [1, 0, 1, 1, 1]

4) Calculates nu = bagsum(nst′, w) and makes nu pub-
lic;

nu = bagsum(nst′, w) =
bagsum([1, 0, 1, 1, 1], [10, 11, 30, 60, 130]) =

10 + 30 + 60 + 130 = 230

Now, we explain secret reconstruction algorithm with
the new values. Instead of repeating compartment share
reconstruction, we assume that all applied Lagrange in-
terpolation and obtained their shares as shown in share
reconstruction of Section 5.

6.2.2 Secret Reconstruction

1) At least ti participants of level i performs (ti, ni)
Shamir’s secret reconstruction and gets the compart-
ment/level share wi for 1 ≤ i ≤ `− 1;

Table 7: Compartment secrets

Level number
Compartmental share
(Lagrange interpolation)

1 130
2 60
3 30
4 552 ≡ 11 mod 541
5 10
6 −1609 ≡ 14 mod 541

2) Carrying out the step 2 of secret reconstruction, we
have the results given in Table 8;

3) Step 3 of the reconstruction gives the results given in
Table 9;

4) Level ` performs (t`, n`) Shamir’s secret reconstruc-
tion and converts the result in to ` − 1 bit tuple,
which is temp = [e`−1, e`−2, e`−3 · · · e3, e2, e1]. (Ob-
serve that st′ = st′′ and st′′ is public). level ` per-
forms exor(temp, st′) which results in st;

(14)10 = (01110)2 =⇒ temp = [0, 1, 1, 1, 0]
exor(temp, nst′) =

exor([0, 1, 1, 1, 0], [1, 0, 1, 1, 1]) =
[1, 1, 0, 0, 1] = nst

5) Finally the secret binary tuple nst is obtained, which
can be converted to decimal to obtain secret s.

nst = [1, 1, 0, 0, 1] =⇒ ns = (11001)2 = 25.

Thus the new secret can be reconstructed by the com-
partments using the same shares. Note that for the sake
of completeness, we repeated Steps 1 to 4 in the above
algorithm, which is not needed since the compartments
already have calculated their shares earlier.

7 Brief Note on Security and Ob-
servations

7.1 Brief Note on Security

• Public: u, q, `;

• Private to dealer : s, st, temp, st′, w, polynomials (use
to generate shares);

• Private to compartment i participant : Participant
share of the compartment secret wi.

Note that with public values u, q, an intruder (either
inside or outside P) cannot get about st and s because
s, st are private to dealer only and w is needed to calculate
s along with u. All levels has to intervene to get the secret,
because w, temp are available only after the secret share
reconstruction of each and every compartment. In our
scheme, the compartment with lower level number has
highest priority because, other levels cannot get the bit
information without the value passed by the higher level.

Assuming that the dealer is honest, it is infeasible to
obtain s from u, q, `. Hence our scheme is secure with
respect to trusty dealer.

7.2 Observations

The multipartite secret sharing scheme proposed deals
with the ` − 1 bit secret, i.e., 1 ≤ s ≤ 2`−1 − 1. So,
in step 1 of share distribution phase, dealer selects secret
s ∈ Z2`−1 − {0}. The selection range of the secret can
be increased. Suppose the secret is of `′(> ` − 1) bits,
then the following two trivial methods can be employed
to handle this issue:



International Journal of Network Security, Vol.20, No.3, PP.527-535, May 2018 (DOI: 10.6633/IJNS.201805.20(3).16) 534

Table 8: Output bit from Level 1

Level number nu w1 nu ≥ w1 Output bit nu′1,2 nst′′

1 230 130 True 1 230-130=100 [1]

Table 9: Output bits from Level 2 to Level 5

Level number nu′i−1,i wi nu′i−1,i ≥ wi Output bit nu′i,i+1 nst′′

2 100 60 True 1 100-60=40 [1,1]
3 40 30 True 1 40-30=10 [1,1,1]
4 10 11 False 0 10 [0,1,1,1]
5 10 10 True 1 10-10=0 [1,0,1,1,1]

Table 10: Shamir’s secret reconstruction at last compartment

Level number
Compartmental share
(Lagrange interpolation)

6 −1609 ≡ 14 mod 541

Method 1: one of the levels can be used to handle the
extra bits. The extra bits can be shared to a compart-
ment as compartment share (may be after exor with
temp tuple) and after reconstruction phase, these bits
get pre-appended to the tuple st′′.

Method 2: Each level may be given multiple compart-
ment shares. Thus, each level can reconstruct mul-
tiple compartment secrets and hence multiple bits
related to secret.

The pinnacle step for running time is share distribu-
tion by dealer to all the participants using polyno-
mial, which is O(

∑`
i=1(niti)). Since compartments

can concurrently get their shares during secret recon-
struction phase, the running time is O((max(ni))

2 +
`). Note that ` − 1 comparisons and one exor is
needed in order to obtain the secret.

8 Conclusions

In this paper, we proposed our new multipartite secret
sharing scheme, which is based on superincreasing se-
quence. The property of secret changeability is explained
along with an example, listed various observations and
discussed briefly about the security of the scheme in the
case of trustworthy dealer. Work is underway to extend
these ideas to arrive at similar schemes for other access
structures.
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