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Abstract

In 2016, Qiao et al. proposed a novel extended multi-
variate public key cryptosystem (EMC) to enhance the
security of multivariate public key cryptosystem. They
applied it on Matsumoto-Imai (MI) encryption scheme
and claimed that the enhanced MI scheme can be secure
against Linearization Equation (LE) attack. Through
analysis, we found that the enhanced MI scheme satis-
fied Quadratization Equations (QE). After finding all the
quadratization equations, we can recover the plaintext
corresponding to a valid ciphertext of the enhanced MI
scheme.
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1 Introduction

In recent years, more and more researches have been made
on the quantum computer. Once large-scale quantum
computers are successfully built, the traditional public
key cryptosystems such as RSA and ElGamal were no
longer secure [19, 25]. The study of Post-quantum cryp-
tography is urgent. Multivariate public key cryptosystem
(MPKC) is one of promising alternative public key cryp-
tosystem. The security of the MPKC is depended on the
difficulty of solving systems of randomly chosen multi-
variate nonlinear polynomial equations over finite fields.
Up to now, quantum computers do not appear to have
advantage over the traditional computers to handle with
this problem.

From 1988, many cryptosystems have been proposed in
MPKCs, such as Matsumoto-Imai (MI) cryptosystem[15],
Oil-Vinegar signature scheme [14, 22], Hidden Field Equa-
tion cryptosystem (HFE) [21], Tamed Transformation
Method (TTM) [16], Medium Field Equation (MFE)

cryptosystem [26] etc. But most of them are not se-
cure. Hence, many security enhancement methods have
been put forward, for example, Plus/Minus [23], Inter-
nal perturbation [4, 6], Piece in Hand method [13] etc.
All of these methods are subjected to different levels of
attacks [7, 8, 11, 12, 17, 18].

In 2016, Qiao et al. [24] proposed an idea named novel
Extended Multivariate public key Cryptosystems(EMCs),
which introduce nonlinear invertible transformations to
enhance the security of defective MPKCs. They used
three different nonlinear invertible transformations, in-
vertible cycle, tame transformation and special oil and
vinegar, and applied them on MI scheme. The original
MI scheme was broken by Patarin [20] using Lineariza-
tion Equation(LE) attack. Three enhanced MI schemes
can resist LE attack.

In this paper, we focus on the enhanced MI scheme
with invertible cycle. MI scheme satisfied LEs of form∑

aijxiyj +
∑

bixi +
∑

cjyj + d = 0, (1)

where xi are the plaintext variables and yj are the cipher-
text variables. In the enhanced MI scheme with invertible
cycle, they only applied a quadratic map on plaintext vari-
ables before performing MI encryption function. So, this
scheme would satisfied a type of equation named Quadra-
tization Equation(QE) of form∑

aijkxixjyk +
∑

bijxiyj +
∑

ciyi +∑
dijxixj +

∑
eixi + f = 0.

After finding all QEs for a given public key, substitute
a valid ciphertext into these QEs, we can derive a set
of quadratic equations on plaintext variables. Combin-
ing these quadratic equations with the public key and the
valid ciphertext, we can recover the corresponding plain-
text easily by Gröbner bases method.
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This paper is organized as follows. In Section 2, we give
some necessary fundamental notion and a brief descrip-
tion of the EMC with invertible cycle. Then, we present
theoretical analysis and experimental results of our QE
attack in Section 3. Finally, a conclusion was made in
Section 4.

2 Preliminaries

2.1 General Structure of MPKC

Let m,n are two positive integers and k = GF (q) is a
finite filed. F̄ : kn → km is built as a composition of
three maps:

F̄ = L1 ◦ F ◦ L2

where F : kn → km, named central map, is an invertible
map. L1 : km → km and L2 : kn → kn are two invertible
affine maps used to hide the structure of F .

The public key of MPKC consists of a set of multivari-
ate quadratic polynomials over a finite field, which is the
expression of map F̄ , that is

(y1, · · · , ym) = F̄ (x1, · · · , xn)

= L1 ◦ F ◦ L2(x1, · · · , xn)

= (f̄1, · · · , f̄m),

where f̄1, · · · , f̄n ∈ k[x1, · · · , xn] are a set of nonlinear
polynomials. The private keys are L1 and L2.

2.2 Direct attack

The direct attack to recover plaintext is to find a solution
by solving the following system

y′1 = f̄1(x1, . . . , xn)
...

y′m = f̄m(x1, . . . , xn)

(2)

where f̄i (1 ≤ i ≤ m) are the components of a given public
key F̄ and y ′ = (y′1, . . . , y

′
m) is a ciphertext under this

public key. A straightforward way to solve this system
is Gröbner basis [1] method and its variants F4 [9] and
F5 [10]. According to [2], the complexity of F5 is bounded
by

O

((
n+ dreg

n

)ω)
where n is the number of the plaintext variables, dreg
is the degree of regularity in Gröbner basis method and
2 ≤ ω ≤ 3.

2.3 Matsumoto-Imai Scheme

MI [15] scheme was proposed by Matsumoto and Imai in
1988. Let k = GF (q) is a finite filed with characteristic
2, and K is a degree n extension of k. Let φ : K → kn

is a standard k-linear isomorphism between K and kn as
follow:

φ(a0 + a1x+ · · ·+ an−1x
n−1) = (a0, a1, · · · , an−1).

Choose θ (0 < θ < n) such that gcd(qθ + 1, qn − 1) = 1

and define the map F̃ over K by F̃ (X) = Xqθ+1.

The condition of θ ensure that F̃ is an invertible map.
Indeed, if t is an integer such that t(1 + qθ) = 1 mod

(qn − 1), then F̃−1 is simply F̃−1 = Xt.

The MI scheme uses F (x1, · · · , xn) = φ ◦ F̃ ◦
φ−1(x1, · · · , xn) : kn → kn as its central map. Let L1

and L2 be two invertible affine transformations over kn.
The MI encryption map was defined as follows

F̄ (x1, · · · , xn) = L1 ◦ F ◦ L2(x1, · · · , xn) = (f̄1, · · · , f̄n).

where f̄1, · · · , f̄n ∈ k[x1, · · · , xn].
The public keys of MI are n polynomials, (f̄1, · · · , f̄n),

and private keys are (L1, L2, θ).

2.4 Linearization Equation

The linearization equation(LE) is put forward by Patarin
in 1995 [20] to break MI scheme.

In general, the form of a linearization equation given
by

n∑
i=1

aixiAi(y1, · · · , ym) +B(y1, · · · , ym) + c = 0,

where xi, (1 ≤ i ≤ n) are plaintext variables, yi, (1 ≤
i ≤ n) are ciphertext variables, Ai, (1 ≤ i ≤ n) and B
are polynomial functions with respect to the ciphertext
variables.

It is obvious that LE is linear on plaintext variables.
In other words, given a valid ciphertext (y1, · · · , ym) and
substituted it into LE, LE will become a linear polynomial
equation on plaintext variables.

We usually refer to the maximum degree of ciphertext
variables as the order of the LE.

For example, the first order linearization equation
(FOLE) is given by

n∑
i=1

m∑
j=1

aijxiyj +

m∑
i=1

biyi +

n∑
i=1

cixi + d = 0.

And the second order linearization equation (SOLE) is of
form

n∑
i=1

m∑
j=i

m∑
k=j

aijkxiyjyk +

m∑
i=1

m∑
j=i

bijyiyj +

n∑
i=1

m∑
j=i

cijxiyj +

m∑
i=1

diyi +

n∑
i=1

eixi + f = 0.

Linearization Equation can help us to do elimination on
the system (2). For more information about LE attack,
please refer to [5] and [17].
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2.5 Quadratization Equation

The quadratization equation attack is proposed by Cao
et al. [3] in 2010. The general form of a quadratization
equation is

n∑
i=1

n∑
j=i

aijxixjAij(y1, · · · , ym) +

n∑
i=1

bixiBi(y1, · · · , ym)

+C(y1, · · · , ym) + c = 0

where xi, (1 ≤ i ≤ n) are plaintext vari-
ables, yi, (1 ≤ i ≤ n) are ciphertext variables,
Aij(y1, · · · , ym), Bi(y1, · · · , ym) and C(y1, · · · , ym) are
polynomial functions in the ciphertext variables.

We can find that substituting a valid ciphertext
(y1, · · · , ym) into a QE, the QE will become a quadratic
equation on plaintext variables. If we can derive a set of
QEs, we will derive a set of quadratic equations on plain-
text variables for a valid ciphertext. Combine these equa-
tions with the system (2), the degree of regularity might
be lower down in solving the system (2) by Gröbner ba-
sis method. Hence, the complexity of solving the system
(2) will be smaller. Similar to the LE, we can also define
the order of the QE as the maximum degree of ciphertext
variables.

The first order quadratization equation (FOQE), an
example of QE, is given by

n∑
i=1

n∑
j=i

m∑
k=j

aijkxixjyk +

n∑
i=1

m∑
j=i

bijxiyj +

m∑
i=1

ciyi +

n∑
i=1

n∑
j=i

dijxixj +

n∑
i=1

eixi + f = 0.

2.6 The Novel EMC

The Novel EMC, designed by Qiao et al. [24], may serve
as an security enhancement method both on encryption
system and signature system. The main idea of the novel
EMC is that they introduced a nonlinear invertible trans-
formation L3 and applied it on the plaintext variables
before the original encryption map work, namely, as in
Equation (3):

F̃ (x1, · · · , xn) = F̄ ◦ L3(x1, · · · , xn)
= L1 ◦ F ◦ L2 ◦ L3(x1, · · · , xn).

(3)

where (x1, · · · , xn) ∈ kn, k = GF (q).
The public key of the novel EMC is the expression of

map F̃ and the private keys are L1, L2 and L3.
In [24], they chose three types of nonlinear invertible

transformation L3, invertible cycle, tame transformation
and special oil and vinegar. In the following parts of this
paper, we only give cryptanalysis of the novel EMC with
invertible cycle.

The L3 as invertible cycle is described as follows.
Let µ is an invertible map on positive integer, given by

µ : {1, · · · , n} → {1, · · · , n} : µ(i) =

{
1 for i = n

i+ 1 otherwise

For n ≥ 2, let L3 : (x1, · · · , xn) → (t1, · · · , tn) be a non-
linear transformation over kn, defined as Equation (4): t1 =

{
c1x1x2 for n odd

c1x
q
1x2 for n even

,

ti = cixixµ(i) for 2 ≤ i ≤ n
(4)

Remark. Due to (x1, · · · , xn) ∈ kn and k = GF (q),
xqi = xi. When n is an even, L3 is not invertible because

that from (4), we can derive x1 = c2c4···cnt1t3···tn−1

c1c3···cn−1t2t4···tn · x1,
that is, we can not derive x1 from L3. Hence, the map L3

is not invertible when n is an even. So we consider only
the case n is an odd.

The public keys of the novel EMC with invertible cycle
are a set quartic polynomials. More detail about process
of encryption and decryption please refer to [24].
Practical Parameters. In [24], the authors chose MI
encryption scheme as the original MPKC and they rec-
ommended k = GF (216), and n = 27.

3 Cryptanalysis of Novel EMC

Although the enhanced MI scheme with invertible cycle
can resist linearization equations attack, the design of the
L3 based on “Invertible Cycle” will bring new security
hazards to the scheme. Since it is vulnerable to quadrati-
zation equation attack, it appears that L3, at some level,
is not an appropriate method to raise the security of the
original scheme.

3.1 Quadratization Equations

As we know, the original scheme MI satisfies the first
order linearization equation. So the ciphertext variables
yi, (1 ≤ i ≤ n) and the intermedium variables ti, (1 ≤ i ≤
n) satisfy the first order linearization equation, namely,

n∑
i=1

n∑
j=1

aijtiyj +

n∑
i=1

biyi +

n∑
i=1

citi + d = 0. (5)

Substituting Equation (4) into Equation (5), Equation (5)
will change into the following equation:

n∑
i=1

n∑
j=i

n∑
k=1

aijkxixjyk +

n∑
i=1

n∑
j=1

bijxiyj +

n∑
i=1

ciyi

+

n∑
i=1

n∑
j=i

dijxixj +

n∑
i=1

eixi + f = 0

(6)

Equation (6) is exactly a Quadratization Equation. To
continues our attack, we need find out all quadratization
equations. This can be done as follows.

To find all quadratization equations equivalent to find
a basis of the space V spanned by all QEs.

The number of coefficients in Equation (6) is equal

to (n+1)2(n+2)
2 . Then we can randomly generate slightly
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over (n+1)2(n+2)
2 plaintext/ciphertext pairs from the pub-

lic key and substitute them into Equation (6). It is clear
that we obtain a system of linear equation on unknown
coefficients(aijk, bij , cij , di, ei, f ∈ k). Solving this sys-
tem, we can get a basis of the solution space of this sys-
tem, namely denote by Equation (7).

n∑
i=1

n∑
j=i

n∑
k=1

a
(ρ)
ijkxixjyk +

n∑
i=1

n∑
j=i

b
(ρ)
ij xixj

+
n∑
i=1

n∑
j=i

c
(ρ)
ij xiyj +

n∑
i=1

d
(ρ)
i xi

+
n∑
i=1

e
(ρ)
i yi + f (ρ) = 0

1 ≤ ρ ≤ D

(7)

where D is the dimension of the space V .
The process above relies merely on any given public key

and it can be executed once for all cryptanalysis under
that public key.

3.2 Ciphertext-only Attack

For a given cipheretext y ′ = (y′1, · · · , y′n), substitute them
into Equation (7) and do Gaussian elimination on it, we
can get D′ quadratic equations on variables, namely:

n∑
i=1

n∑
j=i

ã
(ρ)
ij xixj+

n∑
i=1

b̃
(ρ)
i xi + c̃(ρ) = 0

1 ≤ρ ≤ D′
(8)

Combining these quadratic equations (8) with the sys-
tem (2), we obtain a new system with D′ + n equations
on plaintext variables. Then we solve the new system by
Grönber basis algorithm. Experiments results show the
corresponding plaintext can be recovered efficiently.

The algorithm of our attack can be seen in Algorithm 1.

Algorithm 1 Steps of QE Attack

1: Input: public key F̄ of a MPKC, ciphertext y ′ ∈ kn
2: Output: corresponding plaintext x ′ ∈ kn

3: Determine the number of QE. It is (n+1)2(n+2)
2 ;

4: Compute N > (n+1)2(n+2)
2 plaintext/ciphertext pairs

from the public key;
5: Substitute these plaintext/ciphertext pairs into Equa-

tion (6) and solve the resulted linear system;
6: Substitute the ciphertext y ′ into the quadratization

equation found by last step and obtain D′ quadratic
equations on the plaintext variables.

7: Combine the quadratic equations with the system (2)
to get a new system on plaintext variables. Solve the
system directly via Gröbner Basis method.

3.3 Complexity and Experiments Results

In our attack, we set k = GF (216), n = 27, and the
original MPKC is MI encryption scheme with θ = 4.

We chose randomly a valid ciphertext y ′ = (y′1, · · · , y′n)
and we want to find the corresponding plaintext x ′ =
(x′1, · · · , x′n).

In the first step, the number of coefficients in QE is

equal to (n+1)2(n+2)
2 = 22736

2 = 11368. We computed
11370 plaintext/ciphertext pairs and substituted them
into Equation (6) and did Gaussian Elimination on the

resulted linear system. The complexity of (n+1)2(n+2)
2

plaintext/ciphertext pairs generation is about O(n8). It is
about 238 for n = 27. And the complexity of the Gaussian

Elimination is less than ( (n+1)2(n+2)
2 )3, which is less than

241 for n = 27. The dimension D of the space spanned
by all QEs is equal to 26 in our experiments. This step
is the most time consuming step in our attack. But this
can be done once for a given public key.

In the second step, we substituted a valid ciphertext
y ′ = (y′1, · · · , y′n) into Equation (7) and we obtained
26 linear independent quadratic polynomials equation on
plaintext variables.

In last step, combining the quadratic equations derived
in step 2 with the system (2), we used Gröbner basis solv-
ing it and obtained the corresponding plaintext. Exten-
sive experimental evidence has shown that the degree of
regularity in solving the system is 3, hence the complex-

ity of this step is O
((
n+3
n

)ω)
, which is less than 236 for

n = 27, 2 ≤ ω ≤ 3.

We performed our attack via Magma on a PC with
Intel Core i5-3350P CPU 3.10 GHz and 4 GB of mem-
ory. In our experiments, we chose different parameters to
illustrated our attack.

In Table 1, we showed the time of three stages under
different parameters. T1 indicates the time of generat-

ing (n+1)2(n+2)
2 plaintext-ciphertext pairs from the public

key. T2 indicates the time of obtaining the quadratiza-
tion equations. T3 indicates the time of recovering the
plaintext.

In Table 2, we compared the efficiency of our attack
with the direct attack on the EMC with invertible cy-
cle. The results showed that the degree of regularity in
Gröbner basis method is reduced, so as to the execution
time. In Table 2, TimeQ and dreg(Q) express the time
of recovering the plaintext and the degree of regularity in
our attack and TimeD and dreg(D) express the time and
the degree of regularity in direct attack. According to the
results in our experiments, the complexity of direct attack

is O
((
n+6
n

)ω)
, which is greater than the complexity of our

attack, O
((
n+3
n

)ω)
.

4 Conclusions

In this paper, we presented the cryptanalysis of the novel
EMC with invertible cycle by Quadratization Equation
attack. The same method can also be applied on the
novel EMC with tame transformation. The emergence
of Quadratization Equation can damage the security of
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Table 1: The time comparison of practical attack under different parameters

n q D D′ T1 [s] T2[s] T3[s] dreg
21 28 20 20 25.265 131.922 0.36 3
21 216 20 20 27.487 719.523 0.92 3
23 28 22 22 41.969 279.891 0.813 3
23 216 22 22 48.875 1720.364 2.262 3
25 28 24 24 67.328 563.907 1.625 3
25 216 24 24 81.619 333.726 4.914 3
27 28 26 26 105.39 1105.969 3.625 3
27 216 26 26 114.037 6771.333 17.503 3

Table 2: The efficiency comparison of Quadratization at-
tack & Direct attack

n q TimeQ dreg(Q) TimeD dreg(D)
21 28 0.36 3 8.219 6
23 28 0.813 3 17.922 6
25 28 1.625 3 34.828 6
27 28 3.625 3 54.515 6

MPKCs. We should avoid it in designing MPKCs.
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