
International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 478

An Improved Data Hiding Method Based on
Lempel-Ziv-Welch Compression Codes

Chin-Chen Chang1, Ngoc-Tu Huynh2, Yu-Kai Wang3, and Yanjun Liu1

(Corresponding author: Yanjun Liu)

Department of Information Engineering and Computer Science, Feng Chia University1

Taichung 40724, Taiwan

(Email: yjliu104@gmail.com)

College of Information Technology, The University of Danang, Vietnam2

Department of Computer Science and Information Engineering, National Chung Cheng University3

(Received Dec. 27, 2016; revised and accepted Apr. 11, 2017)

Abstract

Data hiding techniques have been widely used for the last
decades to protect secret data by hiding the secret data
into a cover file. These techniques are categories based
on working domain such as spatial domain, compressed
domain and transform domain. In this paper, we propose
an improved data hiding method, which employs Lempel-
Ziv-Welch (LZW) compression codes to embed secret in-
formation since it requires very low computational cost.
Our method not only reduces the size of files stored on
the disk but also prevents them from being attacked. Ex-
perimental results show that the proposed method out-
performs some previous schemes in terms of compression
rate as well as embedding capacity.

Keywords: Compression Rate; Data Hiding; Embedding
Capacity; Lempel-Ziv-Welch (LZW) Compression

1 Introduction

With the development of information technology, there
are more and more data kept and transferred. Thus, there
are two issues that users always concern about: (1) space
of storage and (2) security and confidentiality of their
information. For the first issue, in order to save stor-
ages, users would prefer some compression methods with
faster rates of compression and decompression to compact
their data before storing them. Unfortunately, most of
effective compression algorithms are computationally ex-
pensive. For the second issue there are many traditional
block ciphers, such as Data Encryption Standard (DES)
and Advanced Encryption Standard (AES) [6,7,14], were
proposed to encrypt information but they are not suit-
able for image encryption because of the redundancy and
special storage format of an image. Among various pro-
tection methods, steganography technique is one of the
most efficient and common methods for image information

protection. Steganography techniques, also called data
hiding techniques, embed secret information into another
host container to avoid suspicion from attackers during
transferring information through the Internet or a public
channel.

In order to tackle the high complexity of compres-
sion methods, a universal lossless compression algorithm
called Lempel-Ziv-Welch (LZW) algorithm, was proposed
by Abraham Lempel and Jacob Ziv in 1977 and widely
used soon due to its achievement of a good compro-
mise between compression performance and speed of ex-
ecution. Then, LZW was improved by Terry Welch in
1984 [25,28,29]. It is also known as an adaptive compres-
sion algorithm that does not assume any prior knowledge
of the symbol probabilities.

Data hiding techniques are classified into two cate-
gories: reversible [1, 2, 4, 5, 9–13, 15–17, 19, 21–24, 26, 27]
and irreversible data hiding [3, 8, 18, 20]. Reversible data
hiding schemes are gained more attention since they are
suitable for protecting sensitive information such as pri-
vate information or medical images. In 2013, Wang et
al. [23] proposed a data hiding method based on LZW
code which modifies values of LZW codes to hide secret
data. However, in their scheme, the compression rate is
still high and data embedding capacity is quite low. In
this paper, we propose a new improvement on Wang et
al.’s method which employed the LZW compression algo-
rithm to solve above two issues at the same time. The
proposed scheme achieves a higher protection of secret
information while enhancing the compression rate.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review LZW compression method. Our
proposed scheme is described in Section 3. In Section 4,
we demonstrate the performance of our proposed scheme.
Our conclusions are given in Section 5.

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 479

2 Related Work

2.1 The LZW Algorithm

The LZ family, including LZ1 [28], LZ2 [29], LZW [25] and
their variants are the most popular dictionary-based com-
pression algorithms because they achieve low complexity
and good compression rate. LZW algorithm achieves the
compression by replacing a repeated sequence of charac-
ters with a reference back to its previous occurrence. Per-
formance of the algorithm depends on how such references
are represented and on how to select the sequences that
are replaced. We now briefly review the LZW algorithm.

The algorithm compresses different lengths of sub-
strings to a same length of compression code. That is
to say, the user can acquire a same length of index. The
characteristic of this algorithm is simple and effective to
be implemented. Creating a dictionary including all of
the characters in the input file is the first step of this al-
gorithm. Secondly, we find the sub-string which can be
expressed in the dictionary. Then, the sub-string will be
combined with the next character. After that, we update
it in the dictionary and output the index of the sub-string.
The file is read repeatedly and the dictionary is updated
until all of the characters in the file are read. Finally,
we output is the index numbers. The details of the LZW
algorithm are described as follows.

Algorithm 1 Compression procedure of the original
LZW algorithm

Input. Source file which is needed to be compressed

Output. LZW codes

Step 1. Create a dictionary including all of the charac-
ters.

Step 2. Scan a sub-string w from the input file which
can be found in the dictionary.

Step 3. Combine the sub-string w with the next charac-
ter c, and give new index I(w||c) and add it to the
dictionary.

Step 4. Output the index of the sub-string I(w) and re-
move the sub-string w in the input file.

Step 5. Repeat Step 2 through Step 4 until the source
file is compressed.

After compressing, we have the LZW compression code
with shorter size. Whenever the user wants to decompress
to recover the original data, he/she will perform the de-
compression procedure which is described below.

Algorithm 2 Decompression procedure of the original
LZW algorithm

Input. Compression file

Output. Source file which was decompressed

Step 1. Create a dictionary including all of the charac-
ter.

Step 2. Scan a LZW code I(w) from the compression file
and extract the corresponding symbol w.

Step 3. If the next index is equal to the dictionary plus
one, combine the symbol w with the first character c
of itself; otherwise, combine the symbol w with the
first character c of the next LZW code, then give new
index I(w||c) and add it to the dictionary.

Step 4. Output the index of the symbol w and remove
the LZW code I(w) in the compression file.

Step 5. If all of LZW codes from the compression file
are read, then the process is ended and output the
decompressed data; otherwise, repeat Step 2 through
Step 4.

The following example gives a clearer understanding
of LZW algorithm. Assume that we have a dictionary
which is represented by 8 bits in ASCII and the length of
the compression code is 9 bits. Table 1 shows the LZW
algorithm for the input string “aabaababbaabbabaaabb”.

Table 1: An example to illustrate LZW algorithm

Compression Decompression
Input Updated

dictionary
Output Input Output Updated

dictionary
aa aa=256 97 97 a
ab ab=257 97 97 a aa=256
ba ba=258 98 98 b ab=257
aab aab=259 256 256 aa ba=258
bab bab=260 258 258 ba aab=259
bb bb=261 98 98 b bab=260
baa baa=262 258 258 ba bb=261
abb abb=263 257 257 ab baa=262
baba baba=264 260 260 bab abb=263
aaa aaa=265 256 256 aa baba=264
abb 263 263 abb aaa=265

2.2 The HPDH-LZW Scheme

In 2013, Wang et al. [23] proposed a high performance
reversible data hiding scheme based on LZW algorithm
(HPDH-LZW). The main idea of the paper is that the
compression code is divided into two ranges: in the dic-
tionary or not. In the hiding phase, if the secret bit is
0, output the original compression index; if the secret bit
is 1, calculate the original compression index, and then
add the number of dictionary size and output it. In the
extraction phase, if the value of current processing code
is larger than current size of dictionary, we extract secret
bit “1” and recover the original index by calculating the
difference between this code and the dictionary size. Oth-
erwise, we extract bit “0” and the original LZW code is
equal to the current code. The details of the HPDH-LZW
algorithm are described as follows.

The details of the HPDH-LZW decompression and se-
cret extraction procedure are described below.

In the following example, we assume that a dictionary
is represented by 8 bits in ASCII, the length of the com-

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 480

Algorithm 3 The HPDH-LZW algorithm

Input. Source file which is needed to be compressed and
secret data

Output. LZW codes

Step 1. Create a dictionary which includes all charac-
ters.

Step 2. Scan a sub-string w from the input file, which
can be found in the dictionary.

Step 3. Combine the sub-string w with the next charac-
ter c from the source file, and add new index I(w||c)
to the dictionary.

Step 4.1. If secret bit is “0”, then output the index of
the sub-string I(w). If the secret bit is “1”, then
output: I(w) + ds.

Step 4.2. Remove the sub-string w in the input file.

Step 5. Repeat Step 2 through Step 4 until the source
file is compressed.

Algorithm 4 The HPDH-LZW decompression algorithm

Input. Compressed file

Output. The decompressed source file and secret file

Step 1. Create a dictionary size ds which includes all of
the characters.

Step 2. Scan a LZW code I(w) from the compression
file. If I(w) is more than the dictionary size ds, we
extract the secret bit as “1” and recover the original
LZW code I(w)−ds; otherwise, we extract the secret
bit as “0” and the original LZW code is equal to I(w).
The corresponding symbol w is extracted according
to the original LZW code.

Step 3. If the next LZW code is equal to ds + 1, we
combine the symbol w with its first character c; oth-
erwise, combine the symbol w with the first character
c of the next LZW code, then give new index I(w||c)
and add it to the dictionary.

Step 4. Output the index of the symbol w and the se-
cret bit, then remove the LZW code I(w) in the com-
pressed file.

Step 5. If all LZW codes from the compression file are
read, output the decompression data and secret file;
otherwise, repeat Step 2 to Step 4.

pression code is 10 bits and the largest size of the dic-
tionary is 9 bits. It means that, the original dictionary
indices are from 0 to 255, the new dictionary indices are
from 256 to 511 and the highest index is 1023. Table 2
illustrates the HPDH-LZW algorithm for the input string
“aabaababbaabbabaaabb” and the string of secret bits
“1101101001”.

It is noted that in the HPDH-LZW scheme, the size
of the compression code and the capacity of secret bits
are in inverse proportion, but the size of the compression
code and the size of the compression file are in direct
proportion.

3 Proposed Scheme

Our proposed scheme is called IDH-LZW, i.e., improved
data hiding method based on Lempel-Ziv-Welch compres-
sion. In our proposed scheme, the values of LZW codes
are modified to embed secret bits of different lengths while
avoiding changing the content of the dictionary. That is
to say, every new symbol inserted into the dictionary is
used to embed secret bits of different lengths.

3.1 IDH-LZW Embedding Algorithm

The proposed embedding algorithm is described in Algo-
rithm 5 as follows.

Algorithm 5 IDH-LZW embedding algorithm

Input. Source file and secret file

Output. Compression codes with secret
Firstly, the user must define how many bits to rep-
resent one compression code C size and how many
indices in the dictionary Ds.

Step 1.
- Read the character ci from the source file.
- Set s = sp||ci, where s is a string variable, sp is

previous symbol and || means the concatenation
operation. If i = 0 then s = c0.

Step 2.
If s exists in the dictionary

- Set the previous symbol sp = s.
Else

- Compute kp = Ds/ds, where ds is the current
size of the dictionary, kp is the hidden fragment
and the value of kp is between 2k and 2k+1.

- Get k secret bits bk from the secret file and
sbk is bk in decimal.

- Get the code Ci, where Ci is the dictionary
index of sp.

- Set Ci

′
= Ci + ds ∗ sbk, where ds is the

current size of the dictionary.
- Output Ci

′
, where Ci

′
is the compression

code with secret.Step 3.
If ds < Ds

- Add s into the dictionary.
- Set s = ci, where ci is the last character of s.

If the source file is remained
- Repeat Step 1 to Step 3.

Step 4.
In case sp still has data without output after Step 3

- Set kp = Ds/ds.
- Take a secret digit sbk from the secret file.

- Get code Ci

′
and set Ci

′
= Ci + ds ∗ sbk.

- Output Ci

′
.

Step 5.

- Transform Ci

′
to binary code Cbi where binary

code size is C size.
- The final compression code is C, where C is the

concatenation of Cbi.

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 481

Table 2: An example to illustrate HPDH-LZW algorithm

Compression Decompression
Input Updated dictionary Hidden bit Output Input Extracted bit Output Updated dictionary
aa aa=256 1 353 353 1 a
ab ab=257 1 354 354 1 a aa=256
ba ba=258 0 98 98 0 b ab=257
aab aab=259 1 515 515 1 aa ba=258
bab bab=260 1 518 518 1 ba aab=259
bb bb=261 0 98 98 0 b bab=260
baa baa=262 1 520 520 1 ba bb=261
abb abb=263 0 257 257 0 ab baa=262
baba baba=264 0 260 260 0 bab abb=263
aaa aaa=265 0 256 256 0 aa baba=264
abb 1 529 529 1 abb aaa=265

3.2 IDH-LZW Decompression and Secret
Extraction Algorithm

In the decompression phase, it is noted that the number
of bits used to represent one compression code C size and
the number of indices in the dictionary Ds are shared be-
tween the dealer and the receiver. This information is
used to extract the secret bits and decompress the com-
pressed file. Algorithm 6 is used to demonstrate the de-
compression and extraction procedure of our method.

Algorithm 6 IDH-LZW decompression and secret ex-
traction algorithm

Input. Compression codes

Output. Reconstructed source file and recovered secret
file

Step 1.
- Cut C size bits to present one LZW compres-

sion code Ci

′
.

Step 2.

- Read a LZW code C0

′
.

- Compute kp = Ds/ds, where kp is the embed-
ding range, Ds is the number of the dictionary
and ds is the current size of the dictionary. The
value of kp is from 2k to 2k+1.

- Compute C0 = C0

′
/ds and get the remainder

sbk = C0

′
mod d, where C0 is the original com-

pression code, sbk are extracted secret bits in
decimal and bk are k secret bits of sbk in bi-
nary.

- Get w where w is the symbol of C0 in the dic-
tionary.

Step 3.

- Read the next LZW code Ci

′
.

If ds is equal to Ds
kp = Ds/ds.

Else
kp = Ds/(ds + 1).

- Compute Ci = Ci

′
/ds, get the remainder sbk =

Ci mod d and extract secret bit bk from sbk.
- Output bk.

Step 4.

- Set ci to be the source file value.
If Ci exists in the dictionary

- Get ci, where ci is the symbol of Ci in the dic-
tionary.

Else if Ci is equal to ds
- Set ci = w||(the first symbol of w).

If (ds < Ds)
- Put ci = w||(the first symbol of w) into the

dictionary.
- Set w = ci.
- Output ci.

Step 5.
- Concatenate ci to reconstruct the source file and
bk to recover the secret file.

We illustrate all the steps of our IDH-LZW algorithm
in Table 3 as follows. Here, we give a dictionary which is
represented by 8 bits in ASCII, the length of compression
code is 10 bits and the maximum size of the dictionary is
9 bits as an example. It means that, original dictionary
indices are from 0 to 255, new dictionary indices are from
256 to 511 and the maximum index is 1023. Table 3
shows the proposed IDH-LZW algorithm for the input
string “aabaababbaabbabaaabb” and the string of secret
bits “110110100011”.

4 Experimental Results

To show that our proposed scheme is suitable for most
data formats, we conduct experiments on different kinds
of files such as text files, binary images, grayscale images
and color images with different file sizes. Figure 1 shows
the set of test images and Figure 2 shows the text files
used to implement our method.

4.1 Compression Performance

Our IDH-LZW scheme can embed a large amount of se-
cret bits while compressing the source file. As a result,
we can save storage as well as protect our data. We con-
duct our experiments on different kinds of file formats
such as text files, binary images, grayscale images sized

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 482

Table 3: Example to illustrate IDH-LZW algorithm

Compression Decompression
Input Updated dictionary Hidden bit Output Input Extracted bit Output Updated dictionary
aa aa=256 11 865 865 11 a
ab ab=257 0 97 97 0 a aa=256
ba ba=258 1 356 356 1 b ab=257
aab aab=259 1 515 515 1 aa ba=258
bab bab=260 0 258 258 0 ba aab=259
bb bb=261 1 359 359 1 b bab=260
baa baa=262 0 258 258 0 ba bb=261
abb abb=263 0 257 257 0 ab baa=262
baba baba=264 0 260 260 0 bab abb=263
aaa aaa=265 1 521 521 1 aa baba=264
abb 1 529 529 1 abb aaa=265

(a) Baboon (b) Lena (c) Boat (d) Peppers
(grayscale) (grayscale) (grayscale) (grayscale)

(a) Baboon (b) Lena (c) Boat (d) Peppers
(color) (color) (color) (color)

Figure 1: Test images

(a) The Gettysburg address

(b) I have a dream

(c) Obama

(d) The little prince

(e) Brave new world

Figure 2: Text files

256×256, grayscale images sized 512×512 and color im-
ages, as shown in Tables 4-8, respectively. In these tables,
the “LZW size” parameter is the size of LZW codes, mea-
sured by the number of indices. The “capacity” values are
taken under different dictionary sizes (ds) on various im-
ages.

4.2 Embedding Performance

The proposed IDH-LZW scheme aims to embed secret in-
formation into compressed files. Therefore, the embed-
ding rate is concerned to evaluate the performance of
an algorithm. To further demonstrate that our scheme
achieves high embedding rate, Tables 9-11 show the num-
ber of hidden bits per LZW code measured by byte on
different file formats. It can be seen from the tables that,
a larger size of dictionary is increased and a larger amount
of secret bits is embedded. However, the compression rate
is higher. Moreover, among these tables, we can see that
the embedding rate in Table 10 is the highest while the
compression rate is low. The reason is that in grayscale
images, many pixels are the same as their neighbors.

4.3 Comparisons

In this subsection, we implement Wang et al.’s scheme
(HPDH-LZW) and compare the results with our proposed
scheme in terms of low compression rate and high embed-
ding capacity. The “decreased size” parameter is used to
evaluate the size of compression code that is reduced while
comparing to Wang et al.’s scheme. The “increased bits”
parameter is conducted to show that our scheme can em-
bed more data into host compression codes. Tables 12-16
obviously show that our proposed scheme is better than
HPDH-LZW scheme in terms of compression rate and em-
bedding capacity. Furthermore, graphs in Figure 3 visibly
show our comparisons.

5 Conclusions

In this paper, we proposed a novel compression-based
data hiding scheme called IDH-LZW which not only solves

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 483

Table 4: The capacity performance of IDH-LZW scheme for text files

C size 10 11 12 13
Ds 9 10 11 12
File name LZW size

(index)
Capacity LZW size

(index)
Capacity LZW size

(index)
Capacity LZW size

(index)
Capacity

The Gettysburg address 803 804 717 975 717 1692 717 2409
I have a dream 5090 5091 4040 4298 3538 4565 3325 6145
Obama 7566 7567 5819 6077 5058 6085 4680 7500
Brave new world 237230 237231 179303 179561 146171 147198 126063 128883
The little prince 54821 54822 40392 40650 33474 34501 28055 30875

Table 5: The capacity performance of IDH-LZW scheme for binary images

C size 10 11 12 13 14 15
Ds 9 10 11 12 13 14
File
name

LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity

Airplane 7610 8112 6717 7730 5885 7921 5501 9584 5467 13645 5467 19112
Boat 9200 9702 8028 9041 7156 9192 6671 10754 6543 14721 6543 21264
Gold 12408 12910 10757 11770 9633 11669 8952 13035 8665 16843 8640 25009
Lena 8025 8527 6807 7820 6220 8256 5911 9994 5811 13989 5811 19800
Peppers 7190 7692 6147 7160 5775 7811 5533 9616 5491 13669 5491 19160

Table 6: The capacity performance of IDH-LZW scheme for grayscale images (sized 256×256)

C size 16 17 18 19 20
Ds 15 16 17 18 19
File
name

LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity

Baboon 40104 70831 39977 103217 39977 143194 39977 183171 39977 223148
Barbara 40497 71224 40257 103497 40257 143754 40257 184011 40257 224268
Boat 34849 65576 34818 98058 34818 132876 34818 167694 34818 202512
Family 38009 68736 37895 101135 37895 139030 37895 176925 37895 214820
Girl 33797 64524 33789 97029 33789 130818 33789 164607 33789 198396
Lena 34861 65588 34843 98083 34843 132926 34843 167769 34843 202612
Peppers 351997 65926 35149 98389 35149 133538 35149 168687 35149 203836
Toys 32193 62920 32193 95113 32193 127306 32193 159499 32193 191692

Table 7: The capacity performance of IDH-LZW scheme for grayscale images (sized 512×512)

C size 16 17 18 19 20
Ds 15 16 17 18 19
File
name

LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity LZW
size
(index)

Capacity

Baboon 146755 177482 136511 199751 133149 261670 132994 392332 132994 525326
Boat 146376 177103 124444 187684 109856 238377 109856 348233 109856 458089
F16 114876 145603 96009 159249 94785 223306 94785 318091 94785 412876
Lena 127139 157866 117295 180535 114434 242955 114434 357389 114434 471823
Peppers 129000 159727 118875 182115 116070 244591 116070 360661 116070 476731
Gold 140641 171368 122040 185280 118513 247034 118513 365547 118513 484060

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 484

Table 8: The capacity performance of IDH-LZW scheme for color images (sized 512×512)

C size 16 17 18 19 20
Ds 15 16 17 18 19
File
name

LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity LZW size
(index)

Capacity

Baboon 509088 539815 470992 534232 428694 557215 407172 666510 402207 923434
Boat 559908 590635 510732 573972 426127 554648 344134 603472 337656 858883
F16 430883 461610 399157 462397 320466 448987 288861 548199 288400 809627
Lena 190343 221070 153265 216505 135890 264411 135842 395180 135842 531022
Peppers 516584 547311 490857 524097 415514 544035 387969 647307 382513 903740
Gold 588303 619030 469542 532782 384609 513130 361901 621239 356391 877618

Table 9: The embedding rate of the proposed scheme for text files

C size 10 11 12 13
Ds 9 10 11 12
File name LZW size

(byte)
Hidden bit
per byte

LZW size
(byte)

Hidden bit
per byte

LZW size
(byte)

Hidden bit
per byte

LZW size
(byte)

Hidden bit
per byte

The Gettysburg
address

1003.75 0.80 985.88 0.99 1075.50 1.57 1165.13 2.07

I have a dream 6362.50 0.80 5555.00 0.77 5307.00 0.86 5403.13 1.14
Obama 9457.50 0.80 8001.13 0.76 7587.00 0.80 7605.00 0.99
Brave new world 296537.50 0.80 246541.63 0.73 219256.50 0.67 204852.38 0.63
The little prince 68526.25 0.80 55539.00 0.73 50211.00 0.69 45589.38 0.68

Table 10: The embedding rate of the proposed scheme for grayscale images (sized 256×256)

C size 16 17 18 19 20
Ds 15 16 17 18 19
File
name

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

Baboon 80208.00 0.88 84951.13 1.22 89948.25 1.59 94945.38 1.93 99942.50 2.23
Barbara 80994.00 0.88 85546.13 1.21 90578.25 1.59 95610.38 1.92 100642.50 2.23
Boat 69698.00 0.94 73988.25 1.33 78340.50 1.70 82692.75 2.03 87045.00 2.33
Family 76018.00 0.90 80526.88 1.26 85263.75 1.63 90000.63 1.97 94737.50 2.27
Girl 67594.00 0.95 71801.63 1.35 76025.25 1.72 80248.88 2.05 84472.50 2.35
Lena1 69722.00 0.94 74041.38 1.32 78396.75 1.70 82752.13 2.03 87107.50 2.33
Peppers 70398.00 0.94 74691.63 1.32 79085.25 1.69 83478.88 2.02 87872.50 2.32
Toys 64386.00 0.98 68410.13 1.39 72434.25 1.76 76458.38 2.09 80482.50 2.38

Table 11: The embedding rate of the proposed scheme for color images (sized 512×512)

C size 16 17 18 19 20
Ds 15 16 17 18 19
File
name

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

LZW
size
(byte)

Hidden bit
per byte

F16 861766 0.54 848209 0.55 721049 0.62 686045 0.80 721000 1.12
Baboon 1018176 0.53 1000858 0.53 964562 0.58 967034 0.69 1005518 0.92
Boat 1119816 0.53 1085306 0.53 958786 0.58 817318 0.74 844140 1.02
Gold 1176606 0.53 997777 0.53 865370 0.59 859515 0.72 890978 0.99
Lena 380686 0.58 325688 0.66 305753 0.86 322625 1.22 339605 1.56
Peppers 1033168 0.53 1043071 0.50 934907 0.58 921426 0.70 956283 0.95

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 485

Table 12: Comparisons between IDH-LZW scheme and Wang et al.’s scheme conducted on binary images (sized
512×512)

File name
Original
file size

HPDH-LZW Proposed scheme
Decreased size Increased bits

LZW size (C size =
10 and Ds = 9)

Capacity LZW size (C size =
13 and Ds = 12)

Capacity

F16 32768 9513 7610 8939 9584 6.03% 25.94%
Boat 32768 11500 9200 10840 10754 5.74% 16.89%
Goldhill 32768 15510 12408 14547 13035 6.21% 5.05%
Lena 32768 10031 8025 9605 9994 4.25% 24.54%
Peppers 32768 8988 7190 8991 9616 -0.04% 33.74%

Table 13: Comparisons between IDH-LZW scheme and Wang et al.’s scheme conducted on grayscale images (sized
256×256)

File name
Original
file size

HPDH-LZW Proposed scheme
Decreased size Increased bits

LZW size (C size =
10 and Ds = 9)

Capacity LZW size (C size =
13 and Ds = 12)

Capacity

Baboon 65536 80886 64709 80208 70831 0.84% 9.46%
Barbara 65536 79999 63999 80994 71224 -1.24% 11.29%
Boat 65536 73238 58590 69698 65576 4.83% 11.92%
Family 65536 79809 63847 76018 68736 4.75% 7.66%
Girl 65536 77253 61802 67594 64524 12.50% 4.40%
Lena 65536 76428 61142 69722 65588 8.77% 7.27%
Peppers 65536 77546 62037 70398 65926 9.22% 6.27%
Toys 65536 80878 64702 64386 62920 20.39% -2.75%

Table 14: Comparisons between IDH-LZW scheme and Wang et al.’s scheme conducted on grayscale images (sized
512×512)

File name
Original
file size

HPDH-LZW Proposed scheme
Decreased size Increased bits

LZW size (C size =
10 and Ds = 9)

Capacity LZW size (C size =
13 and Ds = 12)

Capacity

Airplane 262144 315065 252052 225114 318091 28.55% 26.20%
Baboon 262144 321820 257456 302155 382967 6.11% 748.75%
Barbara 262144 320539 256431 300846 381865 6.14% 48.92%
Boat 262144 279783 223826 260908 348233 6.75% 55.58%
Elaine 262144 313738 250990 284174 367825 9.42% 46.55%
Family 262144 316699 253359 271211 356909 14.36% 40.87%
Girl 262144 299851 239881 257669 345505 14.07% 44.03%
Gold 262144 301103 240882 265326 351953 11.88% 46.11%
Lena 262144 300391 240313 254852 343133 15.16% 42.79%
Peppers 262144 305998.8 244799 252750 341363 17.40% 39.45%
Sailboat 262144 316698.8 253359 274785 359919 13.23% 42.06%
Bridge 262144 277127.5 221702 200623 297467 27.61% 34.17%
Tiffany 262144 286201.3 228961 232441 324261 18.78% 41.62%
Toys 262144 306772.5 245418 243457 333537 20.64% 35.91%
Zelda 262144 301776.3 241421 248214 337543 17.75% 39.82%

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 486

Figure 3: Comparisons between HPDH-LZW and our method

Table 15: Comparisons between IDH-LZW scheme and Wang et al.’s scheme conducted on color images (sized
512×512)

File name
Original
file size

HPDH-LZW Proposed scheme
Decreased size Increased bits

LZW size (R+G+B)
(C size = 10 and Ds = 9)

Capacity LZW size (R+G+B)
(C size = 13 and Ds = 12)

Capacity

Airplane 786432 894215 715372 711305 984557 20.45% 37.63%
Baboon 786432 971015 776812 970988 1186851 0.00% 52.78%
Boat 786432 912838 730270 775112 1038289 15.09% 42.18%
Gold 786432 948944 759155 835991 1089555 11.90% 43.52%
Lena 786432 693664 554931 464123 771629 33.09% 39.05%
Peppers 786432 934743 747794 829136 1083783 11.30% 44.93%

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 487

Table 16: Comparisons between IDH-LZW scheme and Wang et al.’s scheme conducted on text files

File name
Original
file size

HPDH-LZW Proposed scheme
Decreased size Increased bits

LZW size (C size =
10 and Ds = 9)

Capacity C size Ds LZW
size

Capacity

The Gettysburg
Address

1461 1004 803 11 10 986 975 1.78% 21.42%

I have a dream 9167 6363 5090 14 13 5819 9470 8.55% 86.05%
Obama 13507 9458 7566 14 13 8160 11324 13.72% 49.67%
Brave new world 375467 296538 237230 19 18 193791 291713 34.65% 22.97%
The little prince 91141 68526 54821 17 16 46963 74927 31.47% 36.68%

the issue of data security but also reduces the size of stor-
age. Experimental results show that our proposed scheme
achieves good compression rate and high embedding ca-
pacity. Moreover, our proposed scheme has very low com-
putation cost but guarantees the efficiency, that is suitable
for real time applications.

References

[1] K. Bharanitharan, C. C. Chang, H. R. Yang, and
Z. H. Wang, “Efficient pixel prediction algorithm for
reversible data hiding,” International Journal of Net-
work Security, vol. 18, no. 4, pp. 750–757, 2016.

[2] D. Cavagnino, M. Lucenteforte, and M. Grangetto,
“High capacity reversible data hiding and content
protection for radiographic images,” Signal Process-
ing, vol. 117, pp. 258–269, 2015.

[3] H. Chen, X. Du, Z. Liu, and C. Yang, “Optical color
image hiding scheme by using gerchberg-saxton al-
gorithm in fractional fourier domain,” Optics and
Lasers in Engineering, vol. 66, pp. 144–151, 2015.

[4] D. Coltuc, “Low distortion transform for reversible
watermarking,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 1, pp. 412–417, 2012.

[5] G. Galambos and J. Bekesi, “Data compression:
theory and techniques. Department of informatics,
teacher’s training college,” Database and Data Com-
munication Network Systems, vol. 1, 2002.

[6] T. Gulom, “The encryption algorithms GOST28147-
89-IDEA8-4 and GOST28147-89-RFWKIDEA8-4,”
International Journal of Electronics and Information
Engineering, vol. 6, no. 2, pp. 59-71, 2017.

[7] T. Gulom, “The encryption algorithm GOST28147-
89-PES16-2 and GOST28147-89-RFWKPES16-2,”
International Journal of Electronics and Information
Engineering, vol. 6, no. 1, pp. 1–11, 2017.

[8] R. Jafari, D. Ziou, and M. M. Rashidi, “Increasing
image compression rate using steganography,” Expert
Systems with Applications, vol. 40, no. 17, pp. 6918–
6927, 2013.

[9] B. Jana, D. Giri and S. K. Mondal, “Dual-image
based reversible data hiding scheme using pixel value
difference expansion,” International Journal of Net-
work Security, vol. 18, no. 4, pp. 633–643, 2016.

[10] F. Li, Q. Mao, and C. C. Chang, “A reversible
data hiding scheme based on IWT and the sudoku
method,” International Journal of Network Security,
vol. 18, no. 3, pp. 410–419, 2016.

[11] J. J. Li, Y. H. Wu, C. F. Lee, C. C. Chang, “General-
ized PVO-K embedding technique for reversible data
hiding,” International Journal of Network Security,
vol. 20, no. 1, pp. 65-77, 2018.

[12] X. Li, B. Li, B. Yang, and T. Zeng, “General frame-
work to histogram-shifting-based reversible data
hiding,” IEEE Transactions on Image Processing,
vol. 22, no. 6, pp. 2181–2191, 2013.

[13] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Re-
versible data hiding in encrypted images by reserv-
ing room before encryption,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 3,
pp. 553–562, 2013.

[14] S. D. Putra, S. Sutikno, Y. Kurniawan, A. S. Ah-
mad, “Design of an AES device as device under test
in a DPA attack,” International Journal of Network
Security, vol. 20, no. 2, pp. 256-265, 2018.

[15] C. Qin, C. C. Chang, and T. J. Hsu, “Reversible
data hiding scheme based on exploiting modification
direction with two steganographic images,” Multime-
dia Tools and Applications, vol. 74, no. 15, pp. 5861–
5872, 2015.

[16] C. Qin and Y. C. Hu, “Reversible data hiding in vq
index table with lossless coding and adaptive switch-
ing mechanism,” Signal Processing, vol. 129, pp. 48–
55, 2016.

[17] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q.
Shi, “Reversible watermarking algorithm using sort-
ing and prediction,” IEEE Transactions Circuit Sys-
tems for Video Technology, vol. 19, no. 7, pp. 989–
999, 2009.

[18] E. Satir and H. Isik, “A compression-based text
steganography method,” Journal of Systems and
Software, vol. 85, no. 10, pp. 2385–2394, 2012.

[19] J. Wang, J. Ni, and Y. Hu, “An efficient reversible
data hiding scheme using prediction and optimal side
information selection,” Journal of Visual Commu-
nication and Image Representation, vol. 25, no. 6,
pp. 1425–1431, 2014.

[20] S. Wang, J. Sang, X. Song, and X. Niu, “Least sig-
nificant qubit (lsqb) information hiding algorithm for

International Journal of Network Security, Vol.20, No.3, PP.478-488, May 2018 (DOI: 10.6633/IJNS.201805.20(3).10) 488

quantum image,” Measurement, vol. 73, pp. 352–359,
2015.

[21] Y. L. Wang, J. J. Shen, M. S. Hwang, “A survey of
reversible data hiding for VQ-compressed images,”
International Journal of Network Security, vol. 20,
no. 1, pp. 1-8, 2018.

[22] Y. L. Wang, J. J. Shen, M. S. Hwang, “An improved
dual image-based reversible hiding technique using
LSB matching”, International Journal of Network
Security, vol. 19, no. 5, pp. 858–862, 2017.

[23] Z. H. Wang, H. R. Yang, T. F. Cheng, and C. C.
Chang, “A high-performance reversible data-hiding
scheme for lzw codes,” The Journal of Systems and
Software, vol. 86, no. 11, pp. 2771–2778, 2013.

[24] Z. H. Wang, X. Zhuang, C. C. Chang, C. Qin, Y. Zhu,
“Reversible data hiding based on geometric structure
of pixel groups”, International Journal of Network
Security, vol. 18, no. 1, pp. 52–59, 2016.

[25] T. A. Welch, “A technique for high-performance data
compression,” IEEE Computer, vol. 17, no. 6, pp. 8–
19, 1984.

[26] S. Zhang, T. Gao, L. Yang, “A reversible data hiding
scheme based on histogram modification in integer
DWT domain for BTC compressed images,” Inter-
national Journal of Network Security, vol. 18, no. 4,
pp. 718–727, 2016.

[27] X. Zhang, “Reversible data hiding with optimal value
transfer,” IEEE Transactions on Multimedia, vol. 15,
no. 2, pp. 316–325, 2013.

[28] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Transactions on
Information Theory, vol. IT-23, no. 3, pp. 337–343,
1977.

[29] J. Ziv and A. Lempel, “Compression of individual
sequences via variable-rate coding,” IEEE Trans-
actions on Information Theory, vol. IT-24, no. 5,
pp. 530–536, 1978.

Biography

Chin-Chen Chang received his Ph.D. degree in com-
puter engineering from National Chiao Tung University.
His current title is Chair Professor in Department of In-
formation Engineering and Computer Science, Feng Chia
University, from February 2005. He is currently a Fellow
of IEEE and a Fellow of IEE, UK. And, since his early
years of career development, he consecutively won Out-
standing Talent in Information Sciences of the R. O. C.,
AceR Dragon Award of the Ten Most Outstanding Tal-
ents, Outstanding Scholar Award of the R. O. C., Out-
standing Engineering Professor Award of the R. O. C.,
Distinguished Research Awards of National Science Coun-
cil of the R. O. C., Top Fifteen Scholars in Systems and
Software Engineering of the Journal of Systems and Soft-
ware, and so on. On numerous occasions, he was invited
to serve as Visiting Professor, Chair Professor, Honorary
Professor, Honorary Director, Honorary Chairman, Dis-
tinguished Alumnus, Distinguished Researcher, Research

Fellow by universities and research institutes. His cur-
rent research interests include database design, computer
cryptography, image compression, and data structures.

Ngoc-Tu Huynh received the BS degree in mathematics
– informatics in 2006 from Danang University, Vietnam,
and the MS degree in information engineering and com-
puter science in 2010 from Feng Chia University. Since
2006, she has been a lecturer of Department of Computer
Science, College of Information Technology, Danang Uni-
versity, Vietnam. She is currently pursuing her Ph.D in
information engineering and computer science, Feng Chia
University, Taichung, Taiwan. Her research interests in-
clude visual cryptography, watermarking, steganography
and image processing.

Yu-Kai Wang received his MS degree from Department
of Computer Science and Information Engineering, Na-
tional Chung Cheng University, Chiayi, Taiwan. His cur-
rent research interests include information hiding and im-
age processing.

Yanjun Liu received her Ph.D. degree in 2010, in School
of Computer Science and Technology from University of
Science and Technology of China (USTC), Hefei, China.
She has been an assistant professor serving in Anhui Uni-
versity in China since 2010. She currently serves as a
senior research fellow in Feng Chia University in Taiwan.
Her specialties include E-Business security and electronic
imaging techniques.

