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Abstract

Medium Field Equation (MFE) multivariate public key
cryptosystems were broken by High Order Linearization
Equation (HOLE) attack. In order to avoid HOLE at-
tack, we proposed an improvement of MFE, Cubic MFE
public key encryption scheme. In our construction, multi-
plications of three second order matrices were used to get
a set of cubic polynomials in the central map. Through
theoretical analysis and computer experiments, the Cu-
bic MFE is shown to be secure against HOLE attack and
other existing attacks.
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1 Introduction

In 1994, Peter Shor [18] showed that some number theo-
retic hard problems such as Integer Factorization and Dis-
crete Log Problem can be solved in polynomial time on
quantum computer. Once the quantum computer is prac-
tical, cryptographic algorithms based on the hard prob-
lems above will be no longer secure.

Multivariate Public Key Cryptography (MPKC) could
be seen as one of promising candidates to resist quantum
algorithm attack [17]. The security of the MPKC relies on
the difficulty of solving a system of nonlinear multivariate
polynomial equations on a finite field, which is an NP-
hard problem in worst case. In general, the public key of
MPKC is composed of three maps, two affine maps and a
map called central map which is the key point of designing
an MPKC.

In the past few decades, a lot of multivariate cryptosys-
tems have been proposed, but many of them were broken.
C? [10] is considered as the first MPKC, which was broken
by Patarin[15] with linearization equation attack. Then,

Patarin extended the idea of C? and proposed Hidden
Field Equation (HFE) scheme [16]. Ding et al. [6] showed
that inverting HFE is quasi-polynomial if the size of the
field and the degree of the HFE polynomials are fixed.
After that, many MPKC encryption schemes have been
proposed, such as TTM [11], MFE [21], Square [4] and
ABC [19]. Most instances of TTM were broken because
there are some linearization equations satisfied by their
public key. Square and ABC were broken by differential
attack [2, 12] . Cubic ABC [8] then was proposed to resist
differential attack. This scheme is still secure by now.

Medium Field Equation (MFE) [21] was proposed by
Wang et al. in 2006. The inventors of MFE used products
of second order matrices to derive quadratic polynomials
in its central map. It can be avoid the Paratin relations or
linearization equations. But the original MFE was broken
by High Order Linearization Equation (HOLE) attack [7]
in 2007. In order to resist existing attack, many modifi-
cations of MFE were proposed [9, 20, 22] etc. But all of
them are insecure [3, 14, 23]. Nie et al. [13] pointed out
that it is impossible to derive secure MFE by changing
the form of second order matrices with their transpose
and adjoint.

Although MFE is insecure, the idea of its construction
is elegant. And MFE is very efficient. We want to modify
its central map to propose a security MFE scheme.

In this paper, we propose a Cubic MFE encryption
scheme to avoid HOLE attack. Firstly, we introduce an
extra second order matrix in the central map and use
products of three second order matrices to get cubic poly-
nomials; secondly, we add three equations in the central
map to ensure the successful decryption. Through theo-
retical analysis and computer experiments, we show that
our Cubic MFE scheme can be secure against HOLE at-
tack. Furthermore, the Cubic MFE can resist direct at-
tacks for some chosen parameters. At last, we present
efficiency comparison with Cubic ABC and implementa-
tion for practical parameters.
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This paper is organized as follows. We briefly intro-
duce the original MFE scheme and its cryptanalysis in
Section 2. In Section 3, we present our Cubic MFE. And
security analysis will be presented in Section 4. In Sec-
tion 5, we give practical parameters and efficiency com-
parison. Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we will introduce the MFE public key
cryptosystem and the previous attack on MFE.

2.1 MFE Public Key Cryptosystem

We use the same notations as in [21]. Let K be a finite
field of characteristic 2 and L be its degree r extension
field. In MFE, we always identify L with Kr by a K-linear
isomorphism π : L → Kr. Namely we take a basis of L
over K, {θ1, · · · , θr}, and define π by π(a1θ1+· · ·+arθr) =
(a1, · · · , ar) for any a1, · · · , ar ∈ K. It is natural to extend
π to two K-linear isomorphisms π1 : L12 → K12r and
π2 : L15 → K15r.

In MFE, its encryption map F : K12r → K15r is com-
posed of three maps φ1, φ2, φ3, that is (y1, · · · , y15r) =
F (x1, · · · , x12r) = φ3 ◦ φ2 ◦ φ1(x1, · · · , x12r), where
y1, · · · , y15r are ciphertext variables and x1, · · · , x12r are
plaintext variables. φ1 and φ3 are invertible affine maps
and φ2 is called central map, which is equal to π2◦φ̄2◦π−11 .
φ1 and φ3 are taken as the private keys, while the ex-

pression of the map (y1, · · · , y15r) = F (x1, · · · , x12r) is
the public key. The map φ̄2 : L12 → L15 is defined as
follows. 

Y1 = X1 +X5X8 +X6X7 +Q1;
Y2 = X2 +X9X12 +X10X11 +Q2;
Y3 = X3 +X1X4 +X2X3 +Q3;
Y4 = X1X5 +X2X7;
Y5 = X1X6 +X2X8;
Y6 = X3X5 +X4X7;
Y7 = X3X6 +X4X8;
Y8 = X1X9 +X2X11;
Y9 = X1X10 +X2X12;
Y10 = X3X9 +X4X11;
Y11 = X3X10 +X4X12;
Y12 = X5X9 +X7X11;
Y13 = X5X10 +X7X12;
Y14 = X6X9 +X8X11;
Y15 = X6X10 +X8X12.

(1)

where Q1, Q2, and Q3 form a triple tuple (Q1, Q2, Q3)
which is a triangular map from K3r to itself, more detail
please see [21].

The map φ̄2 can be written by matrix form as follows.
Let X1, · · · , X12 be the entries of three 2× 2 matrices

M1,M2,M3, namely,

M1 =

(
X1 X2

X3 X4

)
,M2 =

(
X5 X6

X7 X8

)
,

M3 =

(
X9 X10

X11 X12

)
.

(2)

Then Y4, · · · , Y15 will be the entries in three 2× 2 ma-
trices Z1, Z2, Z3, namely,

Z1 = M1M2 =

(
Y4 Y5
Y6 Y7

)
,

Z2 = M1M3 =

(
Y8 Y9
Y10 Y11

)
,

Z3 = MT
2 M3 =

(
Y12 Y13
Y14 Y15

)
.

(3)

Then  det(M1) · det(M2) = det(Z1),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z3).

Using the determinants of Z1, Z2, Z3, the determinants
of M1,M2,M3 can be found. And then one can get the
inverse of the central map φ2. More details of decryption
are presented in [21].

2.2 High Order Linearization Equation
Attack on MFE

The equation of following form is called High Order Lin-
earization Equation (HOLE).

n,t∑
i=1,j=1

aijxifj(y1, y2, · · · , ym)

+
l∑

j=1

cjgj(y1, y2, · · · , ym) + d = 0.

(4)

where fj , 1 ≤ j ≤ t, gj , 1 ≤ j ≤ l, are some polyno-
mial functions on ciphertext variables y1, y2, · · · , ym. The
highest degree of ciphertext variables yj is called the order
of the Lineraization Equation.

Note that, given a valid ciphertext y′ =
(y′1, y

′
2, · · · , y′m) and substituted it into equation (4),

it will become a linear equation on plaintext variables
x1, · · · , xn.

Once some HOLEs are satisfied by an MPKC, these
equations can be used to break the MPKC. The MI
scheme was broken by the First Order Linearization Equa-
tion (FOLE) method [15]. And the original MEF was bro-
ken by the Second Order Linearization Equation (SOLE)
method [7].

In the original MFE schemes, the inventors have taken
into account the LE attack. They used MT

2 instead of M2

to avoid the FOLEs.
But many SOLEs were found in the MFE scheme. De-

note by M∗ the adjoint matrix of a second order matrix
M . From

Z1 = M1M2, Z2 = M1M3,

we have

M3M
∗
3M

∗
1M1M2 = M3Z

∗
2Z1 = det(Z2)M2. (5)

Expanding (4), we get four equations of the following form∑
a′ijkXiYjYk = 0. (6)
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In [7], 24 equations of this form can be found.
Substituting (X1, · · · , X12) = π−11 ◦ φ1(x1, · · · , x12r)

and (Y1, · · · , Y15) = π−12 ◦ φ−13 (y1, · · · , y15r) into (8), we
get 24r equations of the following form

∑
i

xi

(∑
j≤k

aijkyjyk +
∑
j

bijyj + ci

)
+
∑
j≤k

djkyjyk +
∑
j

ejyj + f = 0.
(7)

These equations are SOLEs.
Given a public key and a valid ciphertext, after finding

all the SOLEs, one can recover the corresponding plain-
text efficiently.

3 Cubic MFE

In this section, we will present our Cubic MFE encryption
scheme. We use the similar notations as in Section 2.1.
The difference is that two K-linear isomorphisms are π1 :
L16 → K16r and π2 : L22 → K22r.

3.1 Construction of Central Map

The key point of an MPKC is its central map. Let
X1, · · · , X16 = π−11 ◦ φ1(x1, · · · , x16r), and Y1, · · · , Y22 =
π−12 ◦ φ

−1
3 (y1, · · · , y22r), the new cencral map φ̄2 : L16 →

L22 is defined as follows.

Y1 = X1 +X5X8 +X6X7 +Q1;
Y2 = X2 +X9X12 +X10X11 +Q2;
Y3 = X3 +X1X4 +X2X3 +Q3;
Y4 = X5 + f5(X1, X2, X3, X4);
Y5 = X6 + f6(X1, X2, X3, X4, X5);
Y6 = X7 + f7(X1, X2, X3, X4, X5, X6);
Y7 = X1X5X13 +X2X7X13 +X1X6X15 +X2X8X15;
Y8 = X1X5X14 +X2X7X14 +X1X6X16 +X2X8X16;
Y9 = X3X5X13 +X4X7X13 +X3X6X15 +X4X8X15;
Y10 = X3X5X14 +X4X7X14 +X3X6X16 +X4X8X16;
Y11 = X1X9X13 +X2X11X13 +X1X10X15 +X2X12X15;
Y12 = X1X9X14 +X2X11X14 +X1X10X16 +X2X12X16;
Y13 = X3X9X13 +X4X11X13 +X3X10X15 +X4X12X15;
Y14 = X3X9X14 +X4X11X14 +X3X10X16 +X4X12X16;
Y15 = X5X9X13 +X7X11X13 +X5X10X14 +X7X12X14;
Y16 = X5X9X15 +X7X11X15 +X5X10X16 +X7X12X16;
Y17 = X6X9X13 +X8X11X13 +X6X10X14 +X8X12X14;
Y18 = X6X9X15 +X8X11X15 +X6X10X16 +X8X12X16;
Y19 = X1X13 +X2X15;
Y20 = X1X14 +X2X16;
Y21 = X3X13 +X4X15;
Y22 = X3X14 +X4X16.

(8)
where Q1, Q2, and Q3 form a triple tuple (Q1, Q2, Q3)
which is a triangular map from K3r to itself, and f5, f6, f7
are randomly chosen quadratic polynomials.

The main idea of our improvement is that we use prod-
ucts of three second order matrices in MFE to avoid the
HOLEs attack. To do this, it is necessary to introduce a

new plaintext variables matrix, M4 in the matrix form of
the central map φ̄2.

Then the matrix form of the central map φ̄2 is changed
into

Z1 = M1M2M4, Z2 = M1M3M4, Z3 = MT
2 M3M

T
4 .

In order to decrypt successfully, we need introduce
Z4 = M1M4 and Y4, Y5, Y6 in the central map. Let

M4 =

(
X13 X14

X15 X16

)
. (9)

Then the matrix form is changed into

Z1 = M1M2M4 =

(
Y7 Y8
Y9 Y10

)
,

Z2 = M1M3M4 =

(
Y11 Y12
Y13 Y14

)
,

Z3 = MT
2 M3M

T
4 =

(
Y15 Y16
Y17 Y18

)
,

Z4 = M1M4 =

(
Y19 Y20
Y21 Y22

)
.

(10)

Given the values of Y1, · · · , Y22, the map φ̄2 can be
inverted as follows.

• Firstly, we calculate det(Z1), det(Z2), det(Z3),
det(Z4). And then we calculate det(M2) and
det(M3) from

det(Z1) = det(M1)det(M2)det(M4) = det(M2)det(Z4),

and

det(Z2) = det(M1)det(M3)det(M4) = det(M3)det(Z4),

respectively.

• Substitute det(M2) and det(M3) into

det(Z3) = det(MT
2 )det(M3)det(MT

4 )

= det(M2)det(M3)det(M4),

we can get det(M4). Substitute det(M4) into
det(Z4) = det(M1)det(M4), we can derive det(M1).

• Substitute det(M1), det(M2) and det(M3) into Y1 = X1 + det(M2) +Q1;
Y2 = X2 + det(M3) +Q2;
Y3 = X3 + det(M1) +Q3;

(11)

We can calculate X1, X2, X3 in turn. And substitute
them into det(M1) = X1X4 +X2X3, we can get the
value of X4.

• According to the expression of the map φ̄2, we can
calculate X5, X6, X7 in turn. And substitute them
into det(M2) = X5X8 +X6X7, we can get the value
of X8.

• At last, we can calculate X13, X14, X15, X16 and
X9, X10, X11, X12 in turn by the expression of the
map φ̄2.

The security analysis can be seen in Section 4.
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3.2 Encryption Scheme

Key Generation. Randomly generating two affine
maps φ1 and φ3 on K16r and K22r, respectively. Then
calculate the expression of F : K16r → K22r, namely,

(y1, · · · , y22r) = F (x1, · · · , x16r)

= φ3 ◦ φ2 ◦ φ1(x1, · · · , x16r).

The private keys are φ1 and φ3.

The public key is the expression of F : K16r → K22r,
a set of cubic polynomials. The expression of the
central map can be public.

Encryption. Given a plaintext (x′1, · · · , x′16r), the ci-
phertext (y′1, · · · , y′22r) is calculated by public key,
namely,

(y′1, · · · , y′22r) = F (x′1, · · · , x′16r).

Decryption. Given a valid ciphertext (y′1, · · · , y′22r), the
decryption of Cubic MFE is to calculate the inverses
of φ3, φ2 and φ1 in turn, namely,

(x′1, · · · , x′16r) = φ−11 ◦ φ
−1
2 ◦ φ

−1
3 (y′1, · · · , y′22r).

4 Security Analysis

In this section, we consider Cubic MFE against several
existing attacks, such as linearization equations method
and algebraic attacks etc.

Given a public key of an MPKC and a valid ciphertext
y = (y′1, · · · , y′m), to break it is equivalent to solve the
following system F1(x1, · · · , xn) = y′1;

· · ·
Fm(x1, · · · , xn) = y′m.

(12)

4.1 Linearization Equations Attack

Through theoretical analysis, we did not find any lin-
earization equation satisfied by our Cubic MFE. For ex-
ample, similar to SOLE attack on MFE, from Z1 =
M1M2M4, Z4 = M1M4, we can get

M4M
∗
4M

∗
1M1M2M4 = M4Z

∗
4Z1 = det(Z4)M2M4.

Expanding it, we get four equations of the form∑
aijklXiXjYkYl +

∑
bijkXiYjYk = 0. (13)

Substituting (X1, · · · , X16) = π−11 ◦ φ1(x1, · · · , x16r)
and (Y1, · · · , Y22) = π−12 ◦ φ−13 (y1, · · · , y15r) into Equa-
tion (13), we get 24r equations of the form

∑
i≤j

xixj

(∑
k≤l

aijklykyl +
∑
k

bijkyk + cij

)
+
∑
k≤l

dklykyl +
∑
k

ekyk + f = 0.
(14)

From these equations, we can not derive any Lineariza-
tion Equation.

Furthermore, we did many experiments to verify
there is no FOLE and SOLE satisfied by Cubic MFE.
This is done as follows. We selected sufficient plain-
text/ciphertext pairs and plugged them into the SOLE
or FOLE to get a linear system on coefficients of HOLE
or FOLE, and then solve it. The experimental results
showed that the solutions are all zero, hence no HOLE or
FOLE exists.

4.2 Algebraic Attacks

In a direct attack, the attacker wants to recover the plain-
text by solving the system (12). The most efficient algo-
rithm for direct attack is Gröbner Basis method such as
F4 and F5.

According to [5], If K is big, the complexity of Gröbner
Basis method has been proved to be O(23n) and O(22.7n)
in practice.

In Cubic MFE, if K = GF (28) or GF (216), r = 3,
n = 48, the complexity of Gröbner Basis method is about
2129.

An improvement of Gröbner Basis method, F5 can be
seen in [1]. The complexity of algorithm F5 relies on the
degree of regularity dreg in the algorithm.

Proposition 1. ([1], Proposition 2.2) The complexity of
computing a Gröbner basis of a zero-dimensional system
of m equations in n variables with F5 is:

O
(
m ·

(
n+ dreg − 1

dreg

)ω)
,

where dreg is the degree of regularity of the system and
2 < ω < 3 is the linear algebra constant.

Unfortunately, we can not determine the degree of reg-
ularity in our experiments by Magma. When degree in-
crease to 5, the programs would be out of memory. We
estimate the degree of regularity is equal to 6. Hence, the
complexity of F5 on our scheme would be about 283 when
r = 3.

In summary, the Cubic MFE can resist the direct at-
tack with parameters, K = GF (28) or GF (216), r = 3,
n = 48.

5 Parameter Proposals

Based on the security analysis of Cubic MFE in last sec-
tion, we recommend K = GF (28) and GF (216), r = 3,
then n = 48 and m = 66 for our Cubic MFE.

In Table 1, we present the keys sizes of our Cubic MFE
with the paraments recommended and compare them
with Cubic Simple Matrix Encryption (CSME) scheme.

From Table 1, we find that the key sizes of our CMFEs
are smaller than CSMEs.

The performance of CMFEs (r = 3) can be seen in Ta-
ble 2. We did our experiments with Magma on a normal
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Table 1: Parameters and key sizes of CMFEs and comparison with CSMEs

scheme parameters input output public key private key
(k, n,m) size(bit) size(bit) size(KB) size(KB)

CMFE (GF (28), 48, 66) 384 528 1342 6.62
CSME (GF (28), 49, 98) 392 784 2115 72.7
CMFE (GF (216), 48, 66) 768 1056 2684 13.23
CSME (GF (216), 49, 98) 784 1568 4230 145.4

Table 2: The performance of CMFEs

Field Encryption Decryption
Time (ms) Time (ms)

GF (28) 316.72 3.28
GF (216) 344.38 3.59

PC with Intel Core i5 CPU@2.53GHz, 3 GB of memory.
For each finite field, we randomly chose 100 plaintexts
and performed encryptions on them and corresponding
decryptions. We calculated the average time in millisec-
onds of encryptions and decryptions.

6 Conclusion

In this paper, we proposed the Cubic MFE encryption
scheme. In our construction, we use multiplications of
three second order matrices to get a set of cubic poly-
nomials in the central map. The Cubic MFE is secure
against the HOLE attacks and the direct attacks with
proper parameters.

The cubic multivariate public key cryptosystems have
bigger key sizes than the quadratic multivariate public
key cryptosystems. But they can avoided some attacks
occurred on the quadratic ones, such as HOLEs attack etc.
The security of cubic schemes should be further studied
in the future.
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