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Abstract

In recent years, Differential Fault Analysis (DFA) has
been proven as the most efficient technique to attack
any block cipher by introducing a computational error.
In this paper, a new Substitution Permutation Network
(SPN) type architecture is proposed which has better re-
sistance against DFA as compared to Advanced Encryp-
tion Standard (AES). The proposed architecture is similar
to AES except round key mixing function. Here, round
key is mixed with round output, using nonlinear vectorial
Boolean function called ‘Nmix’. Using 4 faulty-fault free
ciphertext pairs, 32 bits of 10th round key is retrieved by
injecting a random byte fault at the input of 9th round.
The computational complexity will be in the order of 236

to obtain 128 bits 10th round key. Total 16 numbers of
faulty and fault free ciphertext pairs are required. Simi-
larly, when a fault is injected at the input of 8th round,
then the 10th round key is obtained with computational
complexity of 253 and 20 numbers of faulty-fault free ci-
phertext pairs are required.

Keywords: Block Cipher; Fault Attack; Nonlinear Boolean
Function; Substitution and Permutation Network

1 Introduction

Cryptography is an important mathematical tool which
is used to provide security in several systems like e-
Commerce, RFID, sensor network, mobile phones, smart
cards, personal digital assistants (PDAs) etc. Crypto-
graphic algorithms are mainly used to satisfy a subset
of four cryptographic properties namely confidentiality,
message integrity, authentication and non repudiation.
For high speed applications algorithms are usually im-
plemented in hardware. But when implemented in ASIC
or FPGA, mathematical security of cryptographic algo-

rithms are not sufficient and hence susceptible to fault
attack. The fault is introduced by attacker during the
execution of cryptographic algorithm to derive the secret
key. This type of fault attack was introduced by Boneh,
DeMillo and Lipton [8, 9]. Subsequently Differential Fault
Analysis (DFA) on secret key cryptosystem has been dis-
cussed by Biham et al. in [6]. They shows lower complex-
ity compared to simplified fault attack.

The US National Institute of Standard and Technol-
ogy (NIST) selected Rijndael as the Advanced Encryp-
tion Standard (AES) in 2000 [11]. This algorithm has
been adopted as a world wide standard for symmetric
key encryption. Till date, fault based attack on advanced
encryption algorithm has lowest computational complex-
ity compared to all other attacks. Presently very low cost
methods are used for fault injection such as variation of
supply voltages, clock glitches, temperature variation, UV
light radiations etc. Optimal fault injection method has
been reported in [21]. How to find key from algebraic
equation, is discussed in [15]. Fault attack by inducing
byte level fault at the input of 9th round of AES has been
reported in [16], where 250 faulty ciphertexts are needed
to recover the key. DFA against AES analyzed by Dusart
et al. in [7]. They show that by injecting fault at byte
level in the 8th round and 9th round, the attacker can de-
rive the key using 40 ciphertext pairs. A survey on fault
attack against AES and their counter measures are dis-
cussed in [2]. Several counter measures are proposed to
resist fault attack on hardware implementation of block
cipher AES. Counter measure techniques are hardware
redundancy, time redundancy, information redundancy
and hybrid redundancy. Differential Fault Analysis on
ultra-lightweight cipher PRESENT, has been delineated
in [10]. To recover the secret key, it takes 2 faulty en-
cryptions and an exhaustive search of 216. An improved
fault attack against Eta Pairing is described in [13]. An
improved fault attack against Miller’s algorithm has been
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presented in [14]. Differential power attack resistant Ri-
jndael circuit is presented in [1]. In [20], it is shown that,
by introducing fault at byte level in the 8th round and
9th round of 128 bits AES algorithm, attacker can eas-
ily recover the total key using two faulty ciphertexts. A
fault based attack on a modified version of AES called
MDS-AES has been reported in [12], where one pair of
faulty-fault free ciphertext are used to derive 10th round
key with a computational complexity of 216. A complete
differential fault analysis against LS-designs and on other
families of SPN-based block ciphers have been shown in
[17]. They have also validated DFA using a practical ex-
ample of hardware implementation of SCREAM running
on an FPGA. In [24, 19], the block cipher key were de-
duced by inducing a single random byte fault at the input
of the eighth round of the AES algorithm. By exploiting
the key-scheduling algorithm, DFA on AES reported in
[23, 22]. It takes two faulty ciphertexts and a brute force
search of 48 and 40 bits respectively.

In this paper, a modified SPN-type architecture has
been proposed to strengthen it against fault attack
without affecting area and time significantly. Here XOR
operation in AddRoundKey step is replaced by a Boolean
nonlinear Nmix function [4]. Effectiveness of the pro-
posed architecture is then analysed against fault attack,
by introducing a random byte fault at the input of 9th

round and 8th round. The attacker has to search for 236

times to obtain the desired 128 bit key. Also 16 numbers
of faulty-fault free ciphertext pairs are necessary, which
is much greater than the complexity of attacking original
AES. When a random byte fault is introduced at the
the input of 8th round, then to recover 32 bits key it
takes 5 faulty ciphertext pairs. So, the attacker has to
search for approximately 253 times to obtain the 128 bits
key and 20 faulty-fault free ciphertext pairs are necessary.

This paper is organized as follows. Following the intro-
duction, a description of proposed SPN type block cipher
algorithm is given in Section 2. Fault analysis on proposed
SPN-type architecture when fault is injected at the input
of 9th and 8th round have been discussed in Sections 3
and 4 respectively. Comparison with existing works is
discussed in Section 5. Finally the paper is concluded in
Section 6.

2 Description of SPN Type Block
Cipher Algorithm

The description of AES-Rijndael algorithm has been pro-
vided in detail by Daemen et al. in [11]. The pro-
posed SPN type architecture is a modified version of AES-
Rijndael algorithm. In the proposed architecture, Sub-
Byte, ShiftRow and MixColumn operations are exactly
same as in AES. Only round key mixing operation of AES
has been modified where XOR operation is replaced by
Nmix. In this algorithm, key size and block size are 128
bits. Similar to AES, the 128 bits message block is ar-

ranged as a 4 × 4 array of bytes. The elements of the
matrix are represented by variables sij where 0 ≤ i ≤ 3
and 0 ≤ j ≤ 3 where i, j denoting the row and column
indexes of the state matrix. Number of round is 10 and
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Figure 1: Block diagram of SPN type block cipher algo-
rithm

in each round key is generated from cipher key by key
expansion algorithm. At the end of 10th round ciphertext
is generated. Similar to AES-128, round 1-9 consists of
SubByte, ShiftRow, MixColumn and Round Key Mixing.
Round 10 consists of following 3 operations: SubByte,
ShiftRows and Round Key Mixing. Basics of each func-
tional block is as follows
SubBytes: This is a non linear substitution step where
each byte is replaced by a new byte.
ShiftRows: In this step 2nd, 3rd and 4th rows are circu-
lar shifted left by 1, 2 and 3 bytes respectively. First row
remains unchanged.
MixColumns: Here the four bytes of each column of the
state matrix are multiplied by the following matrix.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


Round Key Mixing: In each round the correspond-
ing byte of state matrix are mixed with the generated
roundkey. A non linear function Nmix is used here in Ad-
dRoundKey step of encryption. For decryption, the In-
verse Nmix (INmix) is used. Details of Nmix and INmix
has been discussed in [4]. In [5], Nmix function is used
to design an integrated scheme for error correction and
message authentication. In [3] nonlinear mixing function
Nmix has been used to design the block cipher HDNM8.
For the sake of completeness, an overview of Nmix and
INmix is given in the following subsections.
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2.1 Nonlinear Mixing (Nmix) Function

It operates on two n-bit variables X = (xn−1xn−2....x0)
and K = (kn−1kn−2....k0) and produces an n-bit output
Y = (yn−1yn−2....y0) where the each output bit yi and
carry bit ci are defined as

yi = xi ⊕ ki ⊕ ci−1

ci =

i⊕
j=0

xjkj ⊕ xi−1xi ⊕ ki−1ki (1)

where 0 ≤ i ≤ n− 1, c−1 = 0, x−1 = 0, k−1 = 0 and ci
is the carry propagated from bit position ith to (i + 1)th.
The end around carry cn−1 is ignored. Each output yi is
balanced for all 0 ≤ i ≤ n− 1.

In case of function Nmix, output XOR difference is
not equal to input difference (XOR) when single input
changes i.e Nmix(A,K) ⊕ Nmix(B,K) 6= A ⊕ B where
A, B and K are three n-bit variables. This property of
Nmix function is utilized to strengthen proposed SPN-
type architecture against fault attack.

2.2 Inverse Nonlinear Mixing (INmix)
Function

INmix takes two n-bit variables Y = (yn−1yn−2....y0) and
K = (kn−1kn−2....k0) as inputs and produces an n − bit
output X = (xn−1xn−2....x0), where each output bit xi

and carry di are defined as

xi = yi ⊕ ki ⊕ di−1

di =

i⊕
j=0

xjkj ⊕ xi−1xi ⊕ ki−1ki (2)

where 0 ≤ i ≤ n− 1, d−1 = 0, x−1 = 0, k−1 = 0 and di
is the carry propagated from bit position ith to (i + 1)th.
The end around carry dn−1 is ignored.

3 Fault Attack on Ninth Round
of Proposed SPN-type Archi-
tecture

In this section, a single random non zero byte fault is in-
duced in the first byte of 9th round input. Propagation of
fault is shown in Figure 2. After SubBytes operation, in-
jected fault f has been change to f

′
. Fault remains in the

same position after ShiftRows and after MixColumns, it
is distributed within 4 bytes of 1st column. If the attacker
wants to retrieve 128 bit key then 4 byte faults have to
be injected at 1st, 5th, 9th and 13th bytes respectively.
Assume a fault is injected at the first byte of 9th round
input and let the expressions of CT1 and CT2 are

CT1 =


y0 y4 y8 y12
y1 y5 y9 y13
y2 y6 y10 y14
y3 y7 y11 y15



CT2 =


(y0 + F1) y4 y8 y12

y1 y5 y9 (y13 + F2)
y2 y6 (y10 + F3) y14
y3 (y7 + F4) y11 y15


The associated keys K9 and K10 of 9th and 10th round
are considered as

K9 =


k90 k94 k98 k912
k91 k95 k99 k913
k92 k96 k910 k914
k93 k97 k911 k915



K10 =


k100 k104 k108 k1012
k101 k105 k109 k1013
k102 k106 k1010 k1014
k103 k107 k1011 k1015


From the fault pattern shown in Figure 2, following equa-
tions are constructed

[(INmix(ISB(INmix(y0, k100)), k90))⊕
(INmix(ISB(INmix(y0 + F1), k100)), k90)] =

2[(INmix(ISB(INmix(y13, k1013)), k91))⊕
(INmix(ISB(INmix(y13 + F2), k1013)), k91)]

(3)

(INmix(ISB(INmix(y13, k1013)), k91))⊕
(INmix(ISB(INmix(y13 + F2), k1013)), k91) =

(INmix(ISB(INmix(y10, k1010)), k92))⊕
(INmix(ISB(INmix(y10 + F3), k1010)), k92)

(4)

[(INmix(ISB(INmix(y7, k107)), k93))⊕
(INmix(ISB(INmix(y7 + F4), k107)), k93)] =

3[(INmix(ISB(INmix(y13, k1013)), k92))⊕
(INmix(ISB(INmix(y13 + F2), k1013)), k92)]

(5)

In Equations (3), (4) and (5) the keys k100, k107, k1010,
k1013 are the 10th round keys and k90, k91, k92 and k93
are the 9th round keys. From Equations (3), (4) and (5)
4 bytes of 10th round keys can be recovered. Similarly, if
an attacker injects a non zero random fault at 5th byte,
then another 32 bits key is obtained. Assuming CT3 be
a fault free ciphertext and CT4 the corresponding faulty
ciphertext and expressions of CT3 and CT4 are

CT3 =


y0 y4 y8 y12
y1 y5 y9 y13
y2 y6 y10 y14
y3 y7 y11 y15


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Figure 2: Fault propagation when fault is injected at the 1st byte of 9th round input

CT4 =



y0 (y4 y8 y12
+G1)

(y1 y5 y9 y13
+G2)
y2 y6 y10 (y14

+G3)
y3 y7 (y11 y15

+G4)


Following equations are formulated using CT3 and CT4.

(INmix(ISB(INmix(y4, k104)), k94))⊕
(INmix(ISB(INmix(y4 + G1), k104)), k94)] =

3[(INmix(ISB(INmix(y14, k1014)), k96))⊕
(INmix(ISB(INmix(y14 + G3), k1014)), k96)]

(6)

(INmix(ISB(INmix(y14, k1014)), k96))⊕
(INmix(ISB(INmix(y14 + G3), k1014)), k96) =

(INmix(ISB(INmix(y11, k1011)), k97))⊕
(INmix(ISB(INmix(y11 + G4), k1011)), k97)

(7)

[(INmix(ISB(INmix(y1, k101)), k95))⊕
(INmix(ISB(INmix(y1 + G2), k101)), k95)] =

2[(INmix(ISB(INmix(y14, k1014)), k96))⊕
(INmix(ISB(INmix(y14 + G3), k1014)), k96)]

(8)

From Equations (6), (7) and (8) another 4 bytes of 10th

round keys k101, k104, k1011, k1014 can be recovered. Sim-
ilarly if the attacker inject a non zero random fault at 9th

byte then another 32 bits key is obtained. From the fault
propagation, following equations are constructed.

[(INmix(ISB(INmix(y5, k105)), k99))⊕
(INmix(ISB(INmix(y5 + H2), k105)), k99)] =

3[(INmix(ISB(INmix(y8, k108)), k98))⊕
(INmix(ISB(INmix(y8 + H1), k108)), k98)]

(9)

(INmix(ISB(INmix(y15, k1015)), k911))⊕
(INmix(ISB(INmix(y15 + H4), k1015)), k911) =

(INmix(ISB(INmix(y8, k108)), k98))⊕
(INmix(ISB(INmix(y8 + H1), k108)), k98)

(10)

[(INmix(ISB(INmix(y2, k102)), k910))⊕
(INmix(ISB(INmix(y2 + H3), k102)), k910)] =

2[(INmix(ISB(INmix(y8, k108)), k98))⊕
(INmix(ISB(INmix(y8 + H1), k108)), k98)]

(11)

From Equation (9), (10) and (11) another 4 bytes 10th

round keys k102, k105, k108, k1015 can be recovered. Simi-
larly if the attacker inject a non zero random fault at 13th

byte then another 32 bits key can be obtained.
Following equations are constructed employing fault

propagation diagram

[(INmix(ISB(INmix(y6, k106)), k914))⊕
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(INmix(ISB(INmix(y6 + I3), k106)), k914)] =

3[(INmix(ISB(INmix(y12, k1012)), k912))⊕
(INmix(ISB(INmix(y12 + I1), k1012)), k912)]

(12)

(INmix(ISB(INmix(y12, k1012)), k912))⊕
(INmix(ISB(INmix(y12 + I1), k1012)), k912) =

(INmix(ISB(INmix(y9, k109)), k913))⊕
(INmix(ISB(INmix(y9 + I2), k109)), k913)

(13)

[(INmix(ISB(INmix(y3, k103)), k915))⊕
(INmix(ISB(INmix(y3 + I4), k103)), k915)] =

2[(INmix(ISB(INmix(y12, k1012)), k912))⊕
(INmix(ISB(INmix(y12 + I1), k1012)), k912)]

(14)

Similarly, another 4 bytes of 10th round keys k103, k106,
k109, k1012 can be recovered by the attacker employing
Equations (12), (13) and (14).

3.1 Working Example

An example is provided in this subsection. Here a fault is
injected at 1st byte of 9th round input. Assume PT1 is a
given plaintext

PT1 =


2f cb c7 9e
28 a0 81 23
8e 9f bd 5b
28 3e e4 4b


and the cipher key K0 is as follows

K0 =


c7 bd d7 be
9b d9 9b 9c
da cd 6c fa
bc 28 f8 9c


The 9th round key is obtained by employing AES key
expansion algorithm is as follows

K9 =


af 35 24 90
f0 fa 45 99
a7 87 34 33
d8 17 be 59


and the 10th round key is as follows

K10 =


77 42 66 f6
33 c9 8c 15
6c eb df ec
b8 af 11 48


Corresponding fault free ciphertext is as follows

CT1 =


ca ea 6f 6d
fe cb 3f 16
27 89 26 6d
8a 62 2e d0



The corresponding faulty ciphertext after injecting fault
at 1st byte of 9th round is as follows

CT
′

1 =


71 ea 6f 6d
fe cb 3f a6
bb 71 8e 11
8a bd 2e d0


Bolded bytes show how the faults have been propagated
in the ciphertext.

Let another plaintext be

PT2 =


a8 f4 bc 6c
cd c3 76 aa
e7 80 af d5
0b a1 9a e1


The corresponding ciphertext is for the same cipher key
is

CT2 =


eb 8d 5a 15
c6 cd a4 ba
27 89 26 6d
af ae b3 1b


The corresponding faulty ciphertext after injecting fault
at 1st byte of 9th round input is as follows

CT
′

2 =


75 8d 5a 15
c6 cd a4 2e
27 89 0a 6d
af 86 b3 1b


First by using equation 3 and a pair of faulty-fault free
ciphertext, set of k90, k91, k100, k1013 values are obtained.
Then by using another faulty-fault free ciphertext pair an-
other set of values of k90, k91, k100 and k1013 are obtained
which are satisfying Equation (3). Intersection of these
two sets produces a reduced set of values k90, k91, k100
and k1013. A third set of k90, k91, k100, k1013 values are
obtained from another pair of faulty-fault free ciphertext
and reduced key set and then by intersecting more reduce
key set is obtained. And finally using 4th pair of cipher-
text, a set of k90, k91, k100, k1013 values are obtained and
set of values obtained in previous step are intersected to
obtain correct 10th round 16 bits key.

In this way, employing Equations (4) and (5) and 4
faulty-fault free ciphertext pairs similar analysis is done
and finally, four bytes k100, k107,K1010 and K1013 of 10th

round keys are obtained correctly.
To recover the set of k100, k107, k1010, k1013 keys, it

needs computational complexity of 4× 232 i.e. 234. Com-
putational complexity of 16 × 232 i.e. 236 is required to
obtain 128-bits key.

4 Fault Attack on Eighth Round
of Proposed SPN Architecture

In proposed SPN architecture, a non-zero fault has been
induced at the input of 8th round. After 8th round Mix-
Column step, the fault is distributed into 4 bytes. Again
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Figure 3: Fault propagation when fault is injected at the input of 8th round

after MixColumn step of 9th round the fault is spreaded
throughout all the bytes of state matrix as shown in Fig.3.

Assume CT1 is a fault free ciphertext

CT1 =


x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15


If CT2 is the corresponding faulty ciphertext, then it can
be expressed in following matrix form

CT2 =


x0 + F0 x4 + F4 x8 + F8 x12 + F12
x1 + F1 x5 + F5 x9 + F9 x13 + F13
x2 + F2 x6 + F6 x10 + F10 x14 + F14
x3 + F3 x7 + F7 x11 + F11 x15 + F15


Let the associated round keys are K8, K9 and K10 in 8th,
9th and 10th rounds respectively

K8 =


k80 k84 k88 k812
k81 k85 k89 k813
k82 k86 k810 k814
k83 k87 k811 k815



K9 =


k90 k94 k98 k912
k91 k95 k99 k913
k92 k96 k910 k914
k93 k97 k911 k915



K10 =


k100 k104 k108 k1012
k101 k105 k109 k1013
k102 k106 k1010 k1014
k103 k107 k1011 k1015


From the fault pattern, following equations are con-
structed

[INmix(a, k80)⊕ (INmix(b, k80))] =

2[INmix(c, k81)⊕ INmix(d, k81)] (15)

Where,
a = (ISB((INmix(ISB(INmix(x0, k100)), k90))),
b = (ISB((INmix(ISB(INmix(x0 + F0), k100)), k90))
c = (ISB((INmix(ISB(INmix(x13, k1013)), k91) and
d = ISB((INmix(ISB(INmix(x13 + F13), k1013)), k91))

(INmix(e, k81)⊕ (INmix(f, k81) =

(INmix(g,K82)⊕ (INmix(h,K82)

(16)

Where,
e = ISB(INmix(ISB(INmix(x13, k1013)), k91)),
f = ISB(INmix(ISB(INmix(x13 + F13), k1013)), k91),
g = ISB(INmix(ISB(INmix(x10, k1010)), k92)) and
h = ISB(INmix(ISB(INmix(x10 + F10), k1010)), k92).

[(INmix(i, k83)⊕ (INmix(j, k83)] =
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3[(INmix(k,K81)⊕ (INmix(l,K81)]

(17)

Where,
i = ISB(INmix(ISB(INmix(x7, k107)), k93)),
j = ISB(INmix(ISB(INmix(x7 + F7), k107)), k93),
k = ISB(INmix(ISB(INmix(x13, k1013)), k91)) and
l = ISB(INmix(ISB(INmix(x13 + F13), k1013)), k91).
Five pairs of fault free-faulty ciphertexts are needed to
recover 32 bits of 10th round key. To recover 32 bits key,
computational complexity of 5 × 248 i.e. 251 is required.
From the fault distribution, similarly another set of 9
equations can be constructed and from these equations,
rest of the keys can be recovered. To recover 128 bits 10th

round keys, total 20 faulty-fault free ciphertext pairs are
necessary and computational complexity is 20 × 248 i.e.
253.

5 Comparison with Existing
Works

In this section, a comparison is provided in terms of fault
model, fault location, number of faulty encryptions and
computational complexity, of our work and with the works
reported in [7, 15, 16, 19, 20]. Existing related works ei-
ther based on byte level or bit level fault model. Our
work is based on byte level fault model. From Table 1,
it is observed that in proposed architecture, 16 and 20
faulty-fault free ciphertext pairs are necessary to mount
fault attack by injecting fault at the input of 9th and 8th

round respectively. Also fault attack complexity in pro-
posed scheme is relatively higher than that of AES [19].
Fault attack on AES [19] requires minimum 2 faulty-fault
free ciphertext pairs with complexity 232. Fault attack on
MDS-AES [12] needs 2 faulty cipher text pairs with brute-
force search of complexity 216. Whereas to mount fault
attack on proposed SPN-type architecture minimum 16
faulty-fault free ciphertext pairs are necessary with com-
plexity 236.

6 Conclusion

In this paper, a new SPN-type architecture has been pro-
posed to improve the security of block cipher against fault
attack. Here, instead of linear round key mixing function,
first time effect of nonlinear round key mixing function
is used and analysed, to protect fault attack. Proposed
architecture also provides better security against fault at-
tack compared to AES. To derive 128 bits 10th round key
it needs computational complexity of 236 and 16 faulty-
fault free ciphertext pairs, when fault is injected at input
of 9th round. When a fault is introduced at input of 8th

round then it needs computational complexity of 253 and
20 faulty-fault free ciphertext pairs, to recover 128 bits of
10th round key.
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