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Abstract

The RSA-768 (270 decimal digits) was factored by Klein-
jung et al. on December 12, 2009, while the RSA-704
(212 decimal digits) was factored by Bai et al. on July
2, 2012. The RSA-200 (663 bits) was factored by Bahr
et al. on May 9, 2005, while he RSA-210 (696 bits) was
factored by Propper on September 26, 2013. In this paper
the author will discuss an estimation method to approach
the lower/upper bound of ¢(n) to the RSA parameters.
Our contribution may help researchers lock the (n) and
the challenge RSA shortly.

Keywords: FEuler’s Totient Function; Factoring; RSA
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1 Introduction

Challenge RSA [19] is a good work to study. Recently,
most scientists and researchers [2,7,12] using the gen-
eral number field sieve (GNFS) algorithm to factor RSA
modulus n. In a practical environment, it looks like if
you want to break the RSA, the best choice is to choose
GNFS if you have already factored the modulus n [5]. In
theory, Wiener [24] first proposed a cryptanalysis of short
secret exponents where the d < N%° in 1990. Boneh [3]
presented ‘T'wenty years of attacks on RSA cryptosystem’
in 1999, where he classified and described a variety of at-
tacks. Followed by Boneh and Durfee [4], they suggested
the private key d should be greater than N%2°2 for the
security problem. Even though, some people like to focus
on secret key d or factor composite number n. Their pur-
poses are clear. We believe that there must be a general
way to estimate the value of RSA-210 without finding the
factors of prime numbers p and ¢ to challenge RSA. Ac-
cording to the latest news, the RSA-210 was factored by
Propper [18], and RSA-220 was factored by Bai et al. [1].

*The preliminary version of this paper appeared in Cryptology
ePrint Archive: Report 2012/666 [14].

In this article, the author will introduce a new method-
ology where we approach the lower bound and the upper
bound of ¢(n). For this general concept, it may match
any bit length composite number n.

2 Review of RSA Conception

The signer prepares the prerequisite of a RSA signature:
Two distinct large prime p and g, n = pq, Let e be a
public key so that ged(e, ¢(n)) = 1, where ¢(n) = (p —
1)(¢—1), then calculate the private key d such that ed = 1
(mod ¢(n)). The signer publishes (e, n) and keeps (p, q, d)
secretly. The notation as same in [19].

2.1 RSA Encryption and Decryption

In RSA public-key encryption, Alice encrypts a plaintext
M for Bob using Bob’s public key (n, €) by computing the
ciphertext

(1)

where n, the modulus, is the product of two or more large
primes, and e, the public exponent, is an (odd) integer
e > 3 that is relatively prime to ¢(n), the order of the
multiplicative group Z; [13].

C=M°¢ (modn),

2.2 RSA Digital Signature
s=M? (2)

where (n,d) is the signer’s RSA private key [6,10]. The
signature is verified by recovering the message M with
the signer’s RSA public key (n, e):

(mod n),

M =5 (mod n). (3)

3 Our Methodology

In this section, we would calculate the upper bound and
the lower bound of ¢(n) in RSA scheme. The detail de-
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scribed as below.

Notation:

£: Express lower bound.

u: Express upper bound.

e: A decimal expansion number (e.g 99/100 = 0.99-- ).

3.1 Approaching ¢(n)

If n is composite, hence
o(n) <n - Vi (4)

Sierpinski [22] mentioned it in 1964. It is known that if
Equation (4) is a good upper bound for ¢(n). Is there
a good lower bound for ¢(n)? This question is also be
discussed by a newsgroup dialog between Ray Steiner and
Bob Silverman in 1999 [23]. For n > 30, the ¢(n) > n?/?,
Kemdall and Osborn proved it [11]. For n > 3, the ¢(n) >

1052 e 8iven by Hatalova and Salat [9].

3.1.1 Estimate Upper Bound

Is Equation (4) a good upper bound? In the following, we
would estimate a new value that is smaller than previous
and optimize.

0 1 Pna [ $(n) u n
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Figure 1: The lower/upper bound of ¢(n) in RSA scheme

Theorem 1. Assume p and q are large prime numbers,

where n = pq, then ¢p(n) = 4k, k € Z where 1 < k <
Ln_Q[f]—HJ-

Proof. As is known, the two variants p and ¢ are large
prime numbers. Also both p and ¢ > 2, since 21 p, 21 g,
therefore 2 | p—1, 2| g—1. 4| (p—1)(¢ — 1), 4 | ¢(n).
é(n) =4k, k € Z*. We will discuss how to calculate the
range of value k.

¢(n) = (p-1)(¢—-1)
= pg—(p+aq) +1
= n—(p+q +1 (5)

And

p+qg=2ynp+qeZt,2|p+aq.
p+q=2[vVn].

¢(n) <n+1-2[Vn].

é(n) =4k, ke Z .

n—+1-2[y/n]
oln) <4 L EVI (©
Here, we know the maximum value (limit superior) for

k< L%J which we call the boundary value.
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Consequently, according to the above reference, we obtain
an upper bound u of ¢(n) where ¢(n) < 4L%J.
O

3.1.2 Estimate Lower Bound

Loomis et al. [15] found Shapiro’s [20] lower bound ¢(n) >
n(°82) /(log 3) as a (naive) lower bound for F,,, where
they can determine when all members of a given F,, have
been found. Powell [17] noted that Konyagin’s and Shpar-
linksi’s lower bound Ni(n,p) > (p — 1)/2 — p*/?/n where
n > 1 is a positive integer and that p is an odd prime
number with p = 1 (mod n); it is a good bound if p is a
small compared to n, and establishes that

Ni(n.p) = (Vo(n)( T ¢/ )/mp' /o0,

q prime
aln
Powell also discussed an improvement the upper and
lower bounds in [17]. What is the optimal lower bound?
This is explained as follows.

Theorem 2. For all n > 3 we have ¢(n) > itz +
@(m), where v is the Euler-Mascherone Constant,
and the above holds with equality infinitely often.

Remark: note in particular that since loglogn — oo asn
grows large, we see that the result - < ¢(n) can not hold

for any fized integer m.

Proof. Consider R, set of all n such that m < n implies
@ < @ This set is then all of the ‘record breaking’ n.
If n € R has k prime factors, let n* be the product of the
first k prime factors. If n # n* and d)(nL) < @, which
is impossible. Hence, R consist entirely of n of the form
n = Hp<yp for some y. Now for n € R, we can choose

y so that logn = Zpgylogp = 6(y). Then using one

of Mertens estimates we see that % =Il<,(1 - %) =

% + O(m). Since loglogn = log(A(y)) = logy +

O(1) by Mertens estimates again, we have for n € R,
— .

¢(n) = lozelogn + O((loglog n)2"’ 0

Is there a simple computation method? We observed
the modulus n with ¢(n), there are some characteristics.
Aa an example for RSA-200, the modulus n and the ¢(n)
are 200 decimal digits. We compared n and ¢(n) with
each other and found that the first 110 digits are the
same. The example is shown in Table 1. A discussion on
RSA modulus number with half of the bit prescribed, is
introduced in some literatures in [8,16,21].

In RSA-704, the n and ¢(n) had same digits 106, it
amounts same length with p or ¢. We computed the upper
bound value according to Theorem 1. This upper bound
had the same 108 digits with its ¢(n). When we analyzed
the RSA-768, the n had 115 digits. The same 115 digits
was found with ¢(n); the ¢(n) had the same 120 digits
with its upper bound u. See Table 2.

We observed the relationship of ¢(n) and its boundary
value k. When ¢(n) is divided by k, we found that the
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Table 1: The same digits of ¢(n) and modulus n parameters in RSA

EsS4-200

Zame digits length

Z7RETREENT 2152 e 0e2R4 67632260162 10704467865554 285375600095 29226 12840010760
n 9345671052955360856061822351910951365788637105954482006576775098580557613572098
734250144178863178246295187237869221823283

¢ln)

SIONTRERN 121327 E 0820467638V 260 162 1070446778695 54 285375600095 29326 12840010760
B345671052055360856050384020022070262634017415134803482520365025322985768554715
10113891 2289736681370958747280607553550168

Table 2: Comparison of some types in RSA parame-
ters. Unit: decimal digits

B | () | by g | né(n) | Gln)eu
RSA-200 200 | 200 | 100 110 101
RSA-210 210 | 210 105 ? ?
RSA-704 212 | 212 106 106 108
RSA-220 220 | 220 109 ? ?
RSA-768 232 | 232 116 115 120

quotient approaches and that, these lower bounders are
very close to multiples of number 4. As an example, we
say 3.999, and have 106 9’s after the decimal point for
case of RSA-200 type. The lower bound approximation
figure diagram is shown in Figure 2 and in Table 3.
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Figure 2: The lower bound approximation curve status.

As known as the modulus number n of RSA-210, we
re-estimated its lower /upper bounds. We assume:

n—2[ynl+1
4

] <o(n) <4| J;

(7)

(3+5)Ln_2[\f€1+1

106’s 9

——
where ¢ = 0. 99999. We therefore compute the upper
bound u and lower bound /; those results are shown in
Figure 2.

According to Equation (7), the author estimates the
upper bound of RSA-220. There are same 109 digits be-
tween RSA-220 modulus n and upper bound u. The result
is shown in Figure 4.

Table 3: The relationship of ¢(n) and its boundary value
k.

Type ¢(n)/k | Statement
99’5 9
—~
RSA-200 | 3.999998 | there have 99’s 9 after the
decimal point
106’s 9
RSA-210 | 3. 999992
i U Estimating have 106’s 9 after
decimal point
107's 9
—~
RSA-704 | 3.999998 | there have 107’s 9 after deci-
mal point
109's 9
A~
RSA-220 | 3.999998 | there have 110’s 9 after deci-
mal point
117's 9
A~
RSA-768 | 3.999997 | there have 117’s 9 after deci-
mal point

4 Conclusion

In this paper, we use another method to estimate a
lower /upper bound values of ¢(n) in RSA-210 and up-
per bound of RSA-220s ¢(n). We think our methodology
is easy and intuitive. It may prove useful to researchers
who would like to quickly reduce the searching ranges.
More researchers focus on secret d or modulus n, such as
well known attacks such as short exponent, side channel
(or common modulus) and cyclic. Our method is differ-
ent than previous methods. Finally, the author provides
a general method to estimate the lower/upper bound of
RSA’s ¢(n) public key cryptography.
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RSA-210

24524664490027521197651766357 3088018467026 7876783327 597434144517150616003300353872
169522083399332071549102636579525419241868359187871980757492506171803735359303932360
5526518763037 7409859017 744115767482964 6352709008

2452466449002782119768517686357308801846 7026757578332 7597453414451 7150616003300355872
£ | 1695220839533207154 91026 1798602705 172101 7579734131 535066633608 7233201 3570325759540
S0702189576021131865709835102321:35299645533216

Figure 3: The lower/upper bound parameters of ¢(n) in RSA-210.

RSA-220¢

Modulus ne

22601385262034057840416540486101975135080380157197707183211977681094456418179660 |«
76608393121306582577250631502880676970448070001811149711863002112487928199487482
066070131066586646083327982803560379205301980139946496955261+

22001385262034057849416540486101975135080389157197767183211977681094456418179660 |«

Upper T6608503121306582577250631562791595141080093930546312831878225706797615755705508
bond« 147087364121932208220070715560080630126490020980805527016920¢

Lower #

bound«

Figure 4: The upper bound parameters of ¢(n) in RSA-220.
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