
International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 304

Power Efficient Secure Web Servers

Sujatha Sivabalan, P. J. Radcliffe
(Corresponding author: Sujatha Sivabalan)

The Department of Electrical and Computer Engineering& RMIT University

Swanston Street, Melbourne, Australia

(Email: s3365148@student.rmit.edu.au)

(Received Feb. 14, 2017; revised June 5, 2017)

Abstract

The power consumption of web servers and associated se-
curity devices is becoming an increasing issue both from
an economic and environmental perspective. This paper
analyses the power consumption of both security software
and web server software and concludes that traditional
architectures waste energy with repeated transitions up
and down the TCP/IP stack. This contention is proved
by comparing the energy usage of a traditional architec-
ture and a new architecture whereby IDS functionality is
moved into the web server and all operations share HTTP
packets. Based on these findings we propose a novel al-
ternative power efficient architecture for web servers that
may also be usable in other network systems.

Keywords: Central Processing Unit CPU; Intrusion De-
tection System IDS; Intrusion Prevention System IPS;
Web Server

1 Introduction

our world is steadily accelerating towards an Internet
based economy where web servers are most significant. In
an enterprise or commercial data centre, the power usage
of web servers [13, 26, 29] is becoming a major concern,
particularly where the web servers need to handle a heavy
traffic load or may be subject to Denial of Service (DoS)
attack [38]. It is desirable to reduce the power consump-
tion in such systems both from an environmental and eco-
nomic point of view. Furthermore, devices that can cope
with high traffic loads are very expensive as well as con-
suming considerable power [6, 17, 18, 20, 22, 35, 37]. The
web server system in a web server, or web server farm,
consumes power for different reasons. Such systems use
power to provide web services for the ingress traffic and for
a number security functions that may be separate boxes
or virtual machines.

The goal of this paper is to analyse the power usage of
the security software or devices within the system. Such
a comparison is traditional impossible as the software re-
sides on a variety of boxes which each box having different

internal hardware and CPU types. Even in a cloud en-
vironment, a software application such as an IDS may
be run on different types of CPUs and this will confuse
any attempt to measure power consumption. The ex-
ception here is Software Defined Networks (SDN) where
security applications can all be run on the one hardware
platform [40]. This approach is used to achieve the goals
of this paper, all programs can be run on the same hard-
ware and their power consumption compared by measur-
ing CPU utilization.

This paper focuses on IDS/IPS systems as they have
the most scope to be absorbed into other devices. Two
well-known and widely used IDS/IPS programs were se-
lected for testing, Bro [8] and Snort [31]. Bro [21] is capa-
ble of sophisticated packet analysis and a full IDS func-
tion. Snort [1, 3, 9, 15, 21] has some IPS capability but
it is essentially an IDS where detection based on packet
signature matching.

The key research outcomes described in this paper in-
clude:

• Power consumption analysis of two traditional secu-
rity applications Bro and Snort.

• Power consumption analysis of a new daemon devel-
oped [27, 28] by us that integrates into Apache.

• Based on the findings, a novel alternative architec-
ture for webservers is proposed that can reduce total
power usage.

This paper organized as follows: Section 2 reviews web
server power consumption and discusses existing work
related to reducing IDS and security device power con-
sumption. Section 3 measures and analyses the power
consumption of BRO and Snort. Section 4 extends the
experiments by replacing Bro and Snort with an IDS dae-
mon that works with Apache. Section 5 uses the findings
from the experiments to propose a novel architecture that
reduces CPU load and hence power consumption. Section
6 provides conclusions to the work and offers some further
research directions.

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 305

2 Related Work

2.1 CPU Utilization and Power Con-
sumption

Power management of web servers systems is an area of
ongoing research. Sharma et al. [26] states that power
consumption on a web server is economically and ecologi-
cally significant. In 2002 Bohrer et al. [7] started focussing
on managing power consumption in web servers and their
experimental results shows that the CPU consumes the
largest fraction of the system Power. Mukherjee et al. [24]
experimentally observed that Disk and Memory I/O us-
age had a negligible effect on server power consumption,
whereas the CPU utilization is linearly related to power
consumption. Given these observations, it is important to
minimize CPU utilization in order to reduce power con-
sumption. Minas et al. [23] mentioned that CPU usage in
a web server is the most significant factor in power con-
sumption and his results on a quad core Intel processor
shows that for a given CPU, the power consumption is
linearly related to the CPU utilization. Other processors
have a similar relationship. From these observations, we
can conclude that it is appropriate to use CPU utilization
as a proxy for power consumption of software providing
that the CPU type and hardware is the same. A weakness
for evaluating the power usage of several devices is that
the CPU can vary between physical devices or even virtual
machines in the cloud and so cumulative CPU utilization
is not a good measure of power usage.

2.2 IDS Power Consumption

Figure 1: Web server in a Host-based system.

In a host-based system as shown in Figure 1, devices
such as proxy servers, firewalls, and Intrusion Detec-
tion/Prevention systems (IDS/IPS) secure web servers.
These services are crucial as they can eliminate or reduce
attack traffic. It is notable that in Figure 1 the traffic
is received, analysed, and transmitted three times before
getting to the web server. Only the analysis activity has
value with the repeated reception and transmission being
an overhead that consumes power. The IDS function is of
particular interest as if it is found to be inefficient in terms
of power use then its functionality might be able to be
absorbed into other devices. There is significant research
on ways to improve the performance of IDS/IPS that re-
duces CPU load and hence power consumption. Zaman
et al. [39] implemented a light weight IDS to overcome re-
source consumption but this achieved poor detection rate
based on two different approaches. Wheeler et al. [37]
introduced three levels of parallelism using node, compo-

nent and sub component level and stateless analysis but
this achieved little in the way of power savings.

Vasiliadis et al. [35] implemented a multi-parallel IDS
architecture (MIDEA) for high-performance processing
and stateful analysis of network traffic and while this
worked well it is expensive and complex to implement [9].
The major flaw of these [35, 37, 39] methods is repeti-
tion [9] where one packet undergoes the reception, inspec-
tion, and transmission several times hence there is waste
of CPU computing time and electrical power. Waleed
et al. [9] suggested parallel NIDS to reduce packet drop
rate and process more packets in less time during heavy
traffic, however sudden increases in traffic will result in
packet loss. This approach requires many IDS in parallel
that in turn increases the CPU load and leads to increased
power consumption and cost. Several researchers [16,26-
30] have used various methods to implement a lightweight
IDS approach but the overall result has been to increase
the workload on the web server. The methods reviewed
all have at least one of two flaws that contribute to power
consumption:

• There is multiple reception, analysis, and retransmis-
sion of HTTP packets which costs computing time
and electrical power.

• All the security devices placed at the network ingress
point must handle the full load of normal and DDoS
traffic thus requiring powerful, power hungry and ex-
pensive devices.

3 Power Analysis of Traditional
Approaches: BRO and SNORT

3.1 Experimental Setup

This section describes the experimental set up used by
the authors to measure the CPU load used by Bro and
Snort and then discusses the result.

The two experimental setups depicted in Figure 2 &
Figure 3, both used i7 desktop computers running Linux
Mint 13. Figure 2 illustrates the low traffic test bed that
used only two systems; one serves as the victim machine
with the detection functionality and other serves as the
attacker machine. Figure 3 illustrates the high traffic test
bed that used twenty computers, one was the victim web
server plus the IDS functionality and the others servers
acted as the zombie machines that attacked the victim.
The CPU load measurement is the load on one CPU of
a multi-core processor and it is independently measured
for both the web server and IDS function. The server
on the victim machine was an Apache 2 web server with
three web pages including images. The attacker machines
generate random DDoS traffic aimed at these web pages.
Each IDS only sees the incoming web page requests as the
outgoing web pages come from the system’s server and are
assumed safe.

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 306

Figure 2: Experimental set up low attack traffic

Figure 3: Experimental set up high attack traffic

3.2 Implementation

Bro-IDS version 2.2 and Snort version 2.9 used. In or-
der to compare the CPU utilisation, the scripts writ-
ten in two ways, to receive the HTTP traffic but do
nothing, and receive the traffic and apply analysis. In
Snort, rules were created and saved in myrules.rules. The
main concern is to execute only this rule by comment-
ing out all other rules and included only myrules.rules
in snort.conf file. For Bro the events are created for
module HTTP and saved as $PREFIX share bro site
myrules.bro. All bro scripts executed from command ter-
minal using.\bro–i–eth0 myrules.bro. Figure 4 & 5 shows
a very simple script using Snort and Bro. Both the IDS
programs receive traffic without any filters assigned. This
configuration tests the load required just to receive and
build up the data packets inside the IDS software and
excludes the load required to analyse packets.

The script in Figure 5 applies a filtering process on
HTTP traffic at the egress point on IDS. The HTTP
analysis is programmed to apply an over-use page limit
rule. This rule triggers if there is 10 HTTP requests of se-
lected web pages within 11sec from the attacker machine
to the victim. Bro scans the abnormal traffic and records
results in the notice log. Snort generates an alarm file
when it detects abnormal network traffic but Snort can-

Figure 4: Bro and Snort programming without HTTP
analysis

Figure 5: Bro and Snort programming with HTTP anal-
ysis

not perform complex rules as found in Bro. This work
also used a complex Bro script to detect an SQL injection
attack [32]. A standard Bro installation has this script
in $ PREFIX\share\bro\policy\protocols\http\detect-
sqli.bro. The type of attack traffic chosen was typical web
page requests which are not very large. Preliminary work
showed that for such traffic the load was proportional to
the number of requests, the CPU load was the same for
a few requests from 20 clients or the same number from
one client. Attacks from clients using heavy weight pay-
loads can be rejected based on size, similarly HTTP PUT
requests can also be rejected if they are inappropriate for
the page or too large.

3.3 Experimental Results

All IDS systems were tested with different attack traffic
rates in four different ways to compare the CPU load;

• HTTP attack traffic and the complex rules (Bro
only).

• HTTP attack traffic with HTTP analysis and rules

• HTTP attack traffic with HTTP no analysis and no
rules, and

• With no load.

Each test was executed for 10 minutes, which ensured
repeatable measurements with timing differences less than
0.5% between runs. Comparing Table 1 (HTTP reception
with analysis and rule check) and Table 2 (HTTP recep-
tion without analysis and no rule check) for the same
attack traffic rates:

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 307

Table 1: HTTP reception (analysis and rules)

Row No Protocol Rule Using

DDoS

attack

traffic

Attack

Traffic #1

(Pack/sec)

IDS

CPU Load

Attack

Traffic #2

(Pack/sec)

IDS

CPU Load

Attack

Traffic #3

(Pack/sec)

IDS

CPU Load

Attack

Traffic #4

(Pack/sec)

IDS

CPU Load

Attack

Traffic #5

(Pack/sec)

IDS

CPU Load

Attack

Traffic #6

(Pack/sec)

IDS

CPU Load

A HTTP yes BRO yes 150 17.30% 300 21.3% 525 23.8% 3200 51.7% 4200 87.2% 6500 99.7%

B HTTP yes SNORT yes 150 2.60% 300 4.8% 525 6.8% 3200 15.3% 4200 28.7% 6500 41.3%

Table 2: HTTP reception (no analysis and no rules)

Row No Protocol Rule Using

DDoS

attack

traffic

Attack

Traffic #1

(Pack/sec)

IDS

CPU Load

Attack

Traffic #2

(Pack/sec)

IDS

CPU Load

Attack

Traffic #3

(Pack/sec)

IDS

CPU Load

Attack

Traffic #4

(Pack/sec)

IDS

CPU Load

Attack

Traffic #5

(Pack/sec)

IDS

CPU Load

Attack

Traffic #6

(Pack/sec)

IDS

CPU Load

A HTTP no BRO yes 150 17.2% 300 19.6% 525 22.2% 3200 50.9% 4200 83.7% 6500 97.5%

B HTTP no SNORT yes 150 2.6% 300 4.7% 525 6.8% 3200 16.7% 4200 30.9% 6500 46.2%

• Note the column ”Attack Traffic #2” in Table 1
and Table 2 (HTTP reception without analysis and
no rule check), the CPU load of Bro increases from
19.6% to 21.3% when HTTP analysis is added. Snort
has a 0.1% increase when HTTP analysis added.

• At ”Attack Traffic #3”, Bro shows a 1.6% increase on
a base of 22.2% when HTTP analysis added. Snort
shows no CPU load increase

The conclusion from this comparison is that the addi-
tion of HTTP analysis adds little to the CPU load and
that most of the load is taken with no load activities plus
a per received packet load. Comparing Table 1(HTTP
reception and analysis) and Table 3 (no HTTP traffic)
for high traffic level and zero packets/sec shows that the
Bro CPU load dropped from 99.7% to 13.8% by moving
from Table. 1 to Table 3.For Snort the change was 41.3%
to 0.1%. Surprisingly the result shows that for the IDS
software tested, the IDS CPU load increased because of
the reception of traffic and not because of the processing
of the traffic.

Table 4 shows the results for Bro with a complex rule
for detecting SQL injection attacks. The CPU load (Ta-
ble 4) is only marginally different to the other HTTP rule
(Table 1) and no rules (Table 3). Again the CPU load
seems related to packet reception rate and not the HTTP
analysis.

3.4 IDS Load Prediction

Figure 6 & 7 graphs the packet rate against the CPU
load for Snort and Bro with line of best fit. The result
is a useably linear relationship between CPU load and
packet rate. This means it is possible to measure the per-
formance of a system using the low traffic configuration
of one attacker and one victim as shown in Figure 2, then
use regression [19, 11, 33] to produce the line of best fit
and hence estimate the CPU load at higher traffic rates.
This approach saves time and resources as determining
CPU load at high traffic rates normally requires a power-
ful attack generator.

The CPU load is approximately of form given in equa-
tion number Equation (1) where a and b are constants

CPULoad% = a + b ∗ htmlpack/sec (1)

This results in Equation (2) which can be used to pre-
dict the CPU load at a given traffic level

Bro CPU load = 0.0137 ∗ packets/sec + 15.902 (2)

(95% Confidence Interval = 10.19%)

Snort CPU load = 0.006 ∗ packets/sec + 1.5743 (3)

(95% Confidence Interval = 3.91%)

Using Equation (2) for the Bro CPU load at the last
data point of 6500 HTML packets/sec predicts a CPU
load of 104.9% which is close to the 99.7% actually mea-
sured. Using Equation (3) for the Snort CPU load at
the last data point of 6500 HTML packets/sec predicts a
CPU load of 40.6% which is close to the 41.3% actually
measured.

3.5 Observation

The experimental results show that the main CPU load
from Bro and Snort caused by HTTP packet reception
and not the analysis of that packet.

4 Power Analysis of Two-
Dimensional Web Page Daemon
(TDWD)

Given the surprising experimental result that most load
goes into packet reception it follows that CPU load and
hence power consumption would be reduced if the IDS
function was built into an existing program that already
performed packet reception. This may occur at the fire-
wall or at the web server. To test this idea we developed

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 308

Table 3: Without HTTP load

Row No Protocol Using

DDoS

attack

traffic

IDS

CPU Load

A HTTP BRO no 13.8%

B HTTP SNORT no 0.1%

Table 4: Bro with HTTP and the SQL injection rule

Row No Protocol Rule Using DDoS attack traffic
Attack Traffic #1

(Pack/sec)
IDS CPU Load

Attack Traffic #2

(Pack/sec)
IDS CPU Load

Attack Traffic #3

(Pack/sec)
IDS CPU Load

A HTTP SQL BRO yes 150 16.00% 300 18.0% 525 22.0%

Figure 6: Bro CPU load with HTTP analysis

a novel IDS program called the Two-Dimensional Web
page Daemon (TDWD) which we built into the Apache
web server [27, 28]. This daemon saves web requests in
a two dimensional link list, first by user IP and then by
time. Analysis of this two dimensional list can deter-
mine if a user has violated a usage rule. Each web page
calls a PHP script that sends the web page details to this
daemon via shared memory. In these experiments the
daemon then performed a rule based filter much like the
Bro filter previously described that identified web page
requests from the one IP at a rate of more than 10 HTTP
requests in 11 seconds. The measurement and analysis
of power usage was performed the new IDS daemon in
the same way as done for Bro and Snort. The results are
included in Table 5 in Row C. Additionally the Apache
CPU load was measured at each traffic level. Row C in
Table 5 and 6 shows TDWD handling all HTTP traffic
and Snort and Bro given no HTTP traffic. The high traf-
fic load of 6500 packets/second will not be analysed as the
99.7% CPU usage for Bro may mean that Bro is losing
packets as suggested by the anomalous lower Apache CPU

Figure 7: Snort CPU load with HTTP analysis

load. Using TDWD to handle HTTP saves Bro or Snort
considerable CPU load and only marginally increases the
CPU load on the web server as a result of running the
daemon.

Comparing Table 5 (for a high traffic level of 4200 pack-
ets/sec) and Table 6(zero packets/sec) shows that the Bro
CPU load dropped from approximately 87% to 14%, for
Snort the change was 29% to 0.1%. This matches the sce-
nario where all HTTP traffic is handled by TDWD. These
reductions were bought at the cost of running TDWD
which consumes only 3.3% of CPU load itself and ap-
proximately 10% extra CPU in Apache. The overall sav-
ing is approximately 60% CPU load for Bro and 16% for
Snort. The reason for these savings is that the TDWD
and Apache combination eliminates the double reception
of packets and so reduces the overall CPU load on the web
server system. Figure 8 & 9 graphs use data in Table 5
and Table 6 and show the CPU load of each IDS when
receiving HTTP, and the resulting load on Apache.

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 309

Table 5: IDS receiving HTTP traffic with analysis and rules

Row No Protocol Rule Using

DDoS

attack

traffic

Attack

Traffic #1

(Pack/sec)

IDS

CPU

Load

Apache

Load

Attack

Traffic #2

(Pack/sec)

IDS

CPU

Load

Apache

Load

Attack

Traffic #3

(Pack/sec)

IDS

CPU

Load

Apache

Load

Attack

Traffic #4

(Pack/sec)

IDS

CPU

Load

Apache

Load

Attack

Traffic #5

(Pack/sec)

IDS

CPU

Load

Apache

Load

Attack Traffic

#6

(Pack/sec)

IDS

CPU

Load

Apache

Load

A HTTP yes BRO yes 150 17.3% 1.7% 300 21.3% 3.6% 525 23.8% 6.3% 3200 51.7% 33.1% 4200 87.2% 39.5% 6500 99.7% 48.6%

B HTTP yes SNORT yes 150 2.6% 1.7% 300 4.8% 2.9% 525 6.8% 6.1% 3200 15.3% 30.6% 4200 28.7% 43.3% 6500 41.3% 62.9%

C HTTP yes Linklist Yes 150 0.7% 3.0% 300 1.0% 6.2% 525 1.1% 8.8% 3200 2.4% 41.7% 4200 3.3% 51.7% 6500 4.3% 67.3%

Table 6: Without HTTP load

Row No Protocol Using

DDoS

attack

traffic

IDS

CPU Load

A HTTP BRO no 13.8%

B HTTP SNORT no 0.1%

C HTTP Linklist no 0.5%

Figure 8: Bro, Snort and TDWD IDS CPU load when
receiving HTTP

4.1 Comparison of Power Usage By BRO,
Snort And TDWD

The existing work described in section 2.1 showed that
CPU utilisation is linearly related to power consump-
tion. We stressed one core of an i7 CPU using the
StressLinux [33] program and measured the power con-
sumed, the results are depicted in Figure 10 with a 95%
confidence interval of 0.6 watt. As per the literature there
is a useably linear relationship between CPU load on one
core and power consumption. Giorgio et al. [34] used
Equation (4) to predict power consumption given CPU
core utilization. Pmin is the power consumption of the
entire CPU when the CPU core dedicated to the task
of interest has zero utilization. Pmax is the total power
consumed but the entire CPU when the task of interest
is using one core at 100% utilization.

Power Consumed = (Pmax−Pmin)∗Utilisation+Pmin
(4)

Figure 9: Bro, Snort and TDWD Apache CPU load for
each IDS

Given the calibration of CPU load to PC power, the
power consumption of Snort, Bro, and TDWD can be
graphed. From Figure 11 at high traffic rate of 6500
HTML packets/sec, Bro consumes 66 watts of the PC’s
power whereas Snort consumes 50 watts. The result shows
that the TDWD can save approximately 25 watts com-
pared to Bro and 10 watts compared to Snort.

This experiment has shown that an IDS that shares
packet reception with another application can signifi-
cantly reduce CPU use and hence power usage. The main
CPU load of an IDS function is not the analysis function
but a per packet load which includes the TCP stack con-
verting between the application layer and the physical
layer.

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 310

Figure 10: Power consumption vs, CPU load

Figure 11: Power consumption of Bro, Snort and TDWD

5 Discussion of Alternative Novel
Architecture

The architecture in Figure 12 shows a traditional web
server with a proxy server, a firewall, a IDS and a web
server where there is packet reception on each box. The
same architecture is used even with a SDN implementa-
tion [40] where these functions might be applications on
the one host.

Figure 12: Traditional architecture

The research in this paper has found that the power us-
age in an IDS is mainly caused by packet reception rather
than the packet analysis activity. This suggests that at
least for SDN it would save CPU and power to have one
packet reception and to pass complete IP, TCP or UDP
packets between applications as shown in Figure 13.

The objection to this new architecture, for SDN or non-

Figure 13: Novel architecture

SDN networking, is that the security may be weaker. If
any individual program is penetrated then the other pro-
grams or even the operating system may be at risk, a
problem that could not occur if the functions were in sep-
arate boxes. The ability of operating systems to provide
secure silos for applications is improving. One example
of such an operating system is Security Enhanced- Linux
(SE-Linux) [30] that provides excellent security between
applications. Android has some capability in this domain
as each application is treated as a separate Linux user and
so the full force of the standard Linux security system is
available to stop applications from interfering with each
other [4]. The adoption of this new architecture is con-
tingent on a secure operating system such as SE- Linux,
being proved acceptable and having been trialled in a hos-
tile network environment.

Apache does have the internal architecture to imple-
ment the new architecture as shown in Figure 13 For ex-
ample the Apache version 2 filter mod clamav [16] scans
the content delivered by the proxy module (mod proxy)
for the viruses on email using the Clamav virus scanning
engine. ClamAv (Clam Antivirus) is a host based Intru-
sion Detection system (HIDS) written by Andreas Muller
and in [25] he did mention that the processing delay has
been reduced when comparing with other antivirus tools.
Most likely, as this online database has shown, the re-
moval of another packet reception process reduced CPU
load. Likewise any traditional IDS like Bro or Snort could
be rewritten to run as an Apache web server module
and so reduced CPU load. Several modules in Apache
server such as mod status, mod rewrite are useful for im-
plementing server security with low CPU overhead.

6 Conclusion

A web server or web server farm may be composed of
thousands of web servers and security devices. Security
devices such as IDS/IPS play a crucial role in safeguarding
these web servers but they do consume significant CPU
time and thus electrical power. Given the large number
of web server farms in the world, it is important to reduce
power consumption for such farms. This paper has shown
a surprising result that the power consumption of the IDS
programs Snort and Bro (and most likely other security

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 311

software) in a web server depends mainly the packets re-
ceived per second and depends very little on the analy-
sis performed by these programs. This makes intuitive
sense as it takes significant CPU time to operate a full
TCP/IP stack. Furthermore, the CPU load is a useably
linear function of packets per second and so CPU load for
high traffic rates can be estimated from low traffic rate
measurements.

The results also have implications for the architecture
of network systems. In a new proposed architecture where
programs share a common CPU (as may happen with
Software Defined Networks) then CPU load (and hence
electrical power) can be saved if a module receives packets
to the level of IP, UDP, TCP, or high level such as HTTP,
and then these formed packets are shared between higher
level applications. The CPU load of packet reception is
done once for several applications and not repeated for
every application. Security implications need careful con-
sideration as the infection of one program may result in
the easy penetration of another program or the operating
system on the same CPU. Secure operating systems such
as SE-Linux hold some hope of providing a secure way to
implement to new architecture proposed.

The work in this paper points to several further topics
for research. The first is to test whether SE-Linux or
other operating systems can provide the secure software
silos needed to run the new architecture. Such a system
could be trialled against known attacks and then placed
in a honey pot arrangement to further stress the system.
Another topic worth exploring is implementing the new
proposed architecture in the module based Apache web
server. What security functions make sense in such an
architecture where there is not a high level of security
between the web server and the security programs?

References

[1] M. Akhlaq, F. Alserhani, A. Subhan, I. U. Awan, J.
Mellor, and P. Mirchandani, “High speed NIDS us-
ing dynamic cluster and comparator logic,” in IEEE
10th International Conference on Computer and In-
formation Technology (CIT’10), pp. 575-581, 2010.

[2] S. M. Alqahtani, M. A. Balushi, and R. John, “An
intelligent intrusion detection system for cloud com-
puting (SIDSCC’14),” in International Conference
on Computational Science and Computational Intel-
ligence (CSCI’14), pp. 135-141, 2014.

[3] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A.
J. Cullen, and P. Mirchandani, “Evaluating intru-
sion detection systems in high speed networks,” Fifth
International Conference on Information Assurance
and Security (IAS’09), pp. 454-459, 2009.

[4] Android, System Permissions, 27 Aug. 2015.
(http://developer.android.com/guide/topics/
security/permissions.html)

[5] T. Bhaskar and S. D. Moitra, “A hybrid model
for network security systems: Integrating intrusion
detection system with survivability,” International

Journal of Network Security, vol. 7, pp. 249-260,
2008.

[6] E. Biermann, E. Cloete, and L. M. Venter, “A com-
parison of intrusion detection systems,” Computers
& Security, vol. 20, pp. 676–683, 2001.

[7] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C.
Lefurgy, C. McDowell, et al., “The case for power
management in web servers,” in Power Aware Com-
puting, pp. 261-289, 2002.

[8] Bro, The Bro Network Security Monitor, Dec. 15,
2017. (http://www.bro.org)

[9] W. Bulajoul, A. James, and M. Pannu, “Net-
work intrusion detection systems in high-speed traf-
fic in computer networks,” IEEE 10th International
Conference on e-Business Engineering, pp. 168-175,
2013.

[10] A. Chonka, W. Zhou, J. Singh, and Y. Xiang, “De-
tecting and tracing DDoS attacks by intelligent de-
cision prototype,” Sixth Annual IEEE International
Conference on Pervasive Computing and Communi-
cations (PerCom’08), pp. 578-583, 2008.

[11] Colby, LINEST in Excel, Dec. 15, 2017.
(http://www.colby.edu/chemistry/PChem/
notes/linest.pdf)

[12] M. A. Eid, H. Artail, A. I. Kayssi, and A. Chehab,
“LAMAIDS: A lightweight adaptive mobile agent-
based intrusion detection system,” International
Journal of Network Security, vol. 6, pp. 145-157,
2008.

[13] A. Gandhi, M. Harchol-Balter, R. Das, and C. Le-
furgy, “Optimal power allocation in server farms,” in
Proceedings of the Eleventh International Joint Con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS’09), pp. 157-168, 2009.

[14] A. A. Hadi, F. H. J. Azmat, and F. H. M. Ali,
“IDS using mitigation rules approach to mitigate
ICMP attacks,” in International Conference on Ad-
vanced Computer Science Applications and Tech-
nologies (ACSAT’13), pp. 54-59, 2013.

[15] R. A. Kemmerer and G. Vigna, “Intrusion detection:
A brief history and overview,” IEEE Computer, vol.
35, no. 4, Apr. 2002.

[16] T. Kojm, Clam AntiVirus: User Manual, ClamAV,
2012.

[17] F. Y. Leu, J. C. Lin, M. C. Li, C. T. Yang, “A
performance-based grid intrusion detection system,”
in 29th Annual International Computer Software and
Applications Conference (COMPSAC’05), pp. 525-
530, 2005.

[18] F. Y. Leu, J. C. Lin, M. C. Li, C. T. Yang, “Inte-
grating grid with intrusion detection,” in 19th Inter-
national Conference on Advanced Information Net-
working and Applications, pp. 304-309, 2005.

[19] B. Liengme, Regression Analysis - Confidence
Interval of the Line of Best Fit, Dec. 15, 2017.
(http://people.stfx.ca/bliengme/exceltips/
regressionanalysisconfidence2.htm)

International Journal of Network Security, Vol.20, No.2, PP.304-312, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).11) 312

[20] A. X. Liu and M. G. Gouda, “Complete redundancy
removal for packet classifiers in TCAMs,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 21, pp. 424-437, 2010.

[21] P. Mehra, “A brief study and comparison of Snort
and Bro open source network intrusion detection sys-
tems,” International Journal of Advanced Research
in Computer and Communication Engineering, vol.
1, pp. 383-386, 2012.

[22] D. S. A. Minaam, H. M. Abdual-Kader, and M. M.
Hadhoud, “Evaluating the effects of symmetric cryp-
tography algorithms on power consumption for dif-
ferent data types,” International Journal of Network
Security, vol. 11, pp. 78-87, 2010.

[23] L. Minas and B. Ellison, “The Problem of Power
Consumption in Servers,” Dr. Dobb’s Journal, May
2009.

[24] T. Mukherjee, G. Varsamopoulos, S. K. S. Gupta,
and S. Rungta, “Measurement-based power profiling
of data center equipment,” in 2007 IEEE Interna-
tional Conference on Cluster Computing, pp. 476-
477, 2007.

[25] A. Muller, An Apache Virus Scanning Filter,
mod clamav 0.23, Dec. 15, 2017. (http://software.
othello.ch/mod_clamav/)

[26] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron,
and L. Zhijian, “Power-aware QoS management in
Web servers,” in 24th IEEE Real-Time Systems Sym-
posium (RTSS’03), pp. 63-72, 2003.

[27] S. Sivabalan and P. J. Radcliffe, “A novel framework
to detect and block DDoS attack at the application
layer,” in IEEE TENCON Spring Conference, pp.
578-582, 2013.

[28] S. Sivabalan and P. Radcliffe, “Real time calibration
of DDoS blocking rules for Web Servers,” Computers,
vol. 4, pp. 42-50, 2016.

[29] N. Sklavos and P. Souras, “Economic Models and
Approaches in Information Security for Computer
Networks,” International Journal of Network Secu-
rity, vol. 2, pp. 14-20, 2006.

[30] S. Smalley, C. Vance, and W. Salamon, Imple-
menting SELinux as a Linux Security Module,
NAI Labs Report, vol. 1, pp. 139, 2001. (http:
//citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.178.6001\&rep=rep1\&type=pdf)
[31] Snort, Snort Web Page, Dec. 15, 2017. (http://www.

Snort.org)
[32] M. Stampar, “Inferential SQL injection attacks,” In-

ternational Journal of Network Security, vol. 18, pp.
316-325, 2016.

[33] StressLinux, Welcome to stresslinux, Dec. 15, 2017.
(https://www.stresslinux.org/sl/)

[34] G. L. Valentini, S. U. Khan, and P. Bouvry, “Energy-
efficient resource utilization in cloud computing,”
Large Scale Network-centric Computing Systems,
John Wiley & Sons, Hoboken, NJ, USA, 2013.

[35] G. Vasiliadis, M. Polychronakis, and S. Ioannidis,
“MIDeA: A multi-parallel intrusion detection archi-
tecture,” in Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security,
Chicago, Illinois, USA, 2011.

[36] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye,
Probability and Statistics for Engineers and Scien-
tists, Macmillan, New York, 1993.

[37] P. Wheeler and E. Fulp, “A taxonomy of parallel
techniques for intrusion detection,” in Proceedings
of the 45th Annual Southeast Regional Conference
(ACM-SE’07), pp. 278-282, 2007.

[38] Y. Xie, S. Z. Yu, “Monitoring the application-layer
DDoS attacks for popular websites,” IEEE/ACM
Transactions on Networking, vol. 17, pp. 15-25, 2009.

[39] S. Zaman and F. Karray, “Lightweight IDS based
on features selection and IDS classification scheme,”
International Conference on Computational Science
and Engineering, pp. 365-370, 2009.

[40] N. Zilberman, P. M. Watts, C. Rotsos, and A.
W. Moore, “Reconfigurable network systems and
software-defined networking,” Proceedings of the
IEEE, vol. 103, pp. 1102-1124, 2015.

Biography

Ms.Sujatha Sivabalan biography. received a B.Eng
from Bharathidasan University(India)in 2004 and M.Eng
from Anna University (India) in 2007.Currently doing
Ph.D. in School of Electrical and Computer Engineer-
ing, RMIT University, Australia. Her research interest in-
cludes network security, DDoS attack detection and block-
ing.

P. J. Radcliffe biography. received a B.Eng from Mel-
bourne University (Australia) in 1978 and worked for Er-
icsson Australia R&D for 7 years followed by consulting
to various companies. He joined Royal Melbourne Insti-
tute of Technology (RMIT) and was awarded and M.Eng.
in 1993 and a PhD in 2007. Main research interests in-
clude network protocols, Linux, and embedded systems.
He received a national teaching award in 2011 and in 2012
received the RMIT early career researcher award.

