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Abstract

Nonabelian group-based public key cryptography is a rel-
atively new and exciting research field. Rapidly increas-
ing computing power and the futurity quantum comput-
ers [52] that have since led to, the security of public key
cryptosystems in use today, will be questioned. Research
in new cryptographic methods is also imperative. Re-
search on nonabelian group-based cryptosystems will be-
come one of contemporary research priorities. Many inno-
vative ideas for them have been presented for the past two
decades, and many corresponding problems remain to be
resolved. The purpose of this paper, is to present a survey
of the nonabelian group-based public key cryptosystems
with the corresponding problems of security. We hope
that readers can grasp the trend that is examined in this
study.
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1 Introduction

The development of public key cryptography was a revo-
lutionary concept that emerged during the twentieth cen-
tury. The first published study on public key cryptogra-
phy was a key agreement scheme that was described by
W. Diffie and M.E. Hellman in 1976 [19]. The most com-
mon public key cryptography presently in use, such as the
Diffie-Hellman cryptosystem, the RSA cryptosystem, the
ElGamal cryptosystem and the elliptic curve cryptosys-
tem are number theory based and hence depend on the
structure of abelian groups. Their security depends on
difficulties regarding resolving some hard problems of the
number theory. For instance, the RSA algorithm depends
on integer factorization problem. The Diffie-Hellman, El-
Gamal and ECC algorithms also depend on discrete log-
arithmic problems (DLP). Although there have not been
any successful attacks on the above public key cryptosys-
tems the security of public key cryptosystems in use today,
will be questioned due to rapidly increasing computing
power and the futurity quantum computers. In 1997 [52],

P.W. Shor pointed out that there are polynomial-time
algorithms for solving the factorization and discrete log-
arithmic problems based on abelian groups during the
functions of a quantum computer. Research in new cryp-
tographic methods is also imperative, as research on non-
abelian group-based cryptosystems will be one of new re-
search priorities. In fact, the pioneering work for non-
abelian group-based public key cryptosystem was pro-
posed by N. R. Wagner and M. R. Magyarik [61] in 1985.
Their idea just is not suitable for practical applications.
For nearly two decades, numerous nonabelian groups have
been discussed to design efficient cryptographic systems.
The most frequently discussed nonabelian settings include
matrix groups, braid groups, semidirect products, loga-
rithmic signatures and algebraic erasers.

In this paper, we give an overview of known pub-
lic key cryptography designed by the above mentioned
nonabelian groups. These proposed nonabelian group-
based public key cryptosystems rely on either encryption-
decryption or on key exchange agreement. A standard
model for a public key cryptographic scheme is phrased
as two parties, which are referred to as Alice and Bob.
Suppose that Alice wants to send a message M to Bob.
A general model of encryption scheme is the following.
Alice uses the encryption map fk1 to encrypt the mes-
sage C = fk1(M), where fk1 is a one-way function and is
public. After receiving the cipher C, Bob uses the corre-
sponding decryption map gk2 to decode gk2(fk1(M)) = M ,
where gk2 should be known only by Bob.

Many non-abelian group-based key establishment pro-
tocols are related to the Diffie-Hellman (DH) protocol,
and we therefore provide a brief description of the DH-
protocol. The Diffie-Hellman (DH) protocol functions as
follows: Let G be a cyclic group with a generator g.
Suppose that Alice and Bob want to generate a shared
secret key K. Alice then randomly selects an integer
1 < a < o(g) and sends A := ga to Bob. Similarly,
Bob randomly selects an integer 1 < b < o(g) and sends
B := gb to Alice. Alice computes K = Ba, while Bob
computes K = Ab. The security of the DH-protocol relies
on the Diffie-Hellman problem (or the Discrete Logarith-
mic Problem).
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Problem 1. (Diffie-Hellman Problem) Let G be a group.
If g, gx, gy ∈ G are known, find the value of gxy.

Problem 2. (Discrete Logarithmic Problem) Let G be a
group. If h, g ∈ G such that h = gx and h, g are known.
Find the integer x.

Problem 3. (Conjugacy Search Problem) Let G be a
nonabelian group. Let g, h ∈ G be known such that h = gx

for some x ∈ G. Find x. Here gx stands for x−1gx.

Nonabelian group-based public key cryptography is a
relative new research field. In contrast to abelian groups
the conjugacy search problem and its variant versions are
hard problems on some nonabelian groups. The conju-
gacy search problem and its variant versions play an im-
portant role for the security on nonabelian group-based
public key cryptography.

In this paper, we give a survey of the representative
nonabelian group-based public key cryptosystems so far.
Their algorithms are very different.

2 Matrix Groups

2.1 Yamamura’s Encryption Scheme

At PKC’98, A. Yamamura [64] proposed a public key en-
cryption scheme based on the modular group SL(2,ZZ).
It is well known that SL(2,ZZ) is generated by two ma-

trices S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
, where the orders

of both generators are o(S) = 4 and o(T ) = ∞ and the

matrix ST =

(
0 −1
1 1

)
is of order 6. Also, SL(2,ZZ) is

generated by the matrices S and ST subject to the re-
lations S4 = (ST )4 = I and (ST )3 = S2. For a matrix

N ∈ SL(2,ZZ), the matrices A := N−1

(
0 −1
1 1

)
N and

B := N−1

(
0 −1
1 0

)
N satisfy the relations A6 = B4 = I

and A3 = B2. Therefore, the matrices A and B generate
SL(2,ZZ).

1) Key Generation: Bob

a. chooses two matrices V1 := (BA)i and V2 :=
(BA2)j ∈ SL(2,ZZ) for some i, j ∈ IN.

b. chooses matrices M ∈ GL2(C) and
F1(X), F2(X) ∈ Mat2(C[X]) and a ∈ C
such that F1(a) = V1 and F2(a) = V2.

c. computes W1(X) := M−1F1(X)M and
W2(X) := M−1F2(X)M .

d. Bob’s public key: W1(X),W2(X).
Bob’s private key: M,a.

2) Encryption: Let b1 · · · bn ∈ {0, 1}n be the message.
Alice computes the ciphertext

C(X) := W2(X)

n∏
i=1

(W1(X)bi+1W2(X)).

3) Decryption: From the ciphertext C(X) and Bob’s
private key (M,a) the message b1 · · · bn can be re-
covered by means of a procedure described in [64].

4) Security Analysis:
The protocol is based on conjugacy search problem
and root problems. But, R. Steinwandt [55] in 1992)
pointed out that the Yamamura’s Encryption Scheme
is insecure. Suppose that an adversary Eve inter-
cepted to the cipher C(X). She can compute

D(X) := W2(X)−1C(X) =

n∏
i=1

(W1(X)bi+1W2(X)).

The entries of the matrix

((W1(X)bi+1W2(X))−1D(X)

should be polynomials over C. Beginning with
the first bit b1, if at least one of the entries of
D1 := ((W1(X)2W2(X))−1D(X) involves a non-
constant denominator then we can conclude b1 =
0; otherwise b1 = 1. Similarly, if the matrix
D2 := ((W1(X)2W2(X))−1D1(X) contains a non-
polynomial entry then we can conclude b2 = 0; oth-
erwise b2 = 1. The process continues until all bits
bi, i = 1, · · · , n are recovered. This means that the
plaintext b1 · · · bn ∈ {0, 1}n can be recovered effi-
ciently from ciphertext C(x) and the public data
alone.

2.2 Two Rososhek-Matrix Cryptosys-
tems

In 2013, S. K. Rososhek [49] proposed a ElGamal-like en-
cryption scheme -called BMMC ((Basic Matrix Modular
Cryptosystem) - by using matrices over ZZn.

1) BMMC: Let n be a large positive integer and let
G(α, β, γ) be a free subgroup of the general lin-
ear group GL(2,ZZn) generated by three generators
A,B and C, where α, β, γ ∈ ZZ with | α |, | β |

, | γ |≥ 3, A =

(
1 0
α 0

)
, B =

(
1 β
0 1

)
and C =(

1− γ r
−γ γ + 1

)
. Let q be the order of the group

GL(2,ZZn). All the data above is public.

a. Key Generation: Bob

i. chooses two random matrices P1 and U in
G(α, β, γ) with P1U 6= UP1 and three inte-
gers k, s, l with −q ≤ k, s ≤ q and 2 ≤ q.

ii. computes P2 := U−sP k1 U
s and P3 := U l.

iii. The public key: n, P1, P2, P3.
The private key: U, k, s.

b. Encryption: Let the message m ∈ Mat(2,ZZn)
be a matrix. Alice chooses integers r, t ∈ ZZn
and then computes the ciphertext

(C1, C2) := (P−r3 P t1P
r
3 ,mP

r
3P
−t
2 P−r3 ).
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c. Decryption: Bob computes m by using his pri-
vate key k, s:

C2U
−sCk1U

s = m.

d. Security Analysis:
If Eve want to break the system, Eve has to
solve the transformation and hybrid problems
that are more complicated than the discrete log-
arithm problem in the group of the same cardi-
nality. The both hard problems are described
as follows.

Problem 4. (The Transformation Problem):
Find all solutions (Z, y) of the equation
ZP1Z

−1 = P y1 , where Z ∈ GL(2,ZZn) and
| y |< q is an integer.

Problem 5. (The Hybrid Problem): Find all
solutions (Y, x) of the equation Z0 = Y x, where
Y ∈ GL(2,ZZn) and | x |< q is an integer.

2) MMMC1: The BMMC requires three matrix mod-
ular exponentiations for key generation. There are
three exponentiation under encryption and two ex-
ponentiations under decryption. In order to speed
the algorithm, S. K. Rososhek [50] gave two modified
schemes named MMMC1 (Modified Matrix Modular
Cryptosystem one) and MMMC2. The both mod-
ified schemes are similar. We only introduced the
MMMC1 here.

a. Key Generation: Bob

i. computes the integer n, where n may be
either a power of a prime pr or a product
n = pq of two distince primes.

ii. determines two invertible matrices V,W ∈
GL(2,ZZn) in order to define two commut-
ing inner automorphisms α, β of the ring
Mat(2,ZZn): α(D) := V −1DV and β(D) :=
W−1DW , for all D ∈Mat(2,ZZn).

iii. computes two automorphisms φ := α2β and
ψ := αβ2.

iv. chooses a matrix L ∈ GL(2,ZZn) such that
L 6∈ G.

v. The public key: n, φ(L), ψ(L−1).
The private key: V,W,α, β.

b. Encryption: Let the message m ∈ Mat(2,ZZn)
be a matrix. Alice

i. chooses Y ∈ G and define an inner au-
tomorphism ζ of the ring Mat(2,ZZn) by
ζ(D) := Y −1DY .

ii. computes the matrices ζ(φ(L)), ζ(ψ(L−1))
and mζ(φ(L)).

iii. chooses a unit γ ∈ ZZn.

iv. computes the ciphertext

(C1, C2) = (γ−1 ·ζ(ψ(L−1), γ ·m ·ζ(φ(L))).

c. Decryption: Bob decrypts the message using his
private key

C2 · α−1β(C1) = m.

d. Security Analysis:
The security of the scheme is based on the ”ran-
dom salt” conjugacy search problem. This is for
the given matrices A,B in Mat(2,ZZn) to find
an invertible matrix X ∈ GL(2,ZZn) and an in-
teger 0 < γ < n such that X−1AX = γB.
If the integer γ in the encryption algorithm is
removed, then the system is insecure. This is
because the usual conjugacy search problem on
the general linear group GL(2,ZZn) is not hard.
The equation C1 = Y −1ψ(L−1)Y can be trans-
formed to a system of four linear equations with
four unknowns. On the other hand, the au-
thor [50] claimed that the “salt” γ can be found
only under brute force attack and for large n
this problem becomes intractable.

More about public key cryptosystems based on ma-
trices, see for example [9,21,24,27,32,49,50,55–57,64]
for an example.

3 Braid Groups

The braid groups were first introduced explicitly by E.
Artin in 1925 [4]. There are several ways to represent
braids, but the most common is through the use of Artin
generators and the fundamental braid [15]. The (Artin’s)
braid groups, denoted as Bn, are groups of braids on n
strands defined by the following presentation

Bn :=< σ1, · · · , σn−1 | σiσi+1 = σi+1σi,

σi+1σiσi+1 = σiσi+1σi, 1 ≤ i ≤ n− 1 > .

These are non-abelian torsion-free groups. The precise
description, in particular is the geometric interpretation
of Artin braid groups, see e.g. [2,10,17,18,30,36]. Due to
their efficient computational quality, Artin’s braid groups
seemed to be a good candidate as a platform group for
cryptographic applications.

At the beginning of the twenty-first century, some
braid group-based public key cryptosystems were pro-
posed. The pioneering papers for braid group-based cryp-
tography include the Anshel-Anshel-Goldfeld scheme [2]
in 1999 and the Ko-Lee et al. scheme [36] in 2000. Since
then, braids group-based cryptography has attracted a
great deal of attention. The security of the most pro-
posed braid group cryptographic schemes is based on the
conjugacy search problem or its variant versions, e.g. the
membership search problem.

Problem 6. (Membership Search Problem (or, Mul-
tiple Conjugacy Search Problem)) Given elements
x, a1, a2, · · · , an of a group G, find an expression of x as
a word in a1, a2, · · · , an (if it exists).
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Unfortunately, the conjugacy search problem on lin-
ear groups is not hard, and braid groups are linear
groups [11,37]. Although the most proposed braid group-
based cryptographic schemes are vulnerable to several an-
nounced attack methods [28], the research of the braid
groups for cryptography has not decreased. Apart from
the conjugacy search problem, there are other hard prob-
lems in braid groups that have not been studied exten-
sively. We therefore present the works of Ko-Lee et al.
and Anshel et al. and the corresponding attacks based
on linear representations of the braid groups. The algo-
rithms can be applied not only to braid groups, but also
to any nonabelian groups.

3.1 Two Ko-Lee et al. Schemes

Let LBk and RBn−k be commuting subgroups of the
braid group Bn, where 0 < k < n, consisting of braids
made by braiding left k strands and by braiding right
n − k strands among n strands, respectively. For any
a ∈ LBk and b ∈ RBn−k, the commutative rule holds:
ab = ba.

1) The Key Agreement Scheme [36]: The algorithm is a
Diffie-Hellman like algorithm.

a. The public key: braids groups Bn, LBk, RBn−k
and a braid x ∈ Bn.

b. Alice chooses a random secret braid a ∈ LBk
and sends y1 := axa−1 to Bob.
Bob chooses a random secret braid b ∈ RBn−k
and sends y2 := bxb−1 to Alice.

c. Alice receives y2 and computes the shared key
K = ay2a

−1.
Bob receives y2 and computes the shared key
K = by1b

−1.

2) The Encryption Scheme [36]:

a. Bob’s public key: x, y, where x ∈ Bn, y :=
axa−1 and the hash function H : Bn → {0, 1}l.
Bob’s private key: a ∈ LBk.

b. Encryption: Let m ∈ {0, 1}l be a plaintext. Al-
ice

i. chooses a braid b ∈ RBn−k at random.

ii. computes the ciphertext (c, d), where

c = bxb−1 , d = H(byb−1)⊕m.

c. Decryption: Bob uses the prime key a to recover
the message

m = H(aca−1)⊕ d.

3) Security Analysis:
The security of both of these schemes is based on
the conjugacy search problem on braid groups. To
break the both schemes, it suffices for Eve to solve
the Braid Diffie-Hellman Conjugacy Problem.

Problem 7. (Diffie-Hellman Conjugacy Problem)
Let A and B be commuting subgroups of a group G
with [A,B] = 1, and let g ∈ G be given. Given a pair
(ga, gb) with a ∈ A and b ∈ B, find gab.

The Ko-Lee et al. key agreement scheme can be at-
tacked by using the Lawrence-Krammer representa-
tion

K : Bn −→ GL(
n(n− 1)

2
,ZZ[t±1,

1

2
]).

The proposed algorithm to solve the braid DH prob-
lem is described roughly as follows. Suppose that
Eve can find a matrix A such that

K(y1)A = AK(y1),

K(σi)A = AK(σi),

for all generators σi ∈ LBk. Then, AK(y2)A−1 =
AK(b)K(x)K(b)−1A−1 = K(b)K(y1)K(b)−1 = K(K).
Note that the Lawrence-Krammer representation is
faithful and one can effectively find the image K(g)
for every g ∈ Bn. Moreover, one can effectively re-
cover K ∈ Bn from its image K(K) by using the
Cheon-Jun inversion algorithm [16,59].

3.2 Anshel-Anshel-Goldfeld Scheme

In contrast to Ko-Lee et al. schemes the Anshel-Anshel-
Goldfeld key agreement scheme [2] requires no commut-
ing subgroups. Let G be a public nonabelian group and
a1, · · · , ak, b1, · · · , bm ∈ G be public.

1) The Algorithm.

a. Alice chooses a random secret x =
x(a1, · · · , ak) ∈ G as a word in a1, · · · , ak
and sends bx1 , · · · , bxm to Bob.
Bob chooses a random secret y =
y(b1, · · · , bm) ∈ G as a word in b1, · · · , bk
and sends ay1, · · · , a

y
k to Alice.

b. Alice computes x(ay1, · · · , a
y
k) = xy = y−1xy

and x−1(y−1xy) = K.

c. Bob computes y(bx1 , · · · , bxm) = yx = x−1yx and
(y−1(x−1yx))−1 = K.

2) Security Analysis:
In the paper [2], braid groups are selected as plat-
form groups for the scheme. The security of the AAG
scheme is based on the multiple conjugacy search
problem, which is otherwise called the membership
search problem. However, for Eve to extract the
shared key K out of the public information, it suf-
fices to solve the Commutator KE Problem, which
is otherwise called the Anshel-Anshel-Goldfeld Prob-
lem, in polynomial time.

Problem 8. (Commutator Key Exchange Problem)
Let G be a group. Let a1, · · · , ak, b1, · · · , bk ∈ G and
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let a ∈< a1, · · · , ak > and b ∈< b1, · · · , bk >. Given
a1, · · · , ak, b1, · · · , bk, ab1, · · · , abk, ba1 , · · · , bak, compute
a−1b−1ab.

Let S be a subset of Mat(n, IF). The centralizer of
S is the set

C(S) := {c ∈Mat(n, IF) | cs = sc, ∀ s ∈ S}.

The centralizer C(S) is a subspace of the vector
space Mat(n, IF) over a field IF. The proposed al-
gorithm [59] to solve the commutator key exchange
problem is described roughly as follows. See [59] for
details.

a. Use the method of Cheon and Jun [16] to re-
duce the commutator key exchange problem in
matrix groups over fields.

Bn
K
↪→ GL(

n(n− 1)

2
,ZZ[t±1,

1

2
]) � GL(

n(n− 1)

2
, IF),

where IF = ZZ[t]/ < p, f(t) >= ZZ[t±1, 1
2 ]/ <

p, f(t) > is a finite field of the order pdeg f(t), p
is a prime and f(t) is an irreducible polynomial.

b. Compute a basis for C(C(b1, · · · , bk)).

c. Find a matrix x (and its inverse x−1) that satis-
fies the following homogeneous system of linear
equations

b1 · x = x · ba1 ,
...

bk · x = x · bak.

Thus, bxi = bai and xa−1 ∈ C(b1, · · · , bk).

d. If y ∈ C(C(b1, · · · , bk)), then (xa−1)y =
y(xa−1) and (xa−1)y−1 = y−1(xa−1).
Therefore,

x−1y−1xy = x−1y−1(xa−1)ay

= x−1(xa−1)y−1ay

= a−1ay.

e. Find a matrix y ∈ C(C(b1, · · · , bk)) (and its in-
verse y−1) that satisfies the following homoge-
neous system of linear equations

a1 · y = y · ab1,
...

ak · y = y · abk.

f. Let a = aε1i1 · · · a
εm
im

. Then, compute

ay = (aε1i1 )y · · · (aεmim )y = (ayi1)ε1 · · · (ayim)εm

= (abi1)ε1 · · · (abim)εm = (aε1i1 )b · · · (aεmim )b

= ab.

g. Compute a−1ay = a−1ab = a−1b−1ab.

h. Recover the shared key K from a−1b−1ab by
using the Cheon-Jun inversion algorithm.

For more about braid groups and braid group-based pub-
lic key cryptosystems, see for example [2, 4, 10, 11, 15–18,
23,28,30,36,37,39,44,45,47,53,59].

4 Stickel’s Schemes

In 2003, E. Stickel presented the algorithms based on the
Diffie-Hellman type of nonabelian groups. The algorithms
cover the key agreement, authentication and digital sig-
nature purposes. Let G be a finite nonabelian group and
let a, b ∈ G with ab 6= ba and o(a) = N, o(b) = M > 1.

1) Stickel’s Key Agreement Scheme

a. Alice chooses two random natural number n <
N,m < M and sends u := anbm to Bob.
Bob chooses two random natural number r <
N, s < M and sends v := arbs to Alice.

b. Alice computes the shared secret key K =
anvbm.
Bob computes the shared secret key K = arubs.

2) Security Analysis:
Suppose that Eve wants to break the system and she
has intercepted the values u and v. In order to get
the secret shared key K, Eve does not have to find
a pair of integers (n,m) (or (r, s)), but to solve the
decomposition search problem [45,54].

Problem 9. ( Decomposition Search Problem)
Given a recursively presented (semi)group G, two re-
cursively generated sub(semi)groups A,B ∈ G, and
two elements u,w ∈ G. Find two elements x ∈ A
and y ∈ B such that x · w · y = u, provided at least
one such pair of elements exists.

Suppose that Eve can find a pair x, y ∈ G which
satisfies the system

{ xa = ax
yb = by
u = xwy

then Eve can use Bob’s transmission v to compute

xvy = xarwbsy = arxwybs = arubs = K.

3) Suggested Platforms: In the paper [56], it was sug-
gested that the general linear group GLk(IF2l) is used
as the platform group G. Then the above system of
three equations including a nonlinear equation can
be translated to a system of three linear equations

{ x−1a = ax−1

yb = by
xu = wy.
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It makes also the protocol vulnerable to linear algebra
attacks. However, the system is worth preserving. The
author of the paper [54] suggested semigroups with a great
deal of non-invertible elements, and then the linear alge-
bra attack would not work. Whether a semigroup (with a
lot of non-invertible elements) as the platform makes the
protocol vulnerable to another attacks is unclear.

5 Semidirect Products

In [47] (2001), S.-H. Paeng et al. described a public
key encryption protocol based on a semidirect product of
abelian groups connecting with the inner automorphism.

Definition 5.1. Let G and H be groups and ρ : H −→
Aut(G) be a group homomorphism. The semidirect prod-
uct Goρ H is a nonabelian group

Goρ H := {(g, h) | g ∈ G, h ∈ H}

under the group operation

(g1, h1) · (g2, h2) := (g1ρ(h1)(g2), h1h2).

Definition 5.2. Let G be a nonabelian group. Fix an
element g ∈ G. An automorphism Inn(g) : G −→ G
defined by

Inn(g)(x) := gxg−1, ∀ x ∈ G

is called the inner automorphism of G by g.

Problem 10. (Special Conjugacy Search Problem) Let
G be a nonabelian group. Given an element Inn(g) ∈
Inn(G). Find g′ ∈ G such that Inn(g′) = Inn(g).

5.1 The Encryption Scheme

Let Γ be a semidirect product of the groups SL(2,ZZp)
and ZZp. Inn(Γ) := {Inn(g) | g ∈ Γ} be the inner auto-
morphism group of Γ. The encryption scheme in [47]:

1) Bob’s public key: Inn(g), Inn(ga), g := (x, y) ∈ Γ r
Z(Γ).
Bob’s private key: a ∈ ZZ|Γ|.

2) Encryption: Let m := (m1,m2) ∈ Γ r Z(Γ) with
mg 6= gm be a message. Alice

a. chooses b ∈ ZZ and computes Inn(ga)b.

b. computes E = Inn(gab)(m).

c. computes φ = Inn(g)b.

Alice sends to Bob the cipher (E, φ).

3) Decryption: Bob computes m = φ−a(E).

4) Security Analysis:
The security of the encryption scheme is based on the
difficulty of the special conjugacy search problem and
the discrete logarithmic problem.

If Eve wants to break the system, she has to find the
private key a. Eve can try to find an element g0 such
that Inn(g0) = Inn(ga). Then, it holds that g0 = gaz
for some z ∈ Z(Γ). After that Eve has to check
whether g0z

−1 ∈< g >. If that is the case, then it
goes back to solve the discrete logarithmic problem
in the cyclic group < g >. Indeed, if the subgroup
Z(Γ) of Γ is large, then it is less efficient to determine
whether g0z

−1 ∈< g >.

On the other hand, Eve considers directly solv-
ing the discrete logarithmic problem in the group
< Inn(g) >. The most efficient known method-
the index calculus- cannot applied to the group <
Inn(g) >. In general case, the expected run times for
solving he discrete logarithmic problem are O(

√
p).

5) Suggested Platforms:
The Author [47] employ a semi-direct product Γ of
groups as the platform group of the system. Let
Γ = SL(2,ZZp) oρ ZZp an let ρ := Inn ◦ ρ1 : ZZp →
Aut(SL)(2,ZZp)) be the automorphism, which is a
composition of an inner automorphism Inn with an
isomorphism ρ1. For the DLP to be a hard prob-
lem in < Inn(g) >, we choose 160-bit prime p. Then
the security of the system is comparable to 1024-bit
RSA.

5.2 HKKS-Key Exchange Protocol

In 2013, M. Habeeb et al. [29] proposed a new key
agreement protocol (HKKS) by using semidirect prod-
ucts which is very different from the S.-H. Paeng et al.
scheme. Let G be a (semi)group and let Γ = G o H be
a semidirect product, where H ≤ Aut(G) is a subgroup.
Let (g, φ) ∈ Γ be the public key for the protocol.

1) The HKKS-Key Exchange Portocol in [29]:

a. Alice chooses a private number m ∈ IN and com-
putes (g, φ)m = (φm−1(g) · · ·φ2(g)φ(g)g, φm).
Alice sends to Bob the first component

a := φm−1(g) · · ·φ2(g)φ(g)g.

Bob chooses a private number n ∈ IN and com-
putes (g, φ)n = (φn−1(g) · · ·φ2(g)φ(g)g, φn).
Bob sends to Alice the first component

b := φn−1(g) · · ·φ2(g)φ(g)g.

b. Alice chooses any x ∈ H and computes
(b, x)(a, φm) = (φm(b) · a, x · φm).
Bob chooses any y ∈ H and computes
(a, y)(b, φn) = (φn(a) · b, y · φn).

c. The shared secret key K of Alice and Bob
is the first component of (b, x)(a, φm) =
(a, y)(b, φn) = (g, φ)m+n

K = φn(a) · b = φm(b) · a.
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2) Suggested Platforms:
In this paper [29], the authors consider the semigroup
G of 3×3 matrices over the group ring ZZ7[A5], where
A5 is the alternating group on 5 letters and an exten-
sion of G by an inner automorphism to get a platform
for the protocol. The public map φ is defined as an
inner automorphism by using a fixed invertible ma-
trix h ∈ G

φ(g) := h−1gh and φk(g) := h−kghk

for any matrix g ∈ G and any integer k ≥ 1.

In order to reduce key size and to speed up compu-
tation of the algorithm, the authors of the paper [33]
consider the semigroup G of 2× 2 matrices over the
binary field IF2127 and an extension of G by an endo-
morphism φ, which is a composition of a conjugation
by a matrix h ∈ GL(2, IF2127) with the endomorphism
ψ as the platform semigroup. The public map φ is
thus defined as follows

φ(g) := h−1ψ(g)h, and

φk(g) := (

k−1∏
i=0

ψi(h−1)ψk(g)(

0∏
i=k−1

ψi(h)),

for any matrix g ∈ G and any integer k ≥ 1. The
change of G reduces the bit complexity of a public
matrix g from 1620-bits into 508-bits. All computa-
tion are done by well known methods of fast com-
putation in finite binary fields. However, the choice
of the both platforms makes the protocol unable to
resist a linear algebra attack and a linear decompo-
sition attack.

3) Security Analysis:
We give the linear algebra attack in the original ver-
sion. Other attacks referred to [20, 29, 33, 34, 48]. If
the inner automorphism φh by a matrix h over a field,
i.e. φh(x) = hxh−1, is selected as the automorphism
φ, then the HKKS-key exchange protocol is vulner-
able to the linear algebra attack. The reason is de-
scribed as follows:

a. Recall that Alice sends the matrix a to Bob

a = (

1∏
i=m−1

h−ighi) · g = h−m(hg)m,

and Bob sends the matrix b to Alice

b = (

1∏
i=n−1

h−ighi) · g = h−n(hg)n.

The shared secret key K is

K = φm(b) · a = φn(a) · b = h−(m+n)(gh)m+n.

b. Suppose that Eve wants to break the protocol.
She finds two matrices X and Y satisfying the
system of two linear and one nonlinear equations

{ Xh = hX,
Y (hg) = (hg)Y,
XY = h−m(hg)m.

If the matrix X is invertible, the system can be
translated to the system of three linear equa-
tions

{ X−1h = hX−1,
Y (hg) = (hg)Y,

Y = X−1h−m(hg)m.

It makes also the protocol vulnerable to a lin-
ear algebra attack, since Eve can thus compute
the shared secret key by applying the solution
(X,Y )

X(h−n(hg)n)Y = h−n(XY )(hg)n = K.

The next key exchange protocol is a modified ver-
sion in order to prevent the linear algebra and linear
decomposition attacks.

5.3 Modified HKKS-Key Exchange Pro-
tocol [33]

Let the automorphism φ be the inner automorphism φh
by an invertible matrix h, i.e. φh(x) = hxh−1 and let
Ann(hg) := {x | x · (hg) = O} be the annihilator of the
matrix hg, where O is denoted as the zero matrix. Alice
and Bob agree on public matrices g and h, where h is
invertible and g is not.

1) The modified version:

a. Alice chooses a secret number m ∈ IN and a
secret nonzero matrix R ∈ Ann(hg), and then
computes

(g, φ)m = (φm−1(g) · · ·φ2(g)φ(g)g, φm)

= (h−m(hg)m, φm) = (a, φm).

Alice sends to Bob the matrix a+R.
Bob chooses a secret number n ∈ IN and a secret
nonzero matrix S ∈ Ann(hg), and then com-
putes

(g, φ)n = (φn−1(g) · · ·φ2(g)φ(g)g, φn)

= (h−n(hg)n, φm) = (b, φn).

Bob sends to Alice the matrix b+ S.

b. Alice chooses any x ∈ H and computes

(b+ S, x)(a+R,φm) = (φm(b) · a, x · φm).

Bob chooses any y ∈ H and computes

(a+R, y)(b+ S, φn) = (φn(a) · b, y · φn).
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c. The shared secret key K of Alice and Bob is
then

K = φm(b) · a = φn(a) · b.

2) Security Analysis:
The protocol uses R and S to hide a and b, respec-
tively. Here, Eve would be looking for matrices X,Y
and Z of the system of four equations

Xh = hX,

Y (hg) = (hg)Y,

Z · (hg) = O,

XY + Z = h−m(hg)m +R.

The last equation is not linear. The linear algebra at-
tack does not work against this protocol. However, it
is vulnerable against the linear decomposition attack
which is described as follows [20,48].

a. First, construct a linear space W generated
by all elements of the form h−k(hg)k, k ∈
IN ∪ {0}, with a basis {e1, · · · , el}, where
ei = h−ki(hg)ki , ki ∈ IN. Choose a basis
{f1, · · · , ft} of the linear space Ann(hg) such
that {e1, · · · , el, f1, · · · , ft}. This consists of a
basis of the space W + Ann(hg).

b. For public data a+R and b+S in W+Ann(hg),
we can effectively find one matrix S1 ∈ Ann(hg)
and the coefficients ηi, νj ∈ IF such that

b+ S = h−n(hg)n + S

=

l∑
i=1

ηih
−ki(hg)ki +

t∑
j=1

νjfj ,

where S1 :=
∑t
j=1 νjfj may bot be S.

c. Compute the shared secret key

l∑
i=1

ηih
−ki(a+R)(hg)ki

=

l∑
i=1

ηi[h
−ki+m(hg)ki+m + hki ·R · (hg)ki ]

= hm(

l∑
i=1

ηih
−ki(hg)ki)(hg)m

= h−m(h−n(hg)n + S1)(hg)m

= h−(m+n)(hg)m+n = K.

More about public key cryptosystems based on semidirect
products, see [20,21,29,32–35,42,48] for an example.

6 Logarithmic Signatures

The logarithmic signatures were first used in the cryptog-
raphy in order to construct a symmetric key cryptosystem
PGM [40]. Nearly twenty years later, S.S. Magliveras et

al. [38,41] proposed three public key encryption schemes,
called MTS1, MTS2 and MTS3, based on logarithmic sig-
natures for finite groups. Their security relies on the fol-
lowing hard factorization problem (Problem 11).

Let G be a finite (nonabelian) group and let Ai :=
[ai1, ai2, · · · , airi ] be a finite sequence of elements of G,
where ri is called the length of Ai and Ai denotes the
element

∑ri
j=1 aij in the group ring ZZG. An ordered se-

quence α := [A1, A2, · · · , As] of Ai can be viewed as an
s × r matrix α = (aij), where r = max{ri} and aij = 0
for j > ri. Let A1 ·A2 · · ·As =

∑
ag∈G agg, where ag ∈ ZZ.

Definition 6.1. A sequence α = [A1, A2, · · · , As] de-
scribed as above is said to be

1) a cover for G if ag > 0 for all g ∈ G.

2) a logarithmic signature for G if ag = 1 for all g ∈ G.

3) a [s, r]-mesh cover if α is a cover for G, all Ai have
the same length r and the distribution of the set {ag |
g ∈ G} is approximately uniform.

Note that if α = [A1, A2, · · · , As] is a logarithmic sig-
nature for G then for each element y of G there is a unique
factorization with qi ∈ Ai, 1 ≤ i ≤ s

y = q1 · q2 · · · qs. (1)

In general, it is not the case for covers.
A logarithmic signature α is called tame if the com-

plexity of the factorization of y in (1) is in polynomial
time. Otherwise, α is called wild.

Let α = [A1, A2, · · · , As] be a cover of type
(r1, r2, · · · , rs) for G and let m =

∏s
i=1 ri. Then the cover

α induces an efficiently computable surjective mapping

ᾰ : ZZm −→ G. (2)

If α is a logarithmic signature, then the induced mapping
ᾰ is bijective. Moreover, if a logarithmic signature α is
tame, then the inverse ᾰ−1 is efficiently computable.

Proposition 6.2. If α is a wild logarithmic signature
and β is a tame logarithmic signature for a finite group
G, then the mapping ᾰβ̆−1 : ZZ|G| −→ ZZ|G| is a one-way
permutation.

Let γ : {e} = G0 < G1 < · · · < Gs−1 < Gs be
a sequence of subgroups of G and let Ai be an ordered,
complete set of right coset representatives of Gi−1 in Gi.
Then the sequence [A1, A2, · · · , As] forms a logarithmic
signature α for G, and is called exact-transversal with
respect to γ. If we set Bi := g−1

i−1Aigi, i = 1, · · · , s, where
g0, g1, · · · , gs ∈ G, then the sequence β : [B1, B2, · · · , Bs]
is again a logarithmic signature for G. When g0 = gs = 1,
then β is said to be a sandwich of α.

Definition 6.3. A logarithmic signature α for a finite
group G is called

1) transversal, if α is the sandwich of an exact-
transversal logarithmic signature for G.
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2) non-transversal, if it is not transversal.

3) totally non-transversal, if none of its blocks is a coset
of a non-trivial subgroup of G.

Problem 11. (Factorization Problem for Logarith-
mic Signatures/Covers) Given g ∈ G and α =
[A1, A2, · · · , As] = (aij). Find aiji ∈ Ai, i = 1, · · · , s,
such that g = a1j1a2j2 · · · asjs .

6.1 MST1- Cryptosystem

Let G be a finite permutation group with a sequence γ of
subgroups of G.

1) Key Generation: Bob generates

a. a totally non-transversal logarithmic signature
α, a transversal logarithmic signature β for G
and .

b. a short sequence of exact-transversal logarith-
mic signatures θ1, θ2, · · · , θk such that σ :=
ᾰβ̆−1 = θ̆1 · θ̆2 · · · θ̆k, where k is a small inte-
ger > 1.

c. The public key: α, β,G.
The private key: θ1, · · · , θk.

2) Encryption: Let m ∈ ZZ|G| be a message. Alice com-
putes the cipher

C = σ(m) = (ᾰβ̆−1)(m).

3) Decryption: Bob recovers the message m by comput-
ing

θ̆−1
k (θ̆−1

k−1(· · · (θ̆−1
1 (C) · · · ))) = m.

4) Security Analysis:
The security of MST1 relies on the hardness of the
factorization problem with respect to wild logarith-
mic signatures. In [41] the authors assume that to-
tally non-transversal logarithmic signatures are ”wild
like”. Unfortunately, J.M. Bohli et al. [14] have
proved that totally non-transversal logarithmic sig-
natures can be tame. This means that not any totally
non-transversal logarithmic signature is suitable for
being used as a key in MST1. In addition to that
there are still no practical implementations of MST1

in sight.

6.2 MST2- Cryptosystem

Let G and H be large groups.

1) Key Generation: Bob

a. generates an epimorphism f : G → H and a
random [s, r]-mesh cover α = (aij) for G

b. computes β = (bij) = f(α) = (f(aij)).

c. The public key: α, β.
The private key: f .

2) Encryption: Let m ∈ H be a message. Alice

a. chooses R ∈ ZZrs .

b. computes y1 = ᾰ(R), y2 = β̆(R), y3 = my2.

c. Alice transmits the cipher (y1, y3) to Bob.

3) Decryption: Bob

a. computes f(y1) = y2, and

b. computes m = y3y
−1
2 .

4) Security Analysis:
If Eve wants to break the system, she has to find the
value y2. There are also two theoretical methods to
recover y2. One is to find a value R∗ ∈ ZZrs such that
ᾰ(R∗) = y1. If it is the case, then we can compute

β̆(R∗) = y2. In order to effectively compute R∗ such
that y1 = ᾰ(R∗), Eve has to factorize the public data
y1 with respect to α. This means that Eve has to
solve the Factorization Problem 11. This problem is
in general an intractable problem for large groups.
Second, Eve can try to find a homomorphism f∗ :
G → H such that β = f∗(α). S.S. Magliveras et
al. [41] claimed that if the symmetric group Sn is used
as the platform group of the scheme MST2 and the
private key f : G → G is conjugation by an element
g in Sn, then the scheme MST2 is vulnerable to the
second attack.

6.3 MST3- Cryptosystem

Let G be a nonabelian group with nontrivial center Z(G).

1) Key Generation: Bob

a. generates a tame logarithmic signature
β = [B1, B2, · · · , Bs] := (bij) of type
(r1, r2, · · · , rs) for Z(G) and a random
cover α = [A1, A2, · · · , As] := (aij) of the same
type as β for a certain subset F of G such that
A1, A2, · · · , As ⊆ Gr Z(G).

b. chooses t0, t1, · · · , ts ∈ Gr Z(G).

c. computes ᾰ := [Ã1, Ã2, · · · , Ãs], where Ãi =
t−1
i−1Aiti.

d. computes γ̆ = (hij), where hij := bij ãij .

e. The public key: ᾰ, γ̆.
The private key: β, t0, t1, · · · , ts.

2) Encryption: Let m ∈ ZZ|Z(G)| be a message. Alice

a. computes y1 := ᾰ(m) and y2 := γ̆(m).

b. Alice transmits the cipher (y1, y2) to Bob.

3) Decryption: Bob

a. computes y2t
−1
s y−1

1 t0 = β̆(m).

b. computes m = β̆−1(y2t
−1
s y−1

1 t0).



International Journal of Network Security, Vol.20, No.2, PP.278-290, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).09) 287

4) Security Analysis:
If Eve tries to obtain the private logarithmic signa-
ture β and the pair (t0, ts) of elements of G from
the public information (ᾰ, γ̆), it is sufficient for Eve
to determine a sandwich transform β‘ of β which is
equivalent to β, i.e., β̆‘ = β̆. Thus, it is sufficient
to assume that the first element b1j of each block
Bj , except for the last block Bs of B, is the iden-
tity 1 ∈ G. From the equation h11 = t−1

0 a11t1, Eve
chooses an element of G \ Z(G) as the value of t0.
On the other hand, due to the elements ti and tiz for
z ∈ Z(G) lie in the same coset tiZ(G). It is then suf-
ficient to choose one t0 only from each distinct coset
of G modulo Z(G).

5) Suggested Platforms: The authors [38] of MTS3 em-
ploy the Suzuki-2-group of the order q2 as the plat-
form group of MTS3, where q = 2m is the order of
the center Z(G) and the integer m is not a power
of 2. Thus, if the Suzuki-2-group is implemented as
the platform group of MTS3, then there are (q − 1)q
possible choices for the pair (t0, bs1). If q is large, the
type of the attack is in not feasible.

More about public key cryptosystems based on logarith-
mic signatures see [14,38,40,41,58,60] for an example.

7 Algebraic Eraser

The Algebraic Eraser is a binary operation consists of
a semidirect product and a homomorphism of monoids
and an action of a nonabelian group on a monoid. The
main purpose of building the Algebraic Eraser is to de-
sign lightweight public key cryptosystems. The Algebraic
Eraser key agreement scheme was introduced by Anshel,
Anshel, Goldfeld and Lemieaux in 2004; the correspond-
ing paper [1] appeared in 2006. The Algebraic Eraser
and the Algebraic Eraser-based protocol are specially de-
signed for commercial purposes. The company SecureRF
owns the trademark of them. It claims a security level
of 2128 for their preferred parameter sizes. The authors
in the paper [1] gave a concrete realization of the Alge-
braic Eraser key agreement protocol using infinite braid
groups named the colored Burau key agreement proto-
col (CBKAP). This Diffie-Hellman-like protocol has been
proposed as a standard in ISO JTC-1/SC-31 (29167-20)
to protect various communication protocols like RFID,
NFC, or Bluetooth for devices associated with ISO-18000
and the Internet of Things [3, 8].

Let M,N be monoids and let S be a nonabelian group
which acts on M on the left, and does not act on N . The
semidirect product M o S of M and S is then a monoid
whose internal binary operation is given by

(m1, s1) · (m2, s2) := (ms1
1 m2, s1s2).

The Algebraic Eraser (AE) E is the binary operation spec-
ified within the 6-tuple

(M o S,N,Π,E, A,B)

termed the E-structure. where Π : M −→ N is a monoid
homomorphism, E is the function

E : (N × S)× (M o S) −→ N × S

given by E((n, s), (m1, s1)) := (nΠ(sm1), ss1), and A,B
are submonoids of M o S satisfying E-Commuting, i.e.,
they satisfy the equation

E(Π(a), sa, (b, sb)) = E(Π(b), sb, (a, sa)),

for all (a.sa) ∈ A, (b, sb) ∈ B. For simplicity, the symbol
? will be used to replace the symbol E as follows:

E((n, s), (m1, s1)) = (n, s) ? (m1, s1).

The operation ? satisfies the associated property as fol-
lows: Given (n, s) ∈ N×S and (m1, s1), (m2, s2) ∈MoS,

((n, s) ? (m1, s1)) ? (m2, s2) = (n, s) ? ((m1, s1) · (m2, s2)).

7.1 The Key Agreement Scheme based on
the Algebraic Eraser

The Algebraic Eraser key agreement scheme designed by
Anshel, Anshel, Goldfeld and Lemieaux in [3] is a type of
Diffie-Hellman protocol: Let NA and NB be submonoids
of N so that they commute elementwise.

1) Alice selects her private key: na ∈ NA and (ai, sai) ∈
A.
Bob selects his private key: nb ∈ NB and (bj , sbj ) ∈
B.

2) Alice computes PA

PA = (na, id) ? (ai, sai),

and transmits PA to Bob.
Bob computes PB

PB = (nb, id) ? (b1, sb1),

and transmits PB to Alice.

3) The shared secret key K of Alice and Bob is

((na, id) · PB) ? (ai, sai) = ((nb, id) · PA) ? (bj , sbj ).

7.2 The CBKAP

The braid groups is used in order to implement the
CBKAP. E-multiplication is an action of the braid group
on pairs of matrices over a field and permutations. Recall
that there is a surjective homomorphism from the Artin
braid group Bn onto the symmetric group Sn. With help
of the colored Burau representation of Bn, that is an ex-
tended version of the reduced Burau representation [3,10,
17], the semi-direct product M oSn is defined as a group
generated by the set {(x1(t), s1), · · · , (xn−1(t), sn−1)},
where xi(t) is a colored Burau matrix of Bn and si =
(i i+ 1) is a transposition of Sn, for all i = 1, · · · , n− 1.
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The nonabelian group M o Sn is also called the colored
Burau group. The authors of the paper [3] then give an
example to concretely realize the above algorithm by us-
ing the colored Burau matrices. The protocol is also called
the colored Burau key agreement protocol (CBKAP).

Fix an integer n ≥ 7 and a prime p > n. Let M ≤
GL(n, IFp(t)), where t = (t1, · · · , tn), be a subgroup, and
let S = Sn be the symmetric group on n symbols and
N = GL(n, IFp). Fix n elements τ1, · · · , τn ∈ IFp, and
the homomorphism Π : M −→ N is defined by setting
τi = ti, i = 1, · · · , n. Let z ∈ M o Sn be a fixed element
and let A = z · {(xl1(t), sl1), · · · , (xlµ(t), slµ)} · z−1 and
B = z · {(xr1(t), sr1), · · · , (xrν (t), srν )} · z−1, where | li −
rj |≥ 2 for 1 ≥ i, j ≤ n, be two E-commuting subgroups
of M o Sn.

1) The public key: (M oS,N,Π,E, A,B) and a matrix
m0 ∈ GL(n, IFp) of order pn − 1 such that two sub-
groups NA, NB of N consist of linear combinations
of powers of m0 over IFp.
The private key: z and (xl1(t), sl1), · · · , (xlµ(t), slµ),

(xr1(t), sr1), · · · , (xrν (t), srν ).

2) Alice selects her secret key: na ∈ NA, k ∈ IN and
some (xai(t), sai) ∈ A, i = 1, · · · , k.
Bob selects his secret key: nb ∈ NB, l ∈ IN and some
(xbj (t), sbj ) ∈ B, j = 1, · · · , l.

3) Alice computes PA

PA = (· · · ((na, id) ? z ? (xa1(t), sa1) ? (xa2(t), sa2)) ?

· · · ) ? (xak(t), sak) ? z−1

= (na ·Π(z) ·Π(szA) ·Π(szsAz−1), szsAsz−1),

where Π(szA) = Π(szxa1(t))Π(szsa1xa2(t)) · · ·
·Π(szsa1 ···sak−1xak(t)) and sA = sa1 · · · sak .
Alice transmits PA to Bob.
Bob computes

PB = (· · · ((nb, id) ? z ? (xb1(t), sb1) ? (xb2(t), sb2)) ?

· · · ) ? (xbl(t), sbl) ? z
−1

= (nb ·Π(z) ·Π(szB) ·Π(szsBz−1), szsBsz−1),

and transmits PB to Alice.

4) The secret shared key K of Alice and Bob is

K = (· · · ((na, id) · PB ? z ? (xa1(t), sa1)

?(xa2(t), sa2)) ? · · · ) ? (xak(t), sak) ? z−1

= (· · · ((nb, id) · PA ? z ? (xb1(t), sb1)

?(xb2(t), sb2)) ? · · · ) ? (xbl(t), sbl) ? z
−1.

5) Security Analysis:
For simplicity, we assume that the matrix na = mα

0

for a secret α ∈ ZZ+. If Eve intercepts the public
data PA and PB and tries to break the shared key
K, it is sufficient to merely solve the matrix mα

0 and
the element z ∈M o Sn. First, Eve diagonalizes the

matrix m0: Qm0Q
−1 = (λ1, · · · , λn), where Q ∈ N .

Then,

mα
0 = Q−1(λα1 , · · · , λαn)Q.

On the other hand, by the condition that the
subgroups NA and NB of N commute, it applies
Π(szA)Π(szB) = Π(szB)Π(szA). Thus, the matri-

ces Π(szA) and Π(szB) take the forms

(
X 0
0 I

)
and(

I 0
0 Y

)
, respectively.

Suppose that z were known. Then, Eve can ob-
tain mα

0 and recover the matrices Π(szA) and
Π(szsBsAz−1) in polynomial time. Therefore, it re-
mains to ask how to determine the element z. The
security of the CBKAP depends on the simultaneous
conjugacy search problem. There are not any suc-
cessful attacks to solve the simultaneous conjugacy
search problem.

Problem 12. (Simultaneous Conjugacy Search
Problem) Let w1 = z−1a1z, · · · , wk = z−1akz. If
only w1, · · · , wk are public, find the conjugating ele-
ment z.

For more about Algebraic Eraser key agreement scheme,
see [1, 3, 5–8,13].

8 Conclusion

There are innovative ideas to propose nonabelian group
based-public key cryptography, although, most crypto-
graphic systems seem to be vulnerable to security. For
example, the conjugacy search problem on linear groups
used in the mentioned protocols, e.g., matrix groups and
braid groups, seems to be not be hard. Nevertheless, they
still have the value of reference. Some of these systems
have some modifications that still have a sufficient secu-
rity level. On the other hand, the efficiency and security
of a cryptographic system does not only depend on the
design of the algorithm, but also on the choice of platform.

References

[1] I. Anshel, M. Anshel, D. Goldfeld, S. Lemieux, “Key
agreement, the algebraic eraserTM , and lightweight
cryptography,” Contemporary Mathematics, vol. 418,
pp. 1-34, 2006.

[2] I. Anshel, M. Anshel, D. Goldfeld, “An algebraic
method for public-key cryptography,” Mathematics
Research Letter, vol. 6, pp. 287-291, 1999.

[3] I. Anshel, D. Atkins, D. Goldfeld, P. Gunnells, “De-
feating the Ben-Zvi, Blackburn, and Tsaban Attack
on the Algebraic Eraser,” IACR ePrint 2016/044.

[4] E. Artin, “Theory of braids,” Annal of Mathematics,
vol. 48, pp. 101-126, 1947.



International Journal of Network Security, Vol.20, No.2, PP.278-290, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).09) 289

[5] D. Atkins, Algebraic Eraser: A Lightweight, Effi-
cient Asymmetric Key Agreement Protocol for use
in No-Power, Low-Power, and IoT Devices, 2015.
(csrc.nist.gov/groups/ST/lwc-workshop2015/
papers/session8-atkins-paper.pdf)

[6] D. Atkins, D. Goldfeld, Addressing the Algebraic
Eraser Diffie-Hellman Over-the Air Protocol, 2015.
(http://eprint.iacr.org/2016/205.pdf)

[7] D. Atkins, P. E. Gunnells, Algebraic Eraser:
A Lightweight, Efficient Asymmetric Key
Agreement Protocol for use in No-Power,
Low-Power, and IoT Devices, 2015. (http:
//csrc.nist.gov/groups/ST/lwc-workshop2015/

presentations/session8-atkins-gunnell.pdf)

[8] A. Ben-Zvi, S. R. Blackburn, B. Tsaban, “A Practical
Cryptanalysis of the Algebraic Eraser,” 2016. (https:
//arXiv:1511.03870v2)

[9] G. Baumslag, B. Fine, X. Xu, “Cryptosystems us-
ing Linear Groups,” Applicable Algebra in Engineer-
ing, Communication and Computing, vol. 17, no. 3-4,
pp. 205-217, 2006.

[10] G. Baumslag, B. Fine, M. Kreuzer, G. Rosenberger,
A Course in Mathematical Cryptography, De Gruyter,
2015.

[11] S. Bigelow, “Braid groups are linear,” Journal of the
American Mathematical, vol. 14, pp. 471-486, 2001.

[12] S. R. Blackburn, C. Cid, C. Mullan, Group The-
ory in Cryptography, 2010. (https://arxiv.org/
pdf/0906.5545)

[13] S. R. Blackburn, M. J. B. Robshaw, “On the security
of the algebraic eraser tag authentication protocol,” in
14th International Conference on Applied Cryptogra-
phy and Network Security (ACNS’16), Lecture Notes
in Computer Science, vol. 9696, pp. 3-17, 2016.

[14] J. M. Bohli, M. I. González Vasco, C. Mart́ınez, R.
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