International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

225

Defeating Cyber Attacks Due to Script Injection

Debasish Das, Dhruba Kumar Bhattacharyya
(Corresponding author: Debasish Das)

The Department of Computer Science and Engineering, Tezpur University!

Napaam, Sonitpur, Assam 784028, India

(Email: ddas@tezu.ernet.in)
(Received July 15, 2016; revised and accepted Mar. 11, 2017)

Abstract

Offensive operations have been promoted by the aggres-
sors using computer as a tool or target, resulting, a cyber
attack in web-applications of an organization or the infras-
tructure of entire nation. Depending upon the attacker’s
target, one can classify some of the mostly occurred cy-
ber attacks into five broad categories. It reports some of
the common methods adopted in conducting these attacks
and their defending techniques. This paper mainly ad-
dress the possibility of cyber attacks due to the execution
of malicious or unintended nature of scripts. It formu-
lates a verification method of web document and perform
experiment in the client-side using its benign script struc-
ture. This method is capable of detecting any malicious
script which inserts in the web-document during trans-
portation from server to the client or due to the previously
stored content in the client or server operation. Satisfac-
tory results have been found with the own-generated and
publicly available data-set.

Keywords: Benign Logical Structure; Classification; Cy-
ber Attack; Malicious Script Insertion; Web-Application

1 Introduction

Today’s literate population is becoming totally dependent
on accessing web applications using browser and perform-
ing activities such as - email, banking, domestic appli-
ances etc. The advancement of web technology helps soft-
ware developer in developing user friendly applications so
that user can work with those applications easily. A large
number of organizational documents and non-web based
applications being transferred into web based applications
so that the efficiency and effectiveness of accessing orga-
nizational data over the Internet can be improved. Using
every latest technology, in one way software developers
are increasing simplicity in working with these applica-
tions, other way, these applications becoming targets of
intruders or malicious users.

A major security issue arises specially during access-
ing such applications, as a large number of attacks are

possible if the vulnerability in those applications are not
properly addressed. Attackers, intrude logically into an
application by misusing those vulnerabilities and they try
to disrupt its normal functioning. Researchers, have been
working largely to address web security threats and they
could achieve partially to address the issues. Intruders
also get cleverer with time and they formulate newer ways
of attack which helps in bypassing the security mechanism
of an application. To formulate a concrete solution, re-
searchers need more work on every possibility that may
lead a successful attack. In this paper first, it presents
various categories of cyber attacks and present practices
of their defense. Second, it formulates and effective veri-
fication of web document. The method detects malicious
scripts contained in a response page or web document,
which are responsible for defacing user access.

Finally, it reports test results based on experimental
evaluation. Satisfactory results have been found for a
series of evaluation using the own-generated and publicly
available data-set.

2 Security Risks in Accessing Web
Applications

In a typical scenario, accessing an application software
using web-browser over the Internet is shown in Figure 1.
The sequence of user request for a static resource (e.g.,
organization’s web-site or web-page), stored in the web
server and its response is shown in Lines 1, 2, 3, 4.

However, user may requests for the processed de-
tails e.g., students’ grade card containing the information
about grades secured on various subjects and the total
grade point earned (both cumulative and semester).

It can be retrieved by accessing application page stored
in the application server followed by the database process-
ing with the parameter values - username, password, stu-
dent’s roll number and term (say Spring/Autumn, Year).
The response page or web-document generated by the ap-
plication may contain some client-sided script(s). In the
client-side, the scripts perform validation on the user in-
put data and send it to the originating server. The appli-

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

226

web
Database -
licat reh ;i)
cerver 355:;3 ion web server request for Clientl
(2) . University
| dynamic “web page(I)
wen®| [[et Sebpaa)
R B © A 1
uery requestfor (3) |
Su ut itml | Tgrgde r:_artd_[)
!
O [l oo TR
|
'~(12) piade card,
franscript
3 Client2
web _
applications Erté{szgﬁuce
- (say, University
web page)

Figure 1: Typical Web application access

cation performs server-side processing using the param-
eter values, generates reports or web document (grade-
card) and send it to the client over the Internet.

User requests for grade-card may come randomly to
the application server over the Internet. For each re-
quest, the response page from the server generates one
dynamic script. In the client, such scripts perform vali-
dation on user input - rollno, term_year and term_type (in
Figure 1, dotted lines are shown - 5, 6, 7, 8, 9, 10, 11, 12).
When such validation performs in the server, based on the
generated scripts, it is called server side validation. The
effectiveness of input validation can be increased by per-
forming such at the both end. In Figure 2, it is shown how
a legitimate access can be defaced due to the insertion of
attack payload so that the legitimate access may re-direct
to the attacker’s site. Defacing user access mainly occurs
due to the change in logical structure of a web-document
by inserting the malicious script into it. During legiti-
mate access the input parameter values or other session
details such as - user name, password may be redirected to
the attacker’s site so that output of such application (i.e.,
grade-card) can also be redirected from the application
server to the attacker’s site without user’s knowledge.

2.1 Contribution

We introduce a method of detecting script vulnerabilities
causing cyber attacks based on verifying web document
using its benign structure. We report various classes of
cyber attacks and the identify the harmfulness of those.
The deficiencies of existing detection techniques and the
present day importance in addressing scripting vulnera-
bilities are highlighted. The effectiveness of the proposed
method in real-life applications is also reported.

2.2 Cyber Attacks and Their Categories

Cyber attack may be defined as an offensive exercise em-
ployed by individuals or group that targets - information
systems, infrastructures, computer networks, and/or per-
sonal computer devices. It generally, originate from an
anonymous source and its main objective is to steal, al-
ter, or destroy to a specified target. Based on their targets
cyber attacks can be classified into five different categories
described in Table 1.

In EPW, attackers mislead network users with false in-
formation by masquerading as a trustworthy entity. They
mostly, misguide users through telephonic communication
or pull to surf some decorated web sites loaded with false
information. By surfing such or responding to their tele-
phonic call, user may fall into the attacker’s trap. In
UKANTF category, attacker tries to gather information on
an application network by going through the organiza-
tion’s web pages or by executing some network commands
that are commonly used for legitimate access. Attackers
misuse vulnerability in a web-application under the MAV
category and maliciously enter into the system so that
they try to execute some unintended scripts or queries re-
sulting undue knowledge of database, data-store, session
details etc.

By running a successful MAV attack, attackers can
manage to change the integrity of a data-store. Under
MSVA category of attack, attacker tries to make the com-
puter system or browser vulnerable by maliciously execut-
ing malware or virus or worms. By doing so, attackers try
to redirect user access into a malicious web-application
site without his/her knowledge. The DDoS category of
attacks mainly targets network or computer resources.
It generally executes by flooding with auto-generated re-

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04) 227
User requests for
... GG Card(1) " Halicions |
. — ! '—, .
Input T] 1.1.:| b serpt ﬂ%sj ! ‘| Data
h’gll— o R T — 1 |Server
ton S U*:'E'f mput(3) (e.g. IGJ.]]lG.tE‘IILI:I._ 1|
(4) [Page P ...:::::::::::::::::::::..:'_

request(1} ;- Grade l:a.rdpwe{":l :

! !Lu.%lut ™

g "EaEIiir':'ﬂi' o

PO ; cm iMaJJcmus Application

L Pa‘ ipayload using gepyer Server

Defadinereqiest { vilnerable side

or re—-%ec%gg : ;application(8) venfcation
Legitimate user with generated
v script
--= data flow ! cript(®)
. Browser
process _l
[Uer]
Attacker’s domain
Figure 2: Typical attack scenario
quests through botnet or some network configured spe- posed by some of the researchers [8, 12, 16]. Defensive

cially for this purpose. To amplify the power of such
attack, it generally implements in a distributed way with
compromised hosts. Denial of service occurs to the legit-
imate users when congestion arise in the network band-
width or the bandwidth of targeted web server’s - CPU
or disk or database.

2.3 Related Work

Under MAV category of cyber attack where, an attacker
attempts to bypass authentication mechanism or steal ses-
sion details without the knowledge of legitimate users.
Insertion of unintended or malicious script in a web doc-
ument during the execution of user access, is an effec-
tive method deploying by the attackers. Several solutions
have been proposed by the researchers to address this
menace so that the scripts execution is restricted in both
client and server-side application. However, such restric-
tion may effect application’s functionality. Attack scripts
are prepared and injected into web document retrieves
session details or deface user access or to perform other
malicious operations. To overcome the scripting vulner-
abilities, some of the defending coding practices are re-
ported in [5, 18, 19]. Input validity checking for possible
scripting vulnerabilities using predefined constraint, such
as - black list, white list and syntax grammar, are popu-
larly applied my most of the researchers [3, 17, 21, 23, 26].

The method of identifying vulnerabilities in a web-
application and deploy defensive coding practices is pro-

coding approach is the primary requirement in prevent-
ing scripting vulnerabilities. However, dynamic script val-
idation is equally important to prevent scripting attacks.
To defend from typical scripting attacks, researchers pro-
posed methods which avoid the process of escaping char-
acters during execution of a web document [5, 18, 19].

In spite of implementing the defensive coding approach
by the researchers it is found that the malicious scripts
execution comes to be the biggest threat in cyber world.
Executing such script attackers may success in - defacing
user access, stealing session details, changing the logical
structure of web document, storing malicious strings in
the machine etc. As a result, attackers can proceed for
targeting computers or users in the social network.

The property of dynamic script generation in a web-
application domain can be misused by the attackers, lead-
ing to scripting attacks. The current detection techniques
[6, 9, 24] attempted to identify the vulnerable scripts in a
web document that are dynamically generated. In a web-
application domain, the method of bounding the script
execution within the legitimate frame-work is proposed
by some of the researchers [2, 10, 15]. However, such
constraint may restricts application’s functionality. Parse
tree based verification technique to identify deviation be-
tween request and response is carried out by some of the
researchers [1, 25]. However, due to the modified and
enhanced crafting mechanism of script injection adopted
by the attackers, it needs continuous effort for upgraded
solution.

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

228

Table 1: Detection approaches and their pros and cons

Attack Class Attack Method

Common Attacks Defense

1. Exploit Psycho Weak-
ness (EPW)

Exploring with pretext

Password restriction in lo-
gin, filtering

Access, Phishing, Porno

2. Undue Knowledge | Unintended actions - ex- | Reconnaissance, port | Data encrypt, Rule based
of application & Network | ploring networks, security | scan, trust, MANNET | defense

Finger-Print (UKANF) scans and network audit passive, storage

3. Misuse Application’s | Insert/Execute malicious | Hacking, SQL injec- | Filtering input data,

Vulnerability (MAV) payload tion, Cross-site scripting, | Firewall/rule-based pro-
Forgery, MANNET Active | tection, web-document

verification
4. Makes System Vulner- | Tools: Crack-Security | Spam, Hacking espionage, | email filter, Dynamic Fire-

using bot traffic

able to Attacks (MSVA) Sniffer, malware through | Cyber terrorism Cyber | wall or rule-based protec-
stealth viruses, Trojan, | war, black hole, MAN- | tion
Piggy-back NET Active
5. Distributed Denial of | Distributed flooding to | DDoS, Application layer | Deploy IDS, IPS at strate-
Service (DDoS) targeted network or device | DDoS gic point

Authentication mechanism is explored to identify vul-
nerabilities and formulated enhanced technique of authen-
tication based on personalized policies, maintained by the
application server [13, 27, 31]. To avoid unauthorized
access, researchers have proposed authority-based dele-
gation of encryption mechanism for multi-proxy signa-
ture scheme [7, 14, 20]. Proxy-based delegation mecha-
nism for signature based verification is widely explored
by the researchers to protect from unintended script exe-
cution [28, 29, 30].

3 Motivation

Insertion of malicious scripts in a web document
called script injection, may cause some notorious web-
application attacks, such as - cross-site scripting(XSS),
cross-site request forgery etc, To illustrate script injec-
tion, let us consider the typical web application access
scenario as shown in Figure 1. The application is a sim-
ple on-line student information system (SIS) that allows
to view academic details of students’ admitted in various
programme.

In a typical application report, student retrieves
his/her grade-card containing information on various sub-
jects in which he/she has registered, grade secured,
grade point earned, semester, to credit completed etc.
To view such details, user must log on to the proxy
server (LINUX O.S.) configured in our University intranet
(www.tezu.ernet.in). After successful login, it disconnects
from such server and redirect the connection to the ac-
tual application server where SIS package (developed with
PHP) exist. User must enter his/her valid login details
(username and password) in the main page of this pack-
age. Login verification is done by a function module de-
veloped using the frame-work called PHP Telnet. The

module retrieves password script file of the proxy server,
containing account details and verify accordingly.

After successful login, the application generates a re-
sponse page containing client-sided scripts and send the
page to the client machine. The script verify user inputs
- roll number or name or registration number and term
(spring or autumn) so that by verifying user input with
client-sided scripts, these are send to the server. Server-
side application processes with these parameter values
and generates response page or grade-card. During the
process of user access if any unintended script containing
some Java functions embedded in the web document, it
will also execute. This unintended script may generate
due to the previously store malicious content in the client
or server side. It can also generate during communica-
tion with the previously stored malicious strings. It can
be possible if user is not careful in clicking an application
or user does not have awareness in accessing cyber-world.
Due to the insertion of malicious payload or unintended
client-sided script, user access to the application may be
defaced because of the followings:

1) Change in logical structure of the web document;
2) Redirect the displayed page to the malicious site;

3) Session details stored in the cookies, send to the ma-
licious site;

4) Malicious data-store.

The logical structure of accessing a web-document or
document object model (DOM) defines how it is accessed
and manipulated. DOM is a platform and language-
neutral interface that allows programs and scripts to dy-
namically access and update the content, structure, and
style of a web document. Let us consider a client-sided
script file containing validity function to verify the input

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

value of student’s roll number as given in Figure 3. In this
function, it checks whether the length of input string for
rollno is equal to 8 or not. If so, the string value is posted
to the server in which the server page abcd.phd executes
by taking this value as argument.

229

function rollnoFunction(){

var currentXhr=null; //Global variable is declared
$(” #roll_no”).keyup(function()){

var string = $(this).val();

//input value is stored in string variable

var word = string.toUpperCase(); //case conversion
if (word.length=1) {

currentXhr=$.ajax({

type: "POST”,

url: ”abed.php”,

data:’keyword="+word,

beforeSend: function(){

$(” #roll.no”).css(”background”,” #FFF url(Circle.gif)
no-repeat 380px”);

if(currentXhr != null && currentXhr.readyState!=4) {
currentXhr.abort();}},

success: function(data){

$(” #suggesstion-1").show();

$(” #myModal”).modal(” show”);

$(” #suggesstion-1”).html(data);

$(”#roll no”).css("background” " #FFF”); }) } }
else

$(” #suggesstion-1").hide();

$(” #myModal”).modal("hide”); }) }

function setCookie(cookie_name,cookie_val,exp_days)

var d = new Date();

d.setTime(d.getTime() + (exp-days*24*60*60*1000));
var expires = ”expires="+d.toUTCString();
document.cookie = cookie_name + ”=" + cookie_val
+ 7; 7 4 expires;

}

function getCookie(cookie_name) {

var name = cookie_name + 7=";

var ca = document.cookie.split(’;’);

for(var i = 0; i < ca.length; i++)

var ¢ = cali];

while (c.charAt(0) =="") {

¢ = c.substring(1);

if (c.indexOf(name) == 0) {

return c.substring(name.length, c.length);
}

} 2”9

return 77;

Figure 3: Input string (Rollno) validation

Due to the insertion of malicious payload or unintended
functional statement (say, Javascript function in a typi-
cal application) in the script file of web document, user
access may executes in an unexpected manner. The dis-
played page may redirect to the malicious site and it may
post some unintended script function injected into the
web document. If the malicious payload containing func-
tion as given in Figure 4 say, setCookie (function to store
user name in cookie variable) and getCookie (function to
return the value of specified cookie).

There may occur some unintended action of send-
ing information from client to the attacker’s site.
This can be done by executing the script code
containing wurl of attacker’s site concatenated with
the string as - http://www.xul.fr/vulnera ble.html?
cookie="cookie_name” &cookie_valuse=name.

To prevent such kind of unintended execution, filtering
of script from a web document is the common practices
based on black list. Some of the defense method also
restricts script in a web document. However, filtering
mechanism or such restrictions may effect functionality
of an application. In a script functional statements are
mainly applied for client sided validation. Intended script
functions available in a web document may be poisoned

}

Figure 4: Unintended script to set and return cookie value

due to the unintended action. Thus, before executing
script functions of a web document it must be verified
based on legitimate structure.

4 Proposed Approach

A response page or web document send by the web-
application server against user request is associated with
its benign script structure called script proof. The script
proof is attached with the page so that before browsing a
web document, its structure is verified. The detection ap-
proach is implemented in co-ordination with application
server and client’s web browser. A program module re-
trieves structure of various scripts available in a web docu-
ment or response page and embed into it before sending to
the client’s end. Before browsing a web document in the
client machine, a plugged-in detection module retrieves -
(1) its structure (excluding script proof part) called candi-
date proof and (2) the attached script proof. The module
finally verify the two proofs so that if deviation between
them is found, it is considered as an unsafe or vulner-
able execution that may cause a scripting attack. The
proposed idea is to dynamically construct the script proof
whenever the application program constructs the response
page against a web request. A script proof of a response
page is considered to be self-evidently non-attacking so
that any new insertion of script during transportation or
due to the previously stored malicious content, a web doc-
ument can be verified with its script proof.

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

4.1 Problem Formulations

Accessing a web-application is comprised of the following
steps relevant to scripting attacks:

1) It generates dynamic scripts based on user request;

2) The generated scripts are embedded into the response
page;

3) User inputs are verified based on the instructions on
the scripts;

4) While browsing a web document or response page, it
does not verify the nature of scripts/scripts function
- intended or malicious;

5) Both server and the client do not maintain the details
of the scripts embedded into a response page against
an user request;

6) A malicious script may inject into a response page
due to the previously stored to the careless attempt
by the user;

7) The logical structure of the response page or web
document may be effected due to the insertion of ma-
licious scripts stored in the client’s machine;

8) Browsing of web document may be defaced due to
the non-persistent strings other than as mentioned
in Ttems 6) and 7);

4.2 Definitions

Web-application: A web-application is comprised of a
set of web-documents written in web language such
as - html, ASP, JSP, API, PHP etc. Each web-
document can be expressed as an ordered set of -
scripts, html strings and input-output data. A web-
documenit(F,,) maps one or more out-going run-time
expressions(Riegp).

A web-document can be expressed as -

({h17h27h37"' ;hm}u{81a52783a"' 7S/€}
U{d17d27"' ud’n})7

, Skt < set of all scripts;

Wy

where, {s1,82," "
{h17 h’27 h’37 e
{dy,ds,- - ,d,} + input(l) or output(o) data (user

input data or data generated by the web-application
server);

s han } < set of all html string;

The mapping of a server-sided web-documents of a
web-application(F,,) into a response page (R,) can
be expressed as -

R, = (HUSUD)
= <{h’17h’27"' ,hk}U{81782,83,"' 7Sm}
U{017027"' 70n}>;

230

Legitimate web-document:

A web-document (W,) is defined as legitimate or
normal if its candidate proof match with the script
proof. The function f,(S) retrieves the script proof
(Bs) of web-document Wy containing scripts S =
{s1,82,83,- - ,sk}. [fo(S) = Bg, embed into the
web document or response page (R),) from the server
so that the final web document passed from server
to the client, can be expressed as: R;, = (Ry, Bg).
The function f. of the detection module retrieves
candidate proof Cs from R, containing the scripts,
S = {s1,59,55,- ,5.}, f(S') = Bg. Thus, a test
web document is legitimate if Cs = Bg.

Malicious or attack web-document:
A web-document (W) is defined as malicious or at-
tack if its benign structure or script proof does not
match with its candidate proof, i.e., Cs # Bs(R,).

The benign structure or script proof of a web-document
is the sequence of its scripts structure. The struc-
ture of a script is the sequence of its functional state-
ments or web language functions, e.g., the benign struc-
ture of the function getCookie(cookie_name) is docu-
ment.cookie.split,return as shown in Figure 4. In the ap-
plication server, an auto-generated module generates the
script proof of a response page or web-document before
sending it to the client. In the client, before browsing a
web-document using client’s web-browser its structure is
verified with its script proof using detection module at-
tached to the web browser.

4.3 Detection Algorithm

The detection of nature of a web-document as normal or
malicious is done using two different algorithms. First
algorithm web-document-structure, return structure of a
web-document by retrieving each script structure. The in-
put to this algorithm is - web-document and list of web
language functions. The output of this algorithm is the
script structure of web document, containing one or more
sub-strings separated with coma(,). Each sub-string is
a web-language function. The second algorithm ezact
matching, retrieves the embedded sequence from the web-
document called script proof and match it with candidate
proof of the web document. The input to this algorithm
is the response page or test web-document. The algorithm
performs exact matching between the two strings, so that
if it is found matched it gives output as normal, otherwise,
declare as attack.

5 Experimental Results

To experiment the proposed detection approach, a three-
tire platform is configured having database server at the
back-end and web-application server in the middle, as
shown in Figure 1. A small web-application is devel-
oped to maintain students’ examination database and to

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/1JNS.201803.20(2).04) 231
Table 2: Matching results of benign and candidate structure of script
Ex. Benign Structure Candidate Structure Malicious attack /normal
String

1 Keyup, val, to Uppercase ajax, | Keyup, val, to Uppercase ajax, | nil normal
css, abort, show, modal, html, | css, abort, show modal, html css
css

2 Keyup, val, to Uppercase ajax, | Keyup, val, to Uppercase, ajax, | cookie, split, | attack
css, abort, show, modal, html, | css, abort, show, modal, html | substring
css css, cookie, split, substring

retrieve their academic information - result sheet, grade
card and transcript. Accordingly, the application gener-
ates three response pages or web-document based on user
request.

In the server side operation, each page containing two
functional scripts, in which, the first two page containing
scripts having validation code to validate user input data
- roll number, term year, term type (Spring or Autumn).
The third page containing script to validate user input
value for the roll number or registration number. An ap-
plication program executes to retrieve script proof of the
generated web document and embedding into it before ex-
ecuting the send command. Each of the page containing
one additional script for keeping script proof.

In the client-side operation, a plug-in module called
scripts verification (SV), verifies the response page before
browsing the actual page content. The module performs
three operations - (1) it retrieves script proof of the page;
(2) generates scripts structure (candidate proof of the page
by sequentially retrieving each script other than the script
containing script proof; (3) performs exact matching be-
tween candidate proof and script proof and gives output
message based on the matching result.

In Figure 4, two malicious scripts containing unin-
tended or attack Java function document.cookie(), docu-
ment.cookie.split(’;’) and return c.substring(name.length,
c.length). These are mainly applied for printing the cookie
details, having session information. This information can
be redirected to the attacker’s site so that without the
knowledge of legitimate user, information may be re-
trieved by the attacker. The proposed detection module is
tested with a series of web-document having normal and
attack scripts written with Java functions. The proposed
detection module also tested using some of the publicly
available data-set containing malicious scripts [4, 11, 22].
Using these publicly available attack scripts, simulation
of test module has been done with 20 successive opera-
tions against each response page or web-document. In
each operation, one response page is tested by inserting
one and more malicious scripts available in the data-set.
Satisfactory results has been found in every operation.
In Table 2, sample results of some of the client-sided ex-
periment are shown. In this Table 2, the script proof
retrieved from the web-document based on the sequence

of functions available in the script. The first document
containing one script, accordingly, all the functions starts
with dot (.), other than the statement define file with the
extension dot(.), i.e., while retrieving from first document,
it is not included the statement wurl (blueCircle.gif). The
sequence of functions in the respective proof are kept sep-
arated with delimiter coma (,). While testing with public
data-set, we did not find any false positive.

In Table 2, the sample results are shown based on our
experiment using a typical application with limited num-
bers of user access. In a largely accessible web application,
where, in generates different run-time scripts for every re-
sponse page, the proposed method of generating benign
script structure and embedding as script proof into it, may
effects the performance of web application access. To im-
prove the efficiency, an indexing technique is applied to a
sequence of probable script proofs generated during train-
ing phase. The index of a script structure is prepared by
considering first 3 characters of each Java function avail-
able in it. At run-time, the server-side module retrieves
the appropriate script proof of a response page using its
index. To test the indexing technique, separate appli-
cations are developed so that for every legitimate user
request it generates different run-time scripts. The pro-
posed indexing-based verification process is tested with
100 numbers of distinct run-time scripts. Using index-
ing technique, performance of proposed method has been
improved while testing at run-time. Depending upon the
accessibility and dimension of web applications, the per-
formance of proposed method can be upgraded using mul-
tiple indexing technique. A sample shot of indexed script
proofs are shown in Table 3. A comparative report based
on results found in series of experiments is reported in

Table 4.

6 Conclusion

Scripting attacks due to the unintended functional state-
ment in the web document is considered to be one of
dangerous threats to the web enabled applications. To
avoid such attack, both application developer and user
must aware with this attack and accordingly, they must
be careful in developing software and accessing the same

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

232

Table 3: Index of script structures

’ 1 \ Index

\ Script Structure

KeyvaltoUajacssa boshomodhtmcss

Keyup, val, toUppercase, ajax, css, abort, show, modal, html, css

Keyup, val, ajax, css, abort, show, modal, html, css

KeyvaltoUajacs sabomodhtmcss

Keyup, val, toUppercase, ajax, css, abort, modal, html, css

S
1
2 | Keyvalajacssa boshomodhtmecss
3
4

Keyvalajacssabo shomadhtless coos-

plsub

Keyup, val, toUppercase, ajax, css, abort, show, modal, html, css,
cookie, split, substring

Algorithm 1 Function to retrieve structure of a script
1: Functionweb-document-
structurelnput:list,,ebsunctions(L),web -
document(Wy) Output:structureWs]]

2: Begin

3: W[< 0;

4: while not all scripts in W; done do

5: Read script S;

6: while not all substrings in S done do
7 Retrieve a sub-string W from Wy;
8: while not functions in L from 1 to n done do
9: Read a function in L < f,;

10: if Wy = f,, then

11: W] + concat(Wy[], Ws);

12: end if

13: end while

14: end while

15: end while

16: Return (Ws]));

17: EndFunction

18: End

Algorithm 2 Script structure matching

1: Function exact-matchinglnput:Test web-document
R, Output:page-status
begin
Read Ry;
Retrieve benign structure B, from R,;
Cut portion of By from R, <+ Ri;)
Cs = call web — document — structure(R,);
if Cy = B, then
page-status="Normal web-document’;
else

10: page-status="Malicious or Attack web-document’;
11: end if

12: Return (page-status);

13: EndFunction

14: end

respectively. In the server-side operation, the previously
stored malicious content that need to be addressed. In a
typical method, the script proof must be generated before
retrieving the stored data that effects in constructing the
scripts of a web document. This is due to the fact that if
the previously stored data is a malicious content than the
script proof also will be effected. However, this may not

be possible always, as, there can be applications where
scripts in web document generates dynamically with the
stored data. To avoid such situation where the script
generates using the stored content the filtering of stored
content or retrieved data must be required based on the
initialized constraint. However, in the client-side applica-
tion this method has no limitations and can be applied
directly to avoid script attacks. However, if the dynam-
ically generated scripts in the response page are due to
the multiple web-application servers before coming to the
client’s machine, then the proposed method need to be ex-
plored with signature generation and verification in each
server.

Acknowledgments

This work is funded by Ministry of IT, Govt of India under
the scheme of ISEA, Phase II.

References

[1] E. Athanasopoulos, A. Krithinakis, and E. P.
Markatos, “Hunting cross-site scripting attacks in
the network,” in Proceedings of the 4th Workshop on
Web 2.0 Security Privacy (W2SP’10), pp. 1-8, 2010.
T. S. Barhoom and S. N. Kohail, “New server-side so-
lution for detecting cross site scripting attack,” Inter-
national Journal of Computer Information Systems,
vol. 3, no. 2, 2011.

P. Bisht and V. N. Venkatakrishnan, “XSS guard:
Precise dynamic prevention of cross-site scripting at-
tacks,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 23-43, 2008.

Blwood, Multiple XSS Vulnerabilities Intiki-
wiki 1.9z, Mailing List Bugtrap, May 2006.
(http://www.securityfocus.com/archive/1/
435127/30/120/threaded)

CWE-79, CWE-79: Improper Neutralization of In-
put During Web Page Generation ('Cross-site Script-
ing’), June 2010. (http://cwe.mitre.org/data/
definitions/79.html)

J. H. Hayes and A. J. Offutt, “Input validation anal-
ysis and testing,” Empirical Software Engineerings,
vol. 11, no. 4, pp. 493-522, 2006.

M. S. Hwang, S. F. Tzeng, and S. F. Chiou, “A non-
repudiable multi-proxy multi-signature scheme,” In-

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

Table 4: Comparative results based on simulation

233

Method Constraint for ap- | Implementation Pros and Cons | Average DR using
plication function- public/own data
ality

Third party black list with dy- | Exists (1) Research oriented taint & | 90%

namic update (IMPERVA 2012) white lists (3) Depend on third

party lists

Bounding script execution [2, 10, | Exists (1) Reliable for script execution | 80-90%

15] (2) Unable to handle typical ap-

plication due to restrictions

Initialize taint or trust codes in | Exists (1)Reliable for script execution | 89%

client or server [3, 17, 21, 23, 26] (2) Unable to handle typical ap-
plication due to initialization

Proposed Method Not exists (I)Independ-ent handling of | 98%

server & client operations (2)
Effective verification of malicious
content with script proof

novative Computing, Information and Control FEzx-
press Letters, vol. 3, no. 3, pp. 259-264, 2009.

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A
static analysis tool for detecting web application vul-
nerabilities,” in IEEE Symposium on Security and
Privacy, pp. 263-268, 2006.

A. Kiezun, P. J. Guo, K. Jayaraman, and M. D.
Ernst, “Automatic creation of SQL injection and
cross-site scripting attacks,” in Proceedings of the
31st International Conference on Software Engineer-
ing, pp. 1-11, 2009.

E. Kirdaa, N. Jovanovicb, C. Kruegelc, and G. Vi-
gnac, “Client-side cross-site scripting protection.,”
Computer and Security, vol. 28, no. 7, pp. 592604,
20009.

J. Kratzer, “Jspwiki multiple vulnerabilities. post-
ing to the bugtrap mailinglist,” Sept. 2007. (http:
//seclists.org/bugtrap/2007/Sep/0324 .html)
H. T. Le and P. K. K. Loh, “Identification of per-
formance issues in contemporary black-box web ap-
plication scanners in SQLI,” in Latest Advances in
Information Science and Applications, pp. 211-216,
2012.

C. C. Lee, C. H. Liu, and M. S. Hwang, “Guessing
attacks on strong-password authentication protocol,”
International Journal of Network Security, vol. 15,
no. 1, pp. 64-67, 2013.

C. Lin, K. Lv Y. Li, and C. C. Chang, “Ciphertext-
auditable identity-based encryption,” International
Journal of Network Security, vol. 17, no. 1, pp. 23—
28, 2015.

M. Madou, E. Lee, J. West, and B. Chess, “Watch
what you write: Preventing cross-site scripting by
observing program output,” in Application Security
Conference, pp. 1-14, 2008.

M. Martin, B. Livshits, and M. S. Lam, “Finding
application errors and security flaws using PQL: A

[17]

program query language,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference, pp. 1-19, 2005.
K. K. Mookhey and N. Burghate, Detection of SQL
Injection and Cross-site Scripting Attack, Mar. 17,
2004.
(http://www.symantec.com/connect/articles/
detection-sql-injection-and-cross-site-
scripting-attacks)

A. Mueller, Cross Site Scripting (XSS), May
2009. (http://elegantcode.com/2009/05/28/
cross-site-scripting-xss/)

OWASP, XSS (Cross Site Scripting) Prevention
Cheat Sheet, Jan. 2010. (http://www.owasp.org/
index.php/XSS-Prevention-Cheat-Sheet)

C. Pan, S. Li, Q. Zhu, C. Wang, and M. Zhang,
“Notes on proxy signcryption and multi-proxy sig-
nature schemes,” International Journal of Network
Security, vol. 17, no. 1, pp. 29-33, 2015.

R. Pelizzi and R. Sekar, Protection, Usabil-
ity and Improvements In Reflected XSS Fil-
ters, 2012. (http://www.seclab.cs.sunysb.edu/
seclabl/pubs/xss.pdf)

A. Pigrelax, XSS in Nested Tag in PHPBB 2.0.16.
Mailing List Bugtrap, July 2005. (http://www.
securityfocus.com/archive/1/404300)

R. Sekar, An Efficient Black-box Technique for
Defending Web-application Attacks, Defense Ad-
vanced Research Project Agency, the Naval Surface
Weapons Center, 2009.

H. Shahriar and M. Zulkernine, “Mutec: Mutation-
based testing of cross site scripting,” in Proceedings
of the 5th International Workshop on Software En-
gineering for Secure Systems, pp. 47-53, IEEE, 2009.
J. Shanmugam and M. Ponnavaikko, “A solution to
block cross site scripting vulnerabilities based on ser-
vice oriented architecture,” in EEE/ACIS Interna-
tional Conference on Computer and Information Sci-
ence (IC1S°07), 2007.

International Journal of Network Security, Vol.20, No.2, PP.225-234, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).04)

[26] Z. Su and G. Wassermann, “Static detection of cross-
site scripting vulnerabilities,” in In 30th ACM/IEEE
30th International Conference on Software Engineer-
ing, 2008.

C. S. Tsai, C. C. Lee, and M. S. Hwang, “Pass-
word authentication schemes: Current status and
key issues,” International Journal of Network Secu-
rity, vol. 3, no. 2, pp. 101-115, 2006.

S. F. Tzeng, M. S. Hwang, and C. Y. Yang, “An
improvement of nonrepudiable threshold proxy sig-
nature scheme with known signers,” Computers and
Security, vol. 23, no. 2, pp. 174-178, 2004.

S. F. Tzeng, C. C. Lee, and M. S. Hwang, “A
batch verication for multiple proxy signature,” Par-
allel Processing Letters, vol. 21, no. 1, 2011.

S. F. Tzeng, C. Y. Yang, and M. S. Hwang, “A
nonrepudiable threshold multi-proxy multi-signature
scheme with shared verication,” Future Generation
Computer Systems, vol. 20, no. 5, pp. 887-893, 2004.
H. C. Wu, M. S. Hwang, and C. H. Liu, “A se-
cure strong-password authentication protocol,” Fun-
damenta Informaticae, vol. 68, no. 4, pp. 399-406,
2005.

234

Biography

Debasish Das, received his Ph.D. in Computer Science
and Engineering from Tezpur University in 2015 in the
field of Network Security. He has been involved in ap-
plication systems design & development and teaching for
last 20 years. Presently, he is working as Systems Analyst
in the Department of Computer Science and Engineering
at Tezpur University. His research area includes Network
and Information Security, Machine Learning and Finan-
cial Computing.

Dhruba Kr Bhattacharyya received his Ph.D. in Com-
puter Science from Tezpur University in 1999 in the field
of Cryptography and Error Control Coding. He has been
in teaching for last 24 years and presently, he is a Pro-
fessor at HAG in the Computer Science and Engineer-
ing Department at Tezpur University. His research ar-
eas include Machine Learning, Network Security and Bio-
informatics. Prof. Bhattacharyya has published more
than 240 research articles in the leading International
Journals and peer-reviewed conference proceedings. Dr.
Bhattacharyya also has written/edited 12 books. He is
a fellow of IETE. Dr Bhattacharyya is on the editorial
boards of several international journals and also on the
programme committees/advisory bodies of several inter-
national conferences/workshops.

