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Abstract
In this paper, we propose an Undeniable Blind Signa-

ture scheme (UBSS) based on isogenies between supersin-
gular elliptic curves. The proposed UBSS is an extension
of the Jao-Soukharev undeniable signature scheme [16].
We formalize the notion of a UBSS by giving the for-
mal definition. We then study its properties along with
the pros and cons. Based on this, we provide a couple
of its applications. We then state the isogeny problems
in a more general form and discuss their computational
hardnesses. Finally, we prove that the proposed scheme
is secure in the presence of a quantum adversary under
certain assumptions.
Keywords: Isogeny; Post-quantum Cryptography; Su-
persingular Elliptic Curve; Undeniable Blind Signature
Scheme

1 Introduction
Blind signature scheme is a protocol in which the re-

quester requests the signer to sign a document with-
out disclosing the contents of the document. In 1982,
Chaum [5] proposed the first blind signature scheme. It
is based on the RSA problem [23]. Since then a host of
blind signature schemes and their variations have been
proposed based on different hardness assumptions such
as the Discrete Logarithm Problem (DLP), pairing-based
problems and lattice-based problems [4, 24, 29]. How-
ever, all the known blind signature schemes suffer from a
common drawback that they are not secure in the pres-
ence of a quantum adversary. The blind signatures by
Chaum [5], Camenisch et al. [4] and Zhang and Kim [29]
are not quantum secure due to the polynomial time quan-
tum algorithm by Shor for solving integer factorization
and discrete logarithms. The lattice-based blind signature
by Rückert [24] uses Fiat-Shamir paradigm [9] which is
not secure in the quantum random oracle model as shown
in [7].

Blind signature provides both anonymity and authenti-
cation [15, 20]. Hence it is used in the privacy-preserving
protocols such as e-cash and e-voting [21, 22]. However,
the signer has neither any control on the content of the
document nor on the way the signature is used. Therefore,
there is a crucial need to give a certain degree of control
to the signer. One possible way is to let the signer and
the requester agree on a part of the message (e.g., cer-
tain metadata about the specific message). This can be
achieved through the technique introduced by Abe and
Fujisaki [1].

Alternatively, one could let the signer decide who can
verify the signature. This will keep unauthorized veri-
fiers at bay and provide a certain control on the way the
signature is used. The Undeniable Signature scheme in-
troduced by Chaum and van Antwerpen [6] precisely has
the said requirement. In an undeniable signature scheme
the signer can decide who can verify the signature.

So, it seems desirable to have a scheme that would pro-
vide anonymity and controlled verification satisfying the
properties of both blind signature and undeniable signa-
ture. Such a scheme can be devised but not obvious.
In 1996, Sakurai and Yamane [25] have come up with
an undeniable blind signature scheme based on the DLP.
Their technique is also applicable for blinding the RSA
based undeniable signature described in [6]. However,
their scheme is not quantum secure either.

In this paper, we propose a new undeniable blind sig-
nature scheme based on the hardnesses of isogeny prob-
lems over supersingular elliptic curves. The isogeny prob-
lems for supersingular curves (details in Section 5) do not
have any subexponential quantum algorithm. Hence, our
scheme is quantum resistant.

Soukharev et al. [28] give a construction of quan-
tum secure designated verifier signature scheme based
on the hardness of isogeny problems. They also show
a generic construction of asymmetric key authenticated
encryption scheme. Jao and Soukharev [16] have pro-
posed an isogeny-based undeniable signature. We extend
Jao-Soukharev scheme into an Undeniable Blind Signa-
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ture scheme.
To sum up, the main contributions of this paper are:

1) The concept of an UBSS seems to have been first
mentioned in the work of Sakurai and Yamane [25].
However, to the best of our knowledge, it has never
been formally defined in the literature till date. In
this paper, we make such an attempt and give a for-
mal definition of UBSS. We also study its properties
including its strengths and weaknesses.

2) In [17], Jao and Venkatesan, speculate the use of
hardness assumptions related to isogeny problems in
constructing blind signature. We confirm this specu-
lation by constructing an undeniable blind signature
scheme.

3) The existing isogeny-based schemes [8, 16], including
the current work, use primes of special forms that
depend on a given set of small primes. Therefore, we
state isogeny problems in their general form. These
definitions can be used for the construction of any
isogeny-based cryptographic scheme.

The rest of the paper is organized as follows. In Sec-
tion 2, a formal definition of a UBSS is given and its
properties as well as the possible attacks are studied. In
Section 3 a brief and relevant mathematical background
about isogenies between supersingular elliptic curves is
provided. Section 4 describes the proposed UBSS in de-
tail. In Section 5, we state the isogeny problems in their
general form and discuss related hardness assumptions.
The security of the proposed scheme is proved in Sec-
tion 6. We conclude in Section 7.

2 Undeniable Blind Signature:
Definition and Properties

2.1 Formal Definition
One would expect that a UBSS combines the proper-

ties of undeniable signature scheme and blind signature
scheme. This means that UBSS would offer anonymity of
the message origination and controlled verification of the
signature. We have not found any definition that would
fulfill both the requirements. Hence, we provide a defini-
tion for UBSS.

Definition 1 (Undeniable Blind Signature Scheme). An
interactive signature scheme given by the tuple

UBSS = (KeyGen,Blind,Sign,Unblind,Check, CON ,DIS)

is said to be undeniable blind signature scheme if it satis-
fies the following:

1) The randomized key generation algorithm KeyGen
takes as input a security parameter 1λ and outputs a
pair of keys (vk, sk) which are called the verification
key and the secret key respectively. This is written
as (vk, sk)← KeyGen(1λ).

2) The randomized blinding algorithm Blind takes as in-
put a message m and outputs a blinded message m′,
denoted as m′ ← rBlind(m) where r is the random
choice made by the algorithm.

3) The randomized or deterministic signing algorithm
Sign takes as input a secret key sk and a message m.
It outputs a signature σ, denoted σ ← Signsk(m).

4) The deterministic unblinding algorithm Unblind takes
as input a blinded signature σ′ and a random choice
r. It outputs an unblinded signature σ, to be denoted
by σ := Unblindr(σ′).

5) The deterministic checking algorithm Check takes as
input a message m, a signature σ and the key pair
(vk, sk). It outputs a bit b with b = 1 meaning valid
and b = 0 meaning invalid. This is written as b :=
Check(vk,sk)(m,σ).

6) The confirmation protocol, πcon initiated by the
signer, assures the verifier that the signature is in-
deed valid.

7) The disavowal protocol, πdis also initiated by the
signer, assures the verifier that the signature is not
valid.

It is required that, for every key pair (vk, sk) output
by KeyGen(1λ), every m in the message space, and every
random choice r made by Blind, the following holds:

Check(vk,sk)(m,Unblindr(Signsk(rBlind(m)))) = 1

Additionally, if the signature algorithm is determinis-
tic, we may also assume that the effect of blinding-signing-
unblinding on a message is same as directly signing the
message. In the above notation, this means

Unblindr(Signsk(rBlind(m))) = Signsk(m).

2.2 Working of UBSS
We will now run through the protocol to illustrate the

role of the different algorithms in the definition. The il-
lustration also makes it clear when these algorithms are
run and by whom.

At first the signer chooses a security parameter λ and
runs KeyGen(1λ) to obtain the key pair (vk, sk). The
signing key sk is kept secret and the verification key vk
is published by the signer. Let m be the message which
the requester wishes to communicate anonymously. The
requester first creates a blinded version m′ of m by run-
ning the algorithm Blind(m). Let r be the random choice
made by the algorithm Blind. The requester then sends
m′ along with his identity IdR. The signer verifies the
requester’s identity (see Remark 1) and runs Signsk on
m′ to obtain the blinded signature σ′. After receiving σ′
from the signer, the requester unblinds it by using the al-
gorithm Unblind and the same random choice r made by
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Signer

Requester Verifier

σ′

CON/DISIdR‖m′

(m,σ)

IdV ‖(m,σ)

Figure 1: Illustration of the flow of information in an
undeniable blind signature protocol

Blind. The requester then sends the original message m
and the unblinded signature σ to the concerned party.

Any party who wishes to verify the signature sends
the message-signature pair (m,σ) along with his identity
IdV to the signer. The signer verifies the identity of the
verifier (see Remark 1). If IdV is not the identity of an
authorized verifier, then the signer simply ignores; oth-
erwise, runs the algorithm Check. If Check returns valid
then the signer initiates the confirmation protocol CON ;
otherwise initiates the disavowal protocol DIS. Figure 1
gives the flow of information in the UBSS.

Remark 1. We intentionally do not specify how the
signer verifies the identity of the requester and the ver-
ifier. It is the problem that can be best dealt with mu-
tual authentication which can be done in one of the many
ways [3, 11], all of which are quantum secure.

2.3 Properties
The UBSS is desired to have the following three secu-

rity properties viz., unforgeability, blindness and invisibil-
ity. The above properties are elaborated and their formal
definitions are given below.
Unforgeability. As with any signature scheme, we re-
quire that the UBSS is unforgeable. The strongest no-
tion of unforgeability is obtained when the adversary is
allowed to corrupt both the requester and the verifier.
The strongest notion of unforgeability for a UBSS is given
here. The UBSS must be unforgeable against one-more
forgery i.e., a requester who has received signatures for t
messages (where t is polynomially bound by the security
parameter), should not be able to output t + 1 distinct
message-signature pairs even after collaborating with the
verifier. This notion of unforgeability is formalized by the
following security game:

1) The challenger runs KeyGen(1λ) to obtain the key
pair (vk, pk) and gives the verification key vk to A.

2) A is allowed to make polynomially many queries
to the signing oracle on chosen messages or any of
their blinded versions adaptively and arbitrarily in-
terleaved.

3) A is also allowed to submit message-signature pairs
(m,σ) to the confirmation/disavowal oracle. If (m,σ)

is valid (resp. invalid), then the oracle engages in
confirmation (resp. disavowal) protocol with the ad-
versary.

4) After making t queries to the signing oracle, A out-
puts t′ distinct pairs (mi, σi) such that

Check(vk,sk)(mi, σi) = 1

Definition 2 (Unforgeability). Let UBSS be a given un-
deniable blind signature scheme as in Definition 1. We
say that the UBSS is unforgeable if Pr[t′ > t] is negligi-
ble for any probabilistic polynomial-time (PPT) adversary
A in the above game.

Blindness. The blindness property is essential for pre-
serving the anonymity of the message content originator.
The signer should not be able to relate the message-
signature pair and associated blinded versions. The
strongest notion of blindness is obtained when the adver-
sary is allowed to corrupt both the signer and verifier.
Since the verification happens collaboratively with the
signer, we allow the signer to view the signature after un-
blinding it. Incidentally, the existing definition of blind-
ness for blind signature already accounts for this. Except-
ing notation, we consider the following security game as
described by Schröder and Unruh in [26, Sec. 3 Defn. 4].

1) The adversary A runs KeyGen(1λ) and generates a
key pair (vk, sk).

2) A then chooses two messages m0 and m1 and gives
them to the challenger.

3) The challenger chooses a random bit b hidden from
A and reorders the messages as (mb,mb−1).

4) The challenger then blinds the two messages; m′b ←
r1Blind(mb) and m′b−1 ← r2Blind(mb−1).

5) A engages in signing the blinded versions m′b and
m′b−1. If signing requires multiple interactions, then
A may engage parallely and arbitrarily interleaved.

6) The challenger receives the blinded signatures σ′b and
σ′b−1 and unblinds them; σb := Unblindr1(σ′b) and
σb−1 := Unblindr2(σ′b−1).

7) The challenger then sends σb and σb−1 to A.

8) At the end of the attack game, A outputs a guess bit
b′.

Definition 3 (Blindness). We say that the UBSS has
blindness property if |Pr[b′ = b] − 1/2| is negligible for
any PPT adversary A in the above game.

Invisibility. A verifier should be able to accept (or re-
ject) a signature only with the signer’s cooperation via
the confirmation (or disavowal) protocol and not other-
wise. This notion is formalized by the following security
game between a challenger C and an adversary A.
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1) The challenger runs KeyGen(1λ) to obtain the key
pair (vk, pk) and gives the verification key vk to A.

2) A is permitted to issue a series of signing queries for
messagesmi and their blinded versions to the signing
oracle adaptively and receives signatures σi.

3) A is also allowed to submit message-signature pairs
(m,σ) to the confirmation/disavowal oracle. If (m,σ)
is valid (resp. invalid), then the oracle engages in
confirmation (resp. disavowal) protocol with the ad-
versary.

4) At some point, A chooses a message m∗ and sends it
to the challenger.

5) C chooses a random bit b. If b = 1, C runs σ∗ ←
Signsk(m∗), otherwise, C chooses a random value for
σ∗ from the signature space. C returns σ∗ to A.

6) A performs some signing queries again (see Re-
mark 2).

7) A can also perform some queries to the confirma-
tion/disavowal oracle but not allowed to query the
challenge (m∗, σ∗).

8) At the end of the attack game, A outputs a guess bit
b′.

Definition 4 (Invisibility). We say that the UBSS is
invisible against full attack if |Pr[b′ = b]−1/2| is negligible
for any PPT adversary A in the above game.

Remark 2. If the signing algorithm is deterministic, we
do not allow the adversary A to query m∗ or any of its
blinded versions to the signing oracle.

2.4 Attacks: Blindness vs. Invisibility
A couple of attacks which exploit blindness property

and invisibility property are demonstrated here. We show
that all the existing schemes [13, 19] that combine these
two requirements are vulnerable to the following attacks.
At the end of the section, some suggestions to choose the
appropriate model and suitable application are made in
order that the system is secure.

The restriction in Remark 2 is a standard practice.
However it seems rather forced. Suppose that the signing
algorithm is deterministic and adversary A queries for
a signature on a blinded version of m∗. If the UBSS is
blind, then it is impossible for the signer to distinguishm∗
from any of the previously signed messages. Hence, A can
easily guess b and the signature is visible for the requester
without actually engaging in the confirmation/disavowal
protocol.

Suppose the signer does not conform to his inputs,
say a different key pair (vk∗, sk∗) is used instead of
(vk, sk) for signing all the messages form a particular
requester. If the UBSS is invisible, it is impossible for

the requester to know that the signer has used a dif-
ferent key pair. During the verification of a message-
signature pair (m,σ), if Check(vk,sk)(m,σ) returns invalid,
and Check(vk∗,sk∗)(m,σ) returns valid, then the signer can
trace the origin of the message m. Thus, compromis-
ing the anonymity of the content originator. The signer
seamlessly continues with the disavowal protocol. This
anomaly could be seen as an advantage. Suppose the re-
quester becomes aware that the signer has used a different
key pair for signing. The requester may choose to give up
the anonymity of the message to expose the signer. The
signatures can be used as an evidence against the signer.

One way to circumvent the above attacks is to allow the
requester to be a valid verifier. This makes the signatures
visible to the requester and empowers the requester to
check whether the signer has used the correct input.

The definition of UBSS is decoupled from the actual se-
curity model and the applications. While anonymity and
invisibility appear to be conflicting goals, by choosing an
appropriate security model, UBSS can be very useful in
certain applications. For example, in the case of e-cash,
one may consider the bank as a semi-honest signer. For
security reasons, the bank could decide to verify signa-
tures only for its customers. Then the bank should use
UBSS instead of blind signatures.

Another example where the UBSS becomes a natural
choice is Anonymous Feedback System. Suppose the chief
organizer of an event wishes to take anonymous feedback
from the participants. It should be done such that (i)
only the participants should be able to give the feed-
back anonymously and (ii) only the organizing committee
should be able to verify the authenticity of the feedback.
The participants who give feedback request for a blind
signature from the chief organizer. After obtaining the
signature, the participants send the feedback along with
the signature to the organizing committee. The commit-
tee members then verify the signature with the chief or-
ganizer. E-voting can be considered as a special case of
anonymous feedback system. In ANONIZE [12], any ad-
versary can verify the authenticity of the survey data and
hence there is a possiblity of misuse of the data. UBSS
averts any such misuse by allowing only the authorized
verifiers to check the authenticity of the data.

This completes our discussion on the definition of the
UBSS. In the next few sections, we give an example of a
UBSS using the isogeny-based hardness assumptions.

3 Mathematical Background
This section briefly provides some necessary math-

ematical background. For further details, the reader
is referred to [27] for mathematical, [10] for crypto-
graphic, [8] for algorithmic aspects and the citations
thereof.

Let Fq be the finite field (up to isomorphism) of char-
acteristic p and cardinality q. It is a well known fact that
two elliptic curves are isomorphic over an algebraic closure
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of Fq if and only if they have the same j-invariant. Also,
given two elliptic curves, the isomorphism between them
can be efficiently computed. An elliptic curve E/Fq is said
to be supersingular if #E(Fq) ≡ 1 mod p. For equivalent
definitions kindly refer [14, Ch. 13 Sec. 3 p. 259].
Isogenies. A homomorphism between two groups is a
map that preserves the group structure. The kernel of
a homomorphism is the subset of elements whose image
is the identity. An isogeny is a group homomorphism
between two elliptic curves with a finite kernel. Let φ :
E1 → E2 be an isogeny between two elliptic curves E1
and E2. Thus φ(OE1) = OE2 and φ can be written as

φ(x, y) =
(
f1(x, y)
g1(x, y) ,

f2(x, y)
g2(x, y)

)
,

where f1, f2, g1, g2 are polynomials in two variables x, y
with co-efficients in Fq. The degree of the isogeny φ,
deg φ = max{deg f1,deg f2}. An isogeny φ is said to
be separable if deg φ = # kerφ. An isogeny of degree
` is often referred to as an `-isogeny. For any `-isogeny
φ : E1 → E2, there exists an `-isogeny φ̂ : E2 → E1, called
the dual of φ, such that φ ◦ φ̂ = φ̂ ◦ φ = [`] where [`] is a
multiplication-by-` map. Two elliptic curves E1 and E2
are said to be `-isogenous if there exists an `-isogeny φ be-
tween them. Tate’s isogeny theorem says that E1 and E2
are isogenous over Fq if and only if #E1(Fq) = #E2(Fq).
An isogeny is uniquely identified (up to isomorphism) by
its kernel. Any generator of the kernel will produce a
unique isogeny up to isomorphism via Vélu’s formulae.
In our work we will be considering only supersingular el-
liptic curves and separable isogenies with cyclic kernels.
Isogeny Graph. An `-isogeny graph is a graph in which
the nodes are represented by isomorphism classes of ellip-
tic curves. There is an edge from E1 to E2 in the `-isogeny
graph if there is an `-isogeny form E1 to E2. The isogeny
graph is undirected due to the existence of dual isogenies.
The `-isogeny graph of supersingular curves is connected.
Given two random nodes in the isogeny graph finding a
path of fixed length is hard. This hardness is used for con-
structing isogeny-based cryptosystems, explained in detail
in Section 5.

4 A New Undeniable Blind Signa-
ture Scheme Based on Isogenies

In this section, we describe a new undeniable blind
signature scheme based computing an isogeny between
two supersingular elliptic curves over a finite field Fq.
We borrow the notation as in the paper of Jao and
Soukharev [16].

4.1 Public Parameters
Choose a prime p of the form p = `eA

A `eM

M `eC

C `eR

R ·
f ± 1. Generate a random supersingular elliptic curve
E0 defined over the field Fp2 . Choose base points

{PA, QA}, {PM , QM}, {PC , QC} and {PR, QR} that gen-
erate E0[`eA

A ], E0[`eM

M ], E0[`eC

C ] and E0[`eR

R ] respectively.
Choose a hash function H : {0, 1}∗ → Z

`
eM
M

Z .

4.2 KeyGen
The signer generates two random numbers mA, nA ∈

Z/`eA

A Z. Computes the curve EA = E0/ 〈KA〉 where
KA = [mA]PA + [nA]QA is the generator of the kernel
of the isogeny φA : E0 → EA. The signer also computes
φA(PC) and φA(QC).
Public Key: EA, φA(PC), φA(QC)
Private Key: mA, nA,KA

E0 EA
φA

Figure 2: The isogeny φA computed during the key gen-
eration phase

4.3 Blind
Let M be the message for which the signature is re-

quired. Let h = H(M). Compute the isogeny φM and
the curve

EM = E0

〈PM + [h]QM 〉

The image points φM (PA), φM (QA), φM (PC), φM (QC),
φM (PR) and φM (QR) are also computed. Now this mes-
sage curve EM has to be blinded. Choose a random
r ∈ Z

`
eR
R

Z which is hidden from the signer. Compute the
isogeny φM,RM and the curve

ERM = EM
〈φM (PR) + [r]φM (QR)〉

ERM is the blinded curve on which the signer will sign.
The blinding process is illustrated in Figure 3.

E0 EA

EM

ERM

φA

φM

φM,RM

Figure 3: The isogenies φM and φM,RM computed while
blinding the message. The dashed arrow is the isogeny
unknown to the requester
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Before sending the curve ERM for signing, one has to
compute the dual isogeny φ̂M,RM , so that unblinding is
possible. To do that, first we need to find a point K ∈
EM [`eR

R ] of order `eR

R such that K /∈ KerφM,RM , say K =
φM (QR). Compute the image point φM,RM (K) ∈ ERM .
The isogeny with kernel 〈φM,RM (K)〉 is the dual isogeny
φ̂M,RM .

Remark 3. Strictly speaking, this will not be the dual of
φM,RM because this isogeny will lead to a curve which is
isomorphic to EM . Since isomorphic curves represent the
same node in the isogeny graph, this isogeny maps back
to the same node. By the abuse of notation, we denote it
as φ̂M,RM .

Now, choose basis {P ′R, Q′R} ∈ ERM that generate
ERM [`eR

R ]. Compute m,n ∈ Z
`eR

R

such that

φM,RM (K) = [m]P ′R + [n]Q′R
This amounts to solving extended discrete logarithm
problem on ERM . Since ERM is isogenous to E0, by
Tate’s theorem, we have

#ERM (Fp2) = #E0(Fp2)

Hence ERM is a curve of smooth order. Therefore, m,n
can be found efficiently using generalized Pohlig-Hellman
algorithm. The masked curve ERM along with the points

P ′A = φM,RM (φM (PA))

Q′A = φM,RM (φM (QA))
P ′C = φM,RM (φM (PC))
Q′C = φM,RM (φM (QC))

P ′R and Q′R (all belonging to ERM ) is sent to the signer.

4.4 Sign
The signer computes the curve

EARM = ERM
〈[mA]P ′A + [nA]Q′A〉

The signer also computes the image points
φRM,ARM (P ′C), φRM,ARM (Q′C), φRM,ARM (P ′R) and
φRM,ARM (Q′R), and sends all the computed values to the
user.

4.5 Unblind
The requester computes the isogeny φ̂AM,ARM and the

curve

EAM = EARM
〈[m]φRM,ARM (P ′R) + [n]φRM,ARM (Q′R)〉

The requester also computes the points

PS = φ̂AM,ARM (φRM,ARM (P ′C))

QS = φ̂AM,ARM (φRM,ARM (Q′C))
The signature σ = {EAM , PS , QS}.

E0 EA

EM

ERM EARM

φA

φM

φM,RM

φRM,ARM

Figure 4: The isogeny φRM,ARM computed for signing
the blinded message. The dashed arrows are the isogenies
unknown to the signer.

E0 EA

EM EAM

ERM EARM

φA

φM

φM,RM

φRM,ARM

φ̂AM,ARM

Figure 5: The isogeny φ̂AM,ARM computed while unblind-
ing the signature. The dashed arrows are the isogenies
unknown to the requester.

4.6 Check
At the end of Unblind algorithm, the signature curve

generated by our scheme is isomorphic to Jao-Soukharev
signature curve. Hence the signature verification can be
done in the same way as in Jao-Soukharev signature.
When a message M and signature σ is submitted for
verification, the signer first checks whether the square
(E0, EA, EAM , EM ) in Figure 6 commutes. If it does, then
the signer initiates the confirmation protocol CON , initi-
ates the disavowal protocol DIS. The confirmation and
disavowal protocols are same as in [16].

Remark 4. Strictly speaking, the effect of blinding-
signing-unblinding is not the same as directly signing the
message. The action of an isogeny followed by the ac-
tion of its dual is equivalent to multiplication-by-degree
map [27, III.6.2a p. 83]. Hence, the points PS and QS
will have a factor of `eR

R multiplied to them when compared
to the Jao-Soukharev signature. But then, this factor is
relatively prime to their order `eC

C . It would not affect
the signature verification since both the pairs generate the
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E0 EA

EM EAM

φA

φM φA,AM

φM,AM

Figure 6: The isogenies φM , φM,AM , φA,AM are computed
to check whether the given signature EAM is valid.

same kernel.

The prime used in our work is different form the primes
already used in the literature [8, 16] for constructing
isogeny-based cryptographic primitives. This motivates
us to give generalized statements and hardness assump-
tions for isogeny-problems. We review them in the next
section.

5 Isogeny Problems Revisited
The current work uses the prime p of the form p =

`eA

A `eM

M `eC

C `eR

R · f ± 1 which has not been used so far in
the literature. The security of the isogeny-based schemes
depend on the size of the corresponding torsion subgroup.
Hence, such a choice for the prime does not have any
security implications so long as the torsion groups are
large enough.

Let p be a prime of the form p = f ·
∏N
i=1 `

ei
i ± 1 where

`i are distinct small primes, ei are positive integers and
f ≥ 1 is a small cofactor. Let E0 be a supersingular
elliptic curve defined over Fp2 and having order (p∓ 1)2.
For each 1 ≤ i ≤ N , let {Pi, Qi} be an arbitrarily chosen
basis of E0[`ei

i ]. The above information forms the global
parameters.

Problem 1 (Decisional Supersingular Isogeny (DSSI)
problem). Given the global parameters and another curve
E′ defined over Fp2 such that #E0(Fp2) = #E′(Fp2),
decide whether E′ is `ei

i -isogenous to E0 for a specified
1 ≤ i ≤ N .

For a fixed but arbitrary 1 ≤ i ≤ N , let φi : E0 → Ei
be an isogeny whose kernel is 〈[mi]Pi + [ni]Qi〉 where
mi, ni ∈ Z/`ei

i Z are chosen randomly and not both di-
visible by `i.

Problem 2 (Computational Supersingular Isogeny
(CSSI) problem). Given the global parameters, the curve
Ei and the points φi(Pj), φi(Qj) for all j = 1, 2, · · · , N ,
j 6= i, find a generator of 〈[mi]Pi + [ni]Qi〉.

5.1 DSSI and CSSI Assumptions
The DSSI and CSSI assumptions are the assumptions

that DSSI and CSSI problems are hard to solve for any
1 ≤ i ≤ N . This notion is formalized in this section.

DSSI Assumption. The DSSI assumption says that
the following two probability distributions are computa-
tionally indistinguishable for all i:

• (E,E/〈R〉) where R ∈ E is a random point of order
`ei
i .

• (E,E′) where E′/Fp2 is a random curve such that
#E(Fp2) = #E′(Fp2).

Let λ be the security parameter. Let G be a (possi-
bly randomized) polynomial-time algorithm that, on in-
put 1λ, outputs the global parameters described above.
Let us denote the set of all the global parameters by G.

Definition 5. We say that the DSSI problem is hard rel-
ative to G if ∀ 1 ≤ i ≤ N and for all bounded quantum
polynomial-time algorithms A, the quantity

|Pr [A(G, E,E/〈R〉) = 1]− Pr [A(G, E,E′) = 1]|

is negligible and the probabilities in each case is taken
over the experiment in which G(1λ) outputs G, R ∈ E
is a random point of order `ei

i and E′ is a random curve
such that #E(Fp2) = #E′(Fp2).

CSSI Assumption. Consider the following experiment
for a given parameter-generating algorithm G, algorithm
A, and parameter λ.

The computational supersingular isogeny ex-
periment CSSIsoA,G(λ):

1) Run G(1λ) to obtain the global parameters G =
(p,E0, `i, ei, Pi, Qi).

2) For a fixed 1 ≤ i ≤ N , choose m,n← Z/`ei
i not both

divisible by `i and compute

E′ ≡ E0

〈[m]Pi + [n]Qi〉

3) A is given G, i, E′ and outputs a point R ∈ E0.

4) The output of the experiment is defined to be 1 if
E′ ≡ E0

〈R〉 and 0 otherwise.

Definition 6. We say that the CSSI problem is hard rel-
ative to G if ∀ 1 ≤ i ≤ N and for all bounded quan-
tum polynomial-time algorithms A there exists a negligible
function negl such that

Pr[CSSIsoA,G(λ) = 1] ≤ negl(λ).

5.2 Hardness of CSSI and DSSI Assump-
tions

Since the DSSI and CSSI problems need to be hard for
all values of i, it is expected that the parameter generat-
ing algorithm G outputs the prime p such that the values
`ei
i are roughly of the same size for all i. Hence, we assume
`ei
i ≈ N

√
p. The generic attack for solving DSSI and CSSI
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problems that improve on exhaustive search involve solv-
ing the claw problem for the domain size `ei/2

i . The opti-
mal complexity for the above black-box claw attack using
a quantum computer is O(`ei/3

i ) = O( 3N
√
p). Suppose

λ = log p, then the complexity of the attack is O(2λ/3N )
which is clearly exponential in λ. Kohel et al. [18] have
given a probabilistic algorithm for solving the quaternion
analog of CSSI problem. However, translating it to CSSI
problem is not known to be efficient. The quantum algo-
rithm by Biasse et al. [2] yields a subexponential attack
if the base curve is defined over Fp. There is no known
subexponential attack if the base curve is not defined over
Fp.

5.3 Other Isogeny Problems
There have been several other variants of DSSI and

CSSI problems whose hardness have been assumed to
build the cryptographic primitives. We present only those
that are relevant to the current work. For a complete list,
we refer the reader to [16, Sec. 5]. Henceforth in the rest
of the paper, for the sake of simplicity, we follow the no-
tation as in Section 4.

Problem 3 (Decisional Supersingular Product (DSSP)
problem). Given an isogeny φ : E0 → E3 of degree `ei

i

and a tuple sampled with probability 1/2 from one of the
following two distributions:

• (E1, E2, φ
′) where the product E1 × E2 is chosen at

random among those `ej

j -isogenous (i 6= j) to E0×E3,
and where φ′ : E1 → E2 is an isogeny of degree `ei

i ,
and

• (E1, E2, φ
′) where E1 is chosen at random among the

curves having the same cardinality as E0, and φ′ :
E1 → E2 is a random isogeny of degree `ei

i ,

determine from which distribution the tuple is sampled.

Problem 4 (Modified Supersingular Computational
Diffie-Hellman (MSSCDH) problem). Given EA, EM and
ker(φM ), determine EAM .

Problem 5 (One-sided Modified Supersingular Com-
putational Diffie-Hellman (q-OMSSCDH) problem). For
a fixed EA and given oracle access of at most q times
to MSSCDH for any set of inputs EA, EMi , ker(φMi),
(1 ≤ i ≤ q). Solve MSSCDH for EA, EM and ker(φM )
where EM 6≡ EMi

∀i.

Problem 6 (Modified Supersingular Decisional
Diffie-Hellman (MSSDDH) problem). Given EA,
EM , EC and ker(φM ), decide whether EC ≡ EAM .

Problem 7 (One-sided Modified Supersingular Deci-
sional Diffie-Hellman (q-OMSSDDH) problem). For a
fixed EA and given oracle access of at most q times to
MSSCDH oracle for any set of inputs EA, EMi

, ker(φMi
),

(1 ≤ i ≤ q). Solve MSSDDH for EA, EM , EC and
ker(φM ) where EM 6≡ EMi ∀i.

Signing Oracle. Given any supersingular elliptic curve
E/Fp2 of order (`eA

A `eM

M `eC

C `eR

R )2 and points P,Q ∈ E both
of order `eA

A , the signing oracle outputs the curve EA such
that

EA ≡
E

[mA]P + [nA]Q

where mA, nA ∈ Z/`eA

A Z form the private key.

Problem 8 (One-More Supersingular Computational
Diffie-Hellman (1MSSCDH) problem). After making q
queries to the signing oracle, output at least q + 1 dis-
tinct pairs of curves {EMi

, EAMi
} where EMi

are `eM

M -
isogenous to E0 and {EA, EMi

, EAMi
} is a Diffie-Hellman

tuple for each 1 ≤ i ≤ t.

6 Security of the Proposed Con-
struction

In this section, we prove that our UBSS has unforge-
ability, blindness and invisibility.

6.1 Unforgeability
The challenger chooses a security parameter and gener-

ates the secret key mA, nA. The corresponding public key
EA, φA(PC), φA(QC) is given to the adversary A. A then
issues a series of at most q signing queries to the challenger
for the messages mi (1 ≤ i ≤ q). Let EMi

and EAMi

be the corresponding message curves and signatures re-
spectively. A is allowed to submit the message-signature
pairs (m,EAM ) to the signer for verification. If the sig-
nature is correct then the signer engages in confirmation
protocol otherwise initiates disavowal protocol. At some
point adversary then outputs q′ message-signature pairs
(mj , EAMj ). The adversary wins the game if q′ > q.

Theorem 1 (Unforgeability). If the DSSP and 1MSS-
CDH assumptions hold, then the proposed UBSS is un-
forgeable.

Proof. Suppose there exists an adversary A that forges
the proposed UBSS. Without any loss of generality we
may assume that A issued exactly q signing queries and
output exactly q + 1 valid message-signature pairs. The
confirmation and disavowal protocols are shown to be
zero-knowledge in [16, Sec. 7] provided DSSP is hard to
solve. Hence we may further assume that A does not
have access to the confirmation/disavowal oracle at all.
But then A in turn solves 1MSSCDH problem.

Remark 5. Since the signature for a message m ob-
tained at the end of the proposed UBSS protocol is the
Jao-Soukharev signature for m, we also need to assume
that solving q-OMSSCDH problem is hard. This is omit-
ted in the statement of Theorem 1 as 1MSSCDH assump-
tion is stronger than q-OMSSCDH assumption.
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6.2 Blindness
To prove that the proposed signature scheme has blind-

ness property, the following security game is used. The
adversary A is given the security parameter. A generates
the secret key mA, nA and the corresponding public key
EA, φA(PC), φA(QC). The adversary outputs two mes-
sages {m0,m1}. The same two messages are ordered as
{mb,m1−b} according to a random bit b which is hidden
from A. Then A engages in two parallel interactive proto-
cols, possibly with two different users. If the users output
the corresponding signatures, then A is also given EAM0

and EAM1 . A’s goal is to guess the value of the bit b
and the blindness property requires that such a guess is
negligibly close to 1

2 .

Theorem 2 (Blindness). If the DSSP is hard to solve,
then the proposed UBSS has the blindness property.

Proof. Given EM0 , EM1 , ERMb
, ERM1−b

, EAM0 , EAM1

the goal of the adversary A is to figure out the value of
the bit b. Note that A also has the knowledge of the
isogenies φs0 : EM0 → EAM0 , φs1 : EM1 → EAM1 , φ′sb

:
ERMb

→ EARMb
and φ′s1−b

: ERM1−b
→ EARM1−b

. To
decide whether b = 0 or b = 1 is equivalent to deciding
whether, ERMb

×EARMb
is `eR

R -isogenous to EM0×EAM0

or not. Further, this essentially amounts to solving DSSP
on the inputs (EM0 , EAM0 , φs0) and (ERMb

, EARMb
, φ′sb

).

6.3 Invisibility
The challenger chooses a security parameter and gen-

erates the secret key mA, nA. The corresponding public
key EA, φA(PC), φA(QC) is given to the adversary A. A
then issues a series of at most q signing queries to the
challenger for the messages mi. Let EMi and EAMi be
the corresponding message curves and signatures respec-
tively. A is allowed to query EMi

and any of its blinded
versions to the signing oracle. A is also allowed to sub-
mit the message-signature pairs (mj , EAMj ) to the con-
firmation/disavowal protocols. At some point A outputs
a message m∗. The challenger chooses a random bit b.
If b = 0, the challenger replies with the correct signa-
ture EAM∗ otherwise chooses a random curve ER with
#ER(Fp2) = #E0(Fp2). According to the definition of
invisibility, the message curve EM and none of its blinded
versions are allowed to query the signing oracle.

Theorem 3 (Invisibility). If the DSSP and q-OMSSDDH
assumptions hold, then the proposed UBSS is invisible.

Proof. If the DSSP assumption holds, then the confir-
mation and disavowal protocols are shown to be zero-
knowledge [16, Sec. 7] in the presence of a quantum adver-
sary. Hence we may assume that the adversaryA does not
have access to confirmation/disavowal oracle. Instead,
the access is given to an oracle which on querying (m,E)
outputs valid or invalid depending on whether E is a valid
signature for m or not. Further, A is not allowed to query

the signing oracle for the curve EM or any of its blinded
versions. Hence showing the invisibility of our signature
scheme is equivalent to showing that the Jao-Soukharev
signature is invisible. The reader may refer [16, Sec. 6] for
the proof of invisibility.

7 Conclusion
We give a formal definition of UBSS as well as modi-

fied definitions of blindness, invisibility and unforgeabil-
ity; concepts that are key in defining UBSS. As we men-
tioned earlier, though the concept of UBSS is not new
and has been mentioned in Sakurai and Yamane [25], this
is the first time a formal definition has been given. We
also show that blindness and invisibility play against each
other. This affects the specifics of how UBSS can be used
for the application at hand. We then described a new
UBSS based on the isogeny problem for supersingular el-
liptic curves. We also give the generalized statements
of isogeny problems. This makes it convenient for con-
structions of isogeny-based cryptographic primitives. We
finally prove that our UBSS has the desired properties un-
der the assumptions that DSSP, OMSSDDH and 1MSS-
CDH are hard to solve.
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