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Abstract

Certificateless public key cryptography with bilinear pair-
ing needs costly operations, which is not appropriate for
a practical application. In this paper, we present a cer-
tificateless public key encryption scheme without bilinear
pairing. This encryption scheme achieves Girault’s trust
Level 3 as in traditional public key infrastructure based
cryptography, and which is proved to be secure in the
random oracle model under the hardness assumption of
computational Diffie-Hellman problem. Compared with
the related schemes, the performance analysis and simu-
lation show that our scheme is more efficient than others.
It takes account of security and efficiency.

Keywords: Certificateless Public Key Encryption; Wire-
less Sensor Networks; IND-CCA Secure; Without Pair-
ing

1 Introduction

In a traditional public key cryptography (PKC), anyone
who wants to communicate over a public channel does not
share any secret key to each other. A public key infras-
tructure (PKI) is used to provide an assurance between a
public key and the holder of the corresponding private key
through the certificates issued by a certification author-
ity (CA). However, a PKI is responsible for managing the
certificate, including revocation, storage, distribution and
the computational cost of certificate verification, which
places a computational burden on the entity.

To simplify the key management and avoid the digital
certificates, Shamir [24] proposed the notion of identity
based public key cryptography (ID-PKC) which alleviates

the existing problems in PKI by getting rid of certificates.
In ID-PKC, a user’s public key is derived directly from its
identity information, such as E-mail address and IP ad-
dress. The corresponding private key is fully generated by
a trusted third party called private key generator (PKG).
Nevertheless, there is an obvious drawback that the user
must trust the PKG unconditionally (even if a malicious
one), which leads to the key escrow problem. Therefore,
the hostility PKG could impersonate a user and decrypt
the corresponding ciphertext.

In order to resolve the inherent key escrow problem
while preserving the advantages of ID-PKC, Al-Riyami
and Paterson [2] introduced a new paradigm called certifi-
cateless public key cryptography (CL-PKC). Compared
with ID-PKC, CL-PKC not only inherits the advantages
of it but also resolves the key escrow problem. Specifically,
the user combines a secret value picked by itself with the
partial private key obtained from the trusted authority
(called key generation center, KGC) to generate the full
private key. Consequently, the KGC can not obtain the
user’s private keys to decrypt his ciphertext any more,
which has a certain practical application value.

Wireless sensor networks (WSNs) [1] are typically com-
posed of a large number of inexpensive, small and battery-
powered sensor nodes [13]. In WSNs, all sensor nodes col-
laborate together to collect and process certain informa-
tion such as environment monitoring, health monitoring,
military sensing tracking, etc. [9, 14, 17]. In practical ap-
plication, many situations require the sensor node to be
employed in unprotected and even hostile environments,
and therefore bring lots of research challenges. One of the
important issues is security.

Unfortunately, due to the inherent characteristics of
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WSNs mentioned above, adversaries can eavesdrop and
distort the transmitted information and disseminate mis-
leading messages into the networks [11]. Hence, encryp-
tion mechanisms need to be implemented to protect the
message from the malicious attack.

1.1 Related Works

In Al-Riyami and Paterson’s work [2], a certificateless
public key cryptography was introduced firstly. Based
on this work, several certificateless public key encryption
(CL-PKE) schemes were proposed in [6, 8, 15, 25, 26, 30].
Cheng and Comley [6] proposed a more efficient encryp-
tion scheme on the bases of Al-Riyami and Paterson’s
work [2]. An interesting feature of this scheme compared
with the original CL-PKE is that it can verify the legiti-
mate of the ciphertext in the process of decryption. Libert
and Quisquater [15] fixed the model of Al-Riyami and Pa-
terson and gave a method to achieve generic CL-PKE con-
structions which are provably choose-ciphertext attacks
secure (CCA-secure) in the random oracle model. Based
on the algebraic properties of Weil pairing, Shi and Li [25]
proposed a CL-PKE scheme worked in a kind of parallel
model. In [30], Yum and Lee provided a generic secure
construction of CL-PKE. In order to resist the strong ad-
versaries in the standard model, Dent et al. [8] presented
the first strongly secure CL-PKE scheme in 2008. In
2010, Sun and Li [26] constructed a short-ciphertext CL-
PKE scheme in standard model, which achieved adaptive
chosen ciphertext security (CCA2-secure). However, the
above schemes suffered low efficiency due to the bilinear
pairing [5]. Being aware of the above problem of the cur-
rent constructions of CL-PKE scheme, Baek et al. [3] pro-
posed a CL-PKE scheme without pairing firstly in 2005.
In 2011, Lai et al. [12] modified Baek et al.’s scheme to
get a Girault’s trust Level 3 [10].

Encryption in WSNs is an important mechanism to
guarantee the confidence of the transmitted information.
Earlier research mainly focused on designing symmetric
key based encryption schemes, such as AES-CCM∗ [31],
RC6 [21], Skipjack [19] and so on. There are common
issues of key storage and distribution in these schemes,
which causes some security threats for WSNs. Consider-
ing the security of these symmetric key based encryption
schemes, several public key based schemes [4, 7, 20, 29]
in WSNs have been proposed to avoid these drawbacks.
In 2008, Baek et al. [4] introduced a technique called “in-
dexing”, whose performance in WSNs in terms of compu-
tation and communication costs is significant superior to
normal public key encryption. Watro et al. designed a
public key encryption protocol that allows authentication
and key agreement between a sensor network and a third
party as well as between two sensor networks in [29]. Chu
et al. and Oliveria et al. [7, 20] supposed the identity-
based encryption scheme for WSNs respectively, which
eliminated the problem of certificate management and re-
duced the costly computation and communication obvi-
ously in the public key encryption schemes. Nevertheless,

public key based encryption scheme also has a general
shortcoming that it is more complicated than symmetric
key based one. Therefore, it becomes vitally important to
construct the efficient public key based encryption scheme
in WSNs for data computation while preserving the level
of its security.

1.2 Our Contributions

In this paper, for the reason of applying in WSNs, we
propose a CL-PKE scheme that avoid the use of bilinear
pairing. Provided that the computational Diffie-Hellman
(CDH) problem is intractable, we also prove that the
proposal is secure in the random oracle model. Com-
pared with the existing related schemes by simulation,
our scheme offers better performances on running time,
energy consumption and communication bandwidth. Fur-
thermore, this work promotes the trust level of KGC to
the highest Level 3, which strengthen the security of the
whole system.

The remainder of this paper is organized as follows. In
Section 2, we give some preliminaries such as the defini-
tion of the Girault’s trust level, the model and the security
definitions of CL-PKE and some computational problems.
In Section 3, we propose a CL-PKE scheme without bilin-
ear pairing. In Section 4, we analyze the security of our
proposal. In Section 5, we make a performance analysis of
this scheme. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we review the definition of the Girault’s
trust level, the model and the security definition of CL-
PKE as well as some computational problems which form
the basis of the security in our scheme.

2.1 Girault’s Trust Level

The Girault’s trust level [10] provides the trust hierarchy
for public key cryptography, which can be used to evaluate
the creditability of the authority.

Level 1. The authority (e.g. the CA in a PKI, the KGC
in an identity-based or certificateless cryptography)
knows (or can easily compute) users’ secret keys.
Therefore, the authority can impersonate any user
at any time without being detected.

Level 2. The authority does not know (or cannot eas-
ily compute) users’ secret keys. Nevertheless, it can
still impersonate users by generating false guarantees
(e.g. false certificates in a PKI, false public keys in a
certificateless cryptography).

Level 3. The authority cannot compute users’ secret
keys, and it can be proven that it generates false
guarantees of users if it does so.
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According to these definitions, we can easily find that
the original certificateless cryptography falls into Level 2,
and a traditional PKI achieves Level 3.

2.2 Definition of CL-PKE

The model of CL-PKE in our proposal is similar to that
of [3] but with a crucial difference which makes the scheme
reach Girault’s trust Level 3.

A CL-PKE scheme consists of seven probabilis-
tic, polynomial time (PPT) algorithms: Setup,
User-Key-Generation, Partial-Key-Extract, Set-
Private-Key, Set-Public-Key, Encrypt and De-
crypt.

Setup: Taking security parameter k as input, the KGC
returns a randomly chosen master secret key msk
and a list of public parameters param.

User-Key-Generation: Taking a list of public param-
eters param as input, the user returns a secret key
sk and a public key pk.

Partial-Key-Extract: Taking param,msk, a user’s
identity ID and pk received from the user as input,
the KGC returns a partial private key DID and a
partial public key PID.

Set-Private-Key: Taking param,DID and sk as input,
the user returns a private key SKID.

Set-Public-Key: Taking param,PID and pk as input,
the user returns a public key PKID.

Encrypt: Taking a plaintext M , a list of parameters
param, a receiver’s identity ID and PKID as inputs,
the sender returns a ciphertext C.

Decrypt: Taking param, SKID and the ciphertext C as
input, the receiver runs this deterministic algorithm
and returns a decryption δ, which is either a plaintext
message or a “Reject” message.

The algorithm of User-Key-Generation is similar
to the algorithm of Set-Secret-Value in Baek et al.’s
definition [3]. However, the User-Key-Generation in
this definition must be run prior to the Partial-Key-
Extract algorithm. According to this operation model,
the scheme enjoys the same trust level as the traditional
PKI.

2.3 Security Model for CL-PKE

In CL-PKE scheme, as defined in [2], there are two types
of adversary with different capabilities. We assume Type I
adversary, AI acts as a dishonest user who does not have
the KGC’s master secret key msk but it can replace pub-
lic keys of arbitrary identities with other public keys of
its own choices. While Type II adversary, AII acts as
a malicious KGC who knows the master secret key msk
(hence it can compute partial secret key by itself) and is

allowed to obtain full secret keys for arbitrary identities
but cannot replace any user’s public key.
Definition 1. A CL-PKE scheme Π is said to be secure
against adaptive chosen ciphertext attack (IND-CCA se-
cure) if no polynomially bounded adversary A of Type I
and Type II has a non-negligible advantage in the follow-
ing game played against the challenger:

Setup: The challenger C takes a security parameter k as
input and runs the Setup algorithm in Section 2.2,
then sends the resulting system parameters param
to A. If A is of Type I, C keeps the master secret key
msk to itself. Otherwise (e.g. if A is of Type II), it
gives msk to A.

Phase 1: A is given access to the following oracles:

1) Public-Key-Request-Oracle: Upon receiv-
ing a public key query for a user’s identity ID,
C computes (sk, pk) and (PID, DID), then com-
putes PKID and returns it to A.

2) Partial-Key-Extract-Oracle: Upon receiv-
ing a partial key query for a user’s identity ID
and pk, C computes (PID, DID) and returns
them to A. (Note that it is only useful to Type I
adversary.)

3) Private-Key-Request-Oracle: Upon receiv-
ing a private key query for a user’s identity ID,
C computes (sk, pk) and (PID, DID), then com-
putes SKID and returns it to A. It outputs
⊥ (denotes failure) if the user’s public key has
been replaced (in the case of Type I adversary).

4) Public-Key-Replace-Oracle: For identity ID
and a valid public key, A replaces the associ-
ated user’s public key with the new one of its
choice (this is only for Type I adversary). The
new value will be recorded and used by C in the
coming computations or responses to the adver-
sary’s queries.

5) Decryption-Oracle: On input a ciphertext
and an identity, return the correct decryption of
ciphertext using the private key corresponding
to the current value of the public key associated
with the identity of user, even if the correspond-
ing public key for the user ID has been replaced.

Challenge Phase: Once A decides that Phase 1 is
over, it outputs and submits two messages (M0,M1),
together with a challenge identity ID∗ of uncorrupted
secret key. Note that A is not allowed to know the
private key of ID∗ in anyway. The challenger C picks
a random bit β ∈ {0, 1} and computes C∗, which is
the encryption of Mβ under the current public key
PKID∗ for ID∗. If the output of the encryption is
⊥, A immediately losses the game. Otherwise, C∗ is
delivered to A.

Phase 2: Now A issues the second sequence of queries
as in Phase 1. A decryption query on the challenge
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ciphertext C∗ for the combination of ID∗ and PKID∗

is not allowed.

Guess: Finally, A outputs its guess β′ for β. The
adversary wins the game if β′ = β and the
advantage of A in this game is defined to be
Adv(A) = |Pr(β′ = β) − 1

2 |. The adversary A
breaks an IND-CCA secure CL-PKE scheme Π with
(t, qHi

, qpar, qpub, qprv, qD, ε) if and only if the guess-
ing advantage of A that makes qHi

times to ran-
dom oracles Hi, qpar times Partial-Key-Extract-
Oracle, qpub times Public-Key-Request-Oracle,
qprv times Private-Key-Request-Oracle and qD
times Decryption-Oracle queries is greater than
ε within running time t. The scheme Π is said to
be (t, qHi

, qpar, qpub, qprv, qD, ε)- IND-CCA secure if
there is no attacker A that breaks IND-CCA secure
scheme Π with (t, qHi , qpar, qpub, qprv, qD, ε).

2.4 Computational Problems

Now, it will be introduced the Discrete Logarithm (DL)
problem and Computational Diffie-Hellman (CDH) prob-
lem that are needed in the security analysis of our scheme.

Definition 2 (DL problem). Let G be a cyclic additive
group of prime order p and P be a generator of G. Define
Q = xP for uniformly chosen x ∈ Z∗p . Given (P,Q),
adversary A tries to find the value of x.

Definition 3 (CDH problem). Let G be a cyclic additive
group of prime order p and P be a generator of G. Define
Q = xP,R = yP for uniformly chosen x, y ∈ Z∗p . Given
(P,Q,R), adversary A tries to find the value of xyP .

Let A be a CDH adversary. A’s advantage to solve the
CDH problem is defined as Adv(A) = |Pr[A(P, xP, yP ) =
xyP ]| and the probability is measured over random
choices of x, y ∈ Z∗p and the point P . A solves the CDH
problem with (t, ε) if and only if the advantage of A is
greater than ε within running time t. The CDH problem
is said to be (t, ε)-intractable if there is no adversary A
that solves the CDH problem with (t, ε).

3 Our Construction

In this section, we propose a new CL-PKE scheme without
pairing in a cyclic additive group G which performs well.

The notations used throughout this paper are listed in
Table 1. Our proposed CL-PKE scheme consists of the
following seven PPT algorithms.

Setup: Generate a large prime p, which makes the CDH
problem in the cyclic additive groupG with generator
P of order p be intractable. Pick x ∈ Z∗p uniformly at
random and compute X = xP . Choose hash function
H1 : {0, 1}∗×G∗×G∗ → Z∗p , H2 : {0, 1}l0×{0, 1}l1 →
Z∗p , H3 : G∗ ×G∗ → {0, 1}l, where l = l0 + l1 ∈ N .

Table 1: Notation defined and used in this scheme

ID the public identity of the entity
Hi(·) the collision-resistant hash function (i=1, 2, 3)
p the large prime
G the cyclic additive group
P the generator of G
x the master secret key
X the master public Key
PID the entity ID’s partial public key
DID the entity ID’s partial secret key
PKID the entity ID’s public key
SKID the entity ID’s secret key
‖ the concatenation operation
⊕ the bitwise XOR operation
N the set of positive integer

Return param = {p, P,G,X,H1, H2, H3} and master
secret key msk = {x}.

User-Key-Generation: Pick y ∈ Z∗p at random and
compute Y = yP . Return (sk, pk) = (y, Y ).

Partial-Key-Extract: Pick s ∈ Z∗p at random and com-
pute ω = sP and d = (s+xH1(ID‖ω‖pk)), where ID
is a user’s identity. Return (PID, DID) = (ω, d).

Set-Private-Key: Set SKID = (sk,DID) = (y, d). Re-
turn SKID.

Set-Public-Key: Set PKID = (pk, PID) = (Y, ω). Re-
turn PKID.

Encrypt: Let the bit-length of M be l0. Parse PKID

as (Y, ω), pick σ ∈ {0, 1}l1 at random and compute
r = H2(M‖σ). Compute

QID = H1(ID‖ω‖pk)X + PID,

C = (c1, c2) = (rQID, H3(z1‖z2)⊕ (M ||σ)),

where z1 = rY , z2 = QID (Note that the bit-length
of (M ||σ) is equal to l = l0+l1). Return C = (c1, c2).

Decrypt: To decrypt C = (c1, c2), compute

M ||σ = H3(d−1yc1‖dP )⊕ c2.

If H2(M‖σ)dP = c1, return M . Else, return “Re-
ject”.

The above decryption algorithm is consistent if and
only if (c1, c2) is the valid ciphertext of M , then we have:
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H3(d−1yc1‖dP )⊕ c2

= H3(d−1yrQID‖dP )⊕ c2
= H3(d−1yr(H1(ID‖ω‖pk)X + PID)‖dP )⊕ c2
= H3(d−1yr(H1(ID‖ω‖pk)xP + sP )‖dP )⊕ c2
= H3(d−1yrdP‖QID)⊕ c2
= H3((ryP )‖QID)⊕H3(z1‖z2)⊕ (M ||σ)

= H3((rY )‖QID)⊕H3(z1‖z2)⊕ (M ||σ)

= M ||σ.

The intuition behind this construction is as follows.
According to the key issuing technique of the Schnorr sig-
nature [22], our scheme only requires addition and scalar
multiplication instead of transforming the addition group
into multiplication group, which avoids the use of the bi-
linear pairing and raises efficiency of this protocol. Si-
multaneously, the User-Key-Generation algorithm op-
erates prior to the Partial-Key-Extract algorithm. In
this way, the Partial-Key-Extract algorithm includes
pk generated by the user as input, and the creditabil-
ity of the authority achieves to Girault’s trust Level 3.
Specifically, provided that KGC replaces a user’s key pk,
there will exist two working keys pk and pk′ for this user.
Furthermore, two working public keys PKID and PK ′ID
binding an identity ID can result from two partial private
keys, and only the KGC has the ability to generate these
two partial private keys. Therefore, the KGC’s forgery is
easily detected.

4 Security Analysis

In this subsection, we will show that the scheme described
in the previous is secure in the random oracle model.

Theorem 1. The CL-PKE scheme is IND-CCA secure in
the random oracle model, assuming that the CDH problem
is intractable.

Proof. In order to prove this theorem, we prove that our
CL-PKE scheme is secure against the Type I and Type II
attackers (AI and AII) whose behaviors are as described
in Definition 1.

Assuming there exists an adversary A. Suppose that
another PPT B can make use of A to solve the CDH
problem with probability at least ε′ and in the time at
most t′.

Stage 1: Suppose that A in this stage is the Type I ad-
versary AI and B is given (p, P, aP, xP ) as an in-
stance of the CDH problem. In order to solve the
problem by using of AI , B needs to simulate a chal-
lenger to execute each phase of IND-CCA game for
AI as follows:

Setup: B sets X = xP , where x ∈ Z∗p is the master
secret key which is unknown to B, then gives AI

(p, P,X,H1, H2, H3) as param, where H1, H2, H3 are
random oracles. Adversary AI may make queries of
all random oracles at anytime during its attacks as
follows:

H1 queries: On receiving a query (ID, ω, Y ) to H1:

1) If 〈(ID, ω, Y ), e〉 exists in H1 List L1, re-
turn e as answer.

2) Otherwise, pick e ∈ Z∗p at random, add
〈(ID, ω, Y ), e〉 to L1 and return e as answer.

H2 queries: On receiving a query (M,σ) to H2:

1) If 〈(M,σ), r〉 exists in H2 List L2, return r
as answer.

2) Otherwise, pick r ∈ Z∗p at random, add
〈(M,σ), r〉 to L2 and return r as answer.

H3 queries: On receiving a query (z1, z2) to H3:

1) If 〈(z1, z2), R〉 exists in H3 List L3, return
R as answer.

2) Otherwise, pick R ∈ {0, 1}l at random, add
〈(z1, z2), R〉 to L3 and return R as answer.

Phase 1: AI can issue the following oracle queries.

Partial-Key-Extract: On receiving a query ID:

1) If 〈ID, (ω, d)〉 exist in PartialKeyList, return
(ω, d) as answer.

2) Otherwise, pick d, e ∈ Z∗p at random and com-
pute ω = dP − eX. Add (ID, ω, e) to L1

(That is, e is defined to be H1(ID‖ω‖Y ).) and
〈ID, (ω, d)〉 to PartialKeyList, return (ω, d) as
answer.

Note that we have ω + XH1(ID‖ω‖pk) = dP in the
above simulation which holds in the real attack too.

Public-Key-Request: On receiving a query ID:

1) If 〈ID, (ω, Y ), coin〉 exists in PublicKeyList,
return PKID = (ω, Y ) as answer.

2) Otherwise, pick coin ∈ {0, 1} at random so that
Pr[coin = 0] = δ. (δ will be determined later.)

3) If coin = 0, do the following:

a. If 〈ID, (ω, d)〉 exists in PartialKeyList,
pick y ∈ Z∗p at random and compute Y =
yP , add 〈ID, (y, d)〉 to PrivateKeyList
and 〈ID, (ω, Y ), coin〉 to PublicKeyList,
return PKID = (ω, Y ) as answer.

b. Otherwise, run the above simulation al-
gorithm for partial key extraction taking
ID as input to get partial key (ω, d), pick
y ∈ Z∗p at random and compute Y =
yP , add〈ID, (y, d)〉 to PrivateKeyList
and 〈ID, (ω, Y ), coin〉 to PublicKeyList,
return (ω, Y ) as answer.
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4) Otherwise (if coin = 1), pick y, s ∈ Z∗p
at random and compute ω = sP, Y = yP ,
add 〈ID, (y, ∗), s〉 to PrivateKeyList, and
〈ID, (ω, Y ), coin〉 to PublicKeyList, return
PKID = (ω, Y ) as answer.

Private-Key-Request: On receiving a query ID:

1) Run Public-Key-Request on ID to get a tuple
〈ID, (ω, Y ), coin〉 ∈ PublicKeyList.

2) If coin = 0, search PrivateKeyList for a tuple
〈ID, (y, d)〉 and return SKID = (y, d) as answer.

3) Otherwise, return “Abort” and terminate.

Decryption: On receiving a query (ID, PKID, C),
where C = (c1, c2) and PKID = (ω, Y ):

1) Search PublicKeyList for a tuple
〈ID, (ω, Y ), coin〉.

2) If such a tuple exists and coin = 0,

a. Search PrivateKeyList for a tuple
〈ID, (y, d)〉. (Note that 〈ID, (ω, Y ), coin〉
must exist in PublicKeyList and when
coin = 0, 〈ID, (y, d)〉 exist in Pri-
vateKeyList.)

b. Compute M ||σ = H3(d−1yc1‖dP )⊕ c2.
c. If c1 = H2(M‖σ)dP , return M and “Re-

ject” otherwise.

3) Else if such a tuple exists and coin = 1,

a. Run H1 queries to get a tuple
〈(ID, ω, Y ), e〉.

b. If there exist 〈(M,σ), r〉 ∈ L2 and
〈(z1, z2), R〉 ∈ L3 such that c1 =
rQID, c2 = R⊕(M ||σ), z1 = rY , z2 = QID,
return M and “Reject” otherwise. The
pair 〈(M,σ), r〉 satisfies the above condition
uniquely exists in L2 as the encryption func-
tion is injective with respect to 〈ID, ω, Y 〉.

4) Else if such a tuple does not exist (This is the
case when the public key of a target user is re-
placed by AI),

a. Run H1 queries to get a tuple
〈(ID, ω, Y ), e〉.

b. If there exist 〈(M,σ), r〉 ∈ L2 and
〈(z1, z2), R〉 ∈ L3 such that c1 =
rQID, c2 = R⊕(M ||σ), z1 = rY , z2 = QID,
return M and “Reject” otherwise.

Challenge: Once AI decides that Phase 1 is over,
then it outputs two messages (M0,M1) and a chal-
lenge identity ID∗. On receiving a challenge query
〈ID∗, (M0,M1)〉, B does the following:

1) Run Public-Key-Request on ID∗ to get a tu-
ple 〈ID∗, (ω∗, Y ∗), coin 〉 ∈ PublicKeyList.

2) If coin = 0, return “Abort” and terminate.

3) Otherwise, do the following:

a. Search PrivateKeyList for a tuple
〈ID∗, (y∗, ∗), s∗〉. (In this case, we know
that Y ∗ = y∗P, ω∗ = s∗P .)

b. Pick σ∗ ∈ {0, 1}l1 , c∗2 ∈ {0, 1}l and β ∈
{0, 1} at random.

c. Set c∗1 = aQID∗ , Ω = aω∗ and e∗ =
H1(ID∗‖ω∗‖Y ∗).

d. Define a = H2(Mβ‖σ∗) and H3(aY ∗‖ω∗ +
XH1(ID∗‖ω∗‖Y ∗)) = c∗2 ⊕ (Mβ ||σ∗). (Note
that B does not know “a”.)

4) Return C∗ = (c∗1, c
∗
2) as a target ciphertext.

Phase 2: In this phase, B answers AI ’s queries in the
same way as it have done in Phase 1. Note that
there is no Partial-Key-Extract query or Private-
Key-Request query on ID∗ to be issued. Also, no
Decryption query should be made on C∗ for the
combination of ID∗ and PKID∗ that encrypted plain-
text Mβ .

Guess: AI outputs a guess β′. Now B returns the set

S = { 1
e∗ (az2i − Ω)|z2i is the second component

of queries to H3 for i ∈ [1, qH3 ] such that e∗ =
H1(ID∗‖ω∗‖Y ∗) }.
Then, B will be able to solve the CDH problem by
picking 1

e∗ (az2i − Ω) from S.

Analysis: From the construction of H1, it is clear that
the simulation of H1 is perfect. As long as AI does
not query (Mβ , σ

∗) to H2 nor aY ∗ and ω∗ +Xe∗ to
H3 where e∗ = H1(ID∗‖ω∗‖Y ∗), the simulations of
H2 and H3 are perfect. By AskH∗3 we denote the
event that (aY ∗, ω∗ +Xe∗) has been queried to H3.
Also, by AskH∗2 we denote the event that (Mβ , σ

∗)
has been queried to H2. If it happens, B will be
able to solve the CDH problem by choosing a tuple
〈(z1, z2), R〉 from L3 and computing 1

e∗ (az2i−Ω) with
the probability at least 1

qH3
. Hence, we have ε′ ≥

1
qH3

Pr[AskH∗3 ].

It is easy to notice that if B does not abort, the simula-
tions of Partial-Key-Extract, Public-Key-Request,
Private-Key-Request and the simulated target cipher-
text is identically distributed as the real one from the
construction.

Now, we evaluate the simulation of the decryption ora-
cle. If a public key PKID has not been replaced or PKID

has not been produce under coin = 1, the simulation is
perfect as B knows the private key SKID correspond-
ing to PKID. Otherwise, simulation error may occur if B
runs the decryption oracle simulation specified above. Let
DecErr be this event. Suppose ID, PKID and C, where
C = (c1, c2) and PKID = (ω, Y ), have been issued as a
valid decryption query. Even if C is valid, there is a possi-
bility that C can be produced without querying (rY,QID)
to H3, where r = H2(M‖σ). Let Valid be an event that
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C is valid, AskH3 and AskH2 respectively be events that
(aY, ω+Xe) has been queried to H3 and (M,σ) has been
queried to H2 with C = (c1, c2) = (rQID, H3(rY ‖QID)⊕
(M ||σ)) and PKID = (ω, Y ), where r = H2(M‖σ). Since
DecErr is an event that Valid|¬AskH3 happens during the
entire simulation and qD decryption oracle queries are
made, we have Pr[DecErr]=qDPr[Valid|¬AskH3]. How-
ever,

Pr[Valid|¬AskH3] ≤ Pr[Valid ∧ AskH2|¬AskH3]

+ Pr[Valid ∧ ¬AskH2|¬AskH3]

≤ Pr[AskH2|¬AskH3]

+ Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1

p

The event (AskH∗3 ∨(AskH∗2 |¬AskH∗3 )∨DecErr)|¬Abort
be denoted by E, where Abort denotes an event that B
aborts during the simulation. The probability ¬Abort
that happens is given by δqprv (1− δ) which is maximized
at δ = 1− 1

qprv+1 . Hence, we have Pr[¬Abort]≤ 1
e(qprv+1) ,

where e denotes the base of the natural logarithm.
If E does not happen, it is clear that AI does not gain

any advantage greater than 1
2 to guess β due to the ran-

domness of the output of the random oracle H3. Namely,
we have Pr[β′ = β|¬E] ≤ 1

2 .
By definition of ε, we have

ε < |Pr[β′ = β]− 1

2
|

= |Pr[β′ = β|¬E]Pr[¬E] + Pr[β′ = β|E]Pr[E]− 1

2
|

≤ |1
2
Pr[¬E] + Pr[E]− 1

2
| = |1

2
(1− Pr[E]) + Pr[E]− 1

2
|

=
1

2
Pr[E]

≤ 1

2Pr[¬Abort] (Pr[AskH
∗
3 ] + Pr[AskH∗2 |¬AskH∗3 ] + Pr[DecErr])

≤ e(qprv + 1)

2
(qH3ε

′ +
qH2

2l1
+
qDqH2

2l1
+
qD
p
).

Consequently, we obtain ε′ > 1
qH3

( 2ε
e(qprv+1) −

qH2

2l1
−

qDqH2

2l1
− qD

p ). The running time of the CDH adversary B
is t′ > t+ 2(qpub + qprv)tsm + qpartsm + 2qDqH2

qH3
tsm +

3tsm, where tsm denotes the time for computing scalar
multiplication on the cyclic addition group G.

Stage 2: Suppose that A in this stage is the Type II
adversary AII and B is given (p, P, aP, bP ) as an in-
stance of the CDH problem. In order to solve the
problem by using of AII , B needs to simulate a chal-
lenger to execute each phase of IND-CCA game for
AII as follows:

Setup: B picks x ∈ Z∗p at randomly and computes
X = xP , where x is the master key, then
gives AII (p, P,X,H1, H2, H3) as param, where
H1, H2, H3 are random oracles. Adversary AII
may make queries of all random oracles at any-
time during its attacks as Stage 1.

Phase 1: AII can issue the following oracle queries.

Public-Key-Request: On receiving a query ID:

1) If 〈ID, (ω, Y ), coin〉 exists in PublicK-
eyList, return PKID = (ω, Y ) as answer.

2) Otherwise, pick coin ∈ {0, 1} at random, so
that Pr[coin = 0] = δ. (δ is the same as it
in the proof of Stage 1.)

3) If coin = 0, pick y, s ∈ Z∗p at random
and compute Y = yP , ω = sP and
d = s + xH1(ID‖ω‖pk), add 〈ID, (y, d)〉 to
PrivateKeyList and 〈ID, (ω, Y ), coin〉 to
PublicKeyList, return PKID = (ω, Y ) as
answer.

4) Otherwise (if coin = 1), pick y, s ∈ Z∗p
at random and compute Y = yP , ω =
s(bP ), add 〈ID, (y, ∗)〉 to PrivateKeyList
and 〈ID, (ω, Y ), coin〉 to PublicKeyList,
return PKID = (ω, Y ) as answer.

Private-Key-Request: On receiving a query ID:

1) Run Public-Key-Request on ID to get a
tuple 〈ID, (ω, Y ), coin〉 ∈ PublicKeyList.

2) If coin = 0, search PrivateKeyList for a
tuple 〈ID, (y, d)〉 and return SKID = (y, d)
as answer.

3) Otherwise, return “Abort” and terminate.

Decryption: On receiving a query (ID, PKID, C),
where C = (c1, c2) and PKID = (ω, Y ):

1) Search PublicKeyList for a tuple
〈ID, (ω, Y ), coin〉. If coin = 0, search Pri-
vateKeyList for a tuple 〈ID, (y, d)〉 (Note
that 〈ID, (ω, Y ), coin〉 must exist in Pub-
licKeyList and when coin = 0, 〈ID, (y, d)〉
exist in PrivateKeyList). Then, set
SKID = (y, d) and run Decrypt. Finally,
return the results of Decrypt algorithm.

2) Otherwise (if coin = 1), run H1 queries
to get a tuple 〈(ID, ω, Y ), e〉. If there exist
〈(M,σ), r〉 ∈ L2 and 〈(z1, z2), R〉 ∈ L3 such
that c1 = rQID, c2 = R⊕ (M ||σ), z1 = rY ,
z2 = QID, return M and “Reject” other-
wise.

Challenge: AII then outputs two messages
(M0,M1) and a challenge identity ID∗. On
receiving a challenge query 〈ID∗, (M0,M1)〉:
1) B runs Public-Key-Request taking

ID∗ as input to get a tuple 〈ID∗, (ω∗,
Y ∗), coin〉 ∈ PublicKeyList.

2) If coin = 0, return “Abort” and terminate.

3) Otherwise, do the following,

a. Search PrivateKeyList for a tuple
〈ID∗, (y∗, ∗), s∗〉.(In this case, we know
that Y ∗ = y∗P, ω∗ = s∗bP .)

b. Pick σ∗ ∈ {0, 1}l1 , c∗2 ∈ {0, 1}l and β ∈
{0, 1} at random.
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Table 2: Comparison of the related schemes

Schemes Enc Dec Sec-Lev Sec-Ass
[2] 3P+1S+1E 1P+1S IND-CCA GBDHP
[6] 1P+2S+1E 1P+2S IND-CCA BDH
[25] 3S+1E 1P+3S IND-CCA K-BDHI
[8] 1P+3S+1E 4P Strong Type I/II 3-DDH
[26] 2P+2S+2E 2P+1S IND-CCAII BDH
[3] 4E 3E IND-CCA CDH
[12] 2S+3E 2E IND-CCA CDH
[27] 6E 3E IND-CCA CDH
Ours 4S 3S IND-CCA CDH

c. Set c∗1 = aQID∗ , e∗ = H1(ID∗‖ω∗‖Y ∗).
d. Define a = H2(Mβ‖σ∗) and

H3(aY ∗‖ω∗ + XH1(ID∗‖ω∗‖Y ∗))
= c∗2 ⊕ (Mβ ||σ∗). (Note that B does
not know “a”.)

4) Return C∗ = (c∗1, c
∗
2) as a target ciphertext.

Phase 2: B repeats the same algorithms that it op-
erated in Phase 1 of Stage 2.

Guess: AII outputs a guess β′. Now B returns the
set

S = { 1
s∗ (az2i − (aP )xe∗)|z2i is the second com-

ponent of queries to H3 for i ∈ [1, qH3
] such that

e∗ = H1(ID∗‖ω∗‖Y ∗) }.
Then, B will be able to solve the CDH problem
by picking 1

s∗ (az2i − (aP )xe∗) from S.

Analysis: Similar to Analysis in the proof of
Stage 1.

Consequently, we obtain ε′ > 1
qH3

( 2ε
e(qprv+1) −

qH2

2l1
−

qDqH2

2l1
− qD

p ). The running time of the CDH adversary B
is t′ > t+ 2(qpub + qprv)tsm + 2qDqH2

qH3
tsm + 3tsm.

To sum up the two stages above, we complete the proof
of Theorem 1.

5 Performance Analysis

In this subsection, we compare the proposed scheme
with other existing CL-PKE schemes on the computation
complexity of encryption(Enc), decryption(Dec), secu-
rity level(Sec-Lev) and security assumption(Sec-Ass).
Without considering the additional of two points and hash
function in the cyclic additive group, each scheme has
three major types of operation, i.e., Pairing(P), Scalar
Multiplication(S) and Exponentiation(E). From Table 2,
we can see that our scheme calculates four scalar multi-
plications in Encrypt and three scalar multiplications in
Decrypt, which denotes that it needs a lower computa-
tion cost than others.

We simulate the cryptographic operations by using of
MIRACL (version 5.6.1, [23]) on a laptop using the Intel
Core i5-2400 at a frequency of 3.10 GHz with 3GB mem-
ory and a Windows XP operation system, and then obtain

the average running time in Table 3. For pairing-based
schemes, considering to be implemented in practice effi-
ciently, we use the Fast-Tate-Pairing in MIRACL, which
is defined over the MNT curve E/Fq [18] with embed-
ding degree 4 and q is a 160 bits prime, and its security
level achieves the difficulty of discrete log problem in 640
bits. For ECC-based scheme, we employed the param-
eter secp192k1 [28], where p = 2192 − 232 − 212 − 28 −
27 − 26 − 23 − 1. Moreover, the length of an element in
multiplication group is set to be 1024 bits.

Table 3: Cryptographic operations time (in millisecond)

Fast-Tate Exponentiation Scalar
-Pairing Multiplication
2.65 3.91 0.78

Based on these settings above, we can simulate the
total running time of one round of Encrypt-Decrypt in
different schemes respectively as shown in Table 4. As for
energy consumption, it can be calculated as W = U ×
I × t based on the execution time (t), the voltage (U)
and current draw (I). Suppose that the voltage is 3v and
the current draw is 8mA in sensor platform MICAz [16],
the energy consumption of one round in every protocol is
also demonstrated in Table 4. For instance, in Al-Riyami
and Paterson’s work [2], it needs 4 pairing operations,
2 scalar multiplications and 1 exponentiation altogether,
then the total running time in MICAz is 4 × 2.65 + 2 ×
0.78 + 1× 3.91 = 16.07 ms, and the energy consumption
is 3× 8× 16.07 = 385.68 µJ.

The communication cost of different schemes are com-
pared in terms of bandwidth of transmitted ciphertext.
Assuming the output of one way Hash function is 192
bits and the symmetric cipher is 128 bits (such as AES).
In our protocol and [25], each ciphertext contains one
point and one Hash value, thus the bandwidths of our
protocol and [25] are (192+192)/8=48 bytes respectively.
In [2] and [6], each ciphertext contains one point and
two Hash values, thus the bandwidths of [2] and [6] are
(192+192×2)/8=72 bytes respectively. In [8], the cipher-
text contains one pairing and three modular exponentia-
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tions, thus the bandwidth of [8] is (160+1024×3)/8=404
bytes. In [26], the ciphertext contains one point and
one symmetric cipher, thus the bandwidth of [26] is
(192+128)/8=40 bytes. In [3], [12] and [27], each ci-
phertext contains one modular exponentiations and one
Hash value, thus the bandwidths of [3], [12] and [27] are
(1024+192)/8=152 bytes respectively. The detailed com-
parison results are listed in Table 4.

Table 4: Comparison of the CL-PKE Schemes

Schemes Running
Time
(ms)

Energy
Consump-
tion (µJ)

Bandwidth
(byte)

[2] 16.07 385.68 72
[6] 12.33 295.92 72
[25] 11.24 269.76 48
[8] 19.5 468 404
[26] 20.76 498.24 40
[3] 27.37 656.88 152
[12] 21.11 506.64 152
[27] 35.19 844.56 152
Ours 5.46 131.04 48

To sum up, our protocol is more suitable to be ap-
plied in WSNs with the characteristics of low cost and low
power sensor nodes that are small in size and communi-
cate wirelessly with each other nodes in short distances.

6 Conclusions

In this paper, we propose a CL-PKE scheme that does
not depend on the pairing and prove that the scheme is
IND-CCA secure in the random oracle model, relative to
the hardness of the CDH problem. Besides, this scheme
can achieve the highest trust Level 3. The comparison
and simulation in Section 5 illustrate that our proposed
scheme is advantageous over the related schemes on com-
putation cost, communication overhead and energy con-
sumption. Due to the appealing properties, the proposal
could be applied in WSNs.
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