
International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 65

Generalized PVO-K Embedding Technique for
Reversible Data Hiding

Jian-Jun Li1, Yun-He Wu1, Chin-Feng Lee2 and Chin-Chen Chang3

(Corresponding author: Chin-Chen Chang)

Department of Computer Science and Technology & Hangzhou Dianzi University1

1158, No.2 Rd., Jianggan, Hangzhou 10336, China

Department of Information Management & Chaoyang University of Technology2

168, Jifeng E. Rd., Wufeng, Taichung 41349, Taiwan

Department of Information Engineering and Computer Science & Feng Chia University3

100, Wenhwa Rd., Seatwen, Taichung 40724, Taiwan

(Email: alan3c@gmail.com)

(Received Sept. 29, 2016; revised and accepted Dec. 11, 2016)

Abstract

Recently, several reversible information hiding methods
based PVO (pixel value ordering) techniques have been
proposed, in these methods, secret data always are em-
bedded in pixels with largest or smallest value in the
block. In order to make use of the block with multi-
ple largest-valued (or smallest-valued) pixels, a PVO-K
method was proposed, which treats K largest-valued (or
smallest-valued) pixels as a unit to embed secret data,
and all K pixels are modified together to embed one bit
of information. In this paper, we propose a generalized
PVO-K method (GePVO-K) that takes full advantage of
these pixels with largest or smallest values by embedding
K bits of secret data into the K pixels. As a result, the
GePVO-K method has greater embedding capacity than
the PVO-K method. The superiority of the GePVO-K
scheme was verified by the experimental results.

Keywords: Pixel Value Ordering; Prediction Error Ex-
pansion; Reversible Data Hiding

1 Introduction

Image data hiding is the technology in which secret data,
such as authentication or, copyright information, are em-
bedded in a digital image [7, 25]. In data hiding tech-
niques, it is critically important that the recipient be able
to extract the secret data completely from the camou-
flage image, but, at the same time, any decreases in the
quality of the image should not particularly evident, and
it is especially important that, the difference cannot be
detectable by the human eye.

Information hiding processes can be divided into two
categories based on the technology they use. One tech-
nology is data hiding with distortion, and the other

technology is non-distortion data hiding, which also is
called RDH (reversible data hiding). Least Significant
Bit (LSB) [4, 23], Revisited Matching [13], and Exploit-
ing Modification Direction (EMD) [26] are well-known,
non-reversible data hiding techniques that are simple and
have high embedding capacity. Compared with an or-
dinary data hiding algorithm, RDH must take more re-
quirements into consideration. It also requires that the
original cover image be recoverable after the secret data
have been extracted from the camouflaged image. That
is to say, RDH is a special data hiding method that is
always applied for scenarios that are sensitive to image
distortion, such as processing military, medical, or remote
sensing images.

To date, many reversible data hiding techniques have
been proposed. The first kind of RDH method was based
on lossless compression [2, 3, 5], and this method acquires
embedding space through lossless compression of a spe-
cific part of the digital cover image. As a result, they
usually have low embedding capacity and produce signifi-
cant distortion of the image. In 2006, Tian et al. proposed
an important spatial data hiding algorithm called “differ-
ence expansion” (DE) [20]. They overcame the limita-
tions of embedding secret data through lossless compres-
sion, and they focused on diffusion of the difference be-
tween pixel pairs to embed secret data reversibly. Later,
several improved methods involving DE were proposed.
One method tried to decrease the size of the location
map [8, 12, 24], the second method was based on integer
transform [10, 16, 22], and the third method involved pre-
diction error expansion (PEE) [1, 6, 19]. Image data have
spatial redundancy that is caused by the correlation be-
tween adjacent pixels in the image. The PEE method has
great embedding capacity because it can take advantage
of the spatial redundancy of a digital image. The PEE

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 66

method was first proposed by Thodi et al. [19], after which
Hu et al. [16] made some improvements by constructing
a location map that depends on the payload, thereby de-
creasing the size of the compressed location map.

In addition to the DE technique, Ni et al. proposed
another important RDH method, i.e., the histogram shift
(HS)-based technique [14]. Later, Lee et al. [9] improved
the HS method by using a histogram of the difference
between adjacent pixels, and this method improved the
embedding capacity and reduced image distortion.

Recently, Li et al. [11] proposed a new RDH method
based on pixel value ordering (PVO). This method com-
bines DE and HS with PEE and uses the PVO technique
to embed secret data in a block-by-block manner. For
each block, the pixel values are sorted in ascending order,
then, the largest-valued pixel is predicted by the second-
largest pixel, and the smallest-valued pixel is predicted by
the second-smallest pixel. Thus, the second-largest and
the second-smallest pixel values in the block remain un-
changed in the embedding phase, and the largest pixel
value may become larger since it always is increased, and
the smallest pixel value becomes smaller after being de-
creased. Therefore, the order of pixel values in the block
remains unchanged. Typically, the minimum prediction
error is non-positive, and the maximum prediction error
is non-negative, so the RDH algorithm based on PVO
regards the non-negative and non-positive values, which
occur most frequently, as the carriers of secret data. The
prediction error in the range of ”-1” to ”1” is defined as
the peak value, and the secret data are embedded in the
peaks using HS technology. Then, the smallest and largest
pixel values are modified according to the prediction error
values.

However, since the local pixel values are correlative,
there will be many prediction errors 0, which are ig-
nored by the PVO method. In view of this phenomenon,
Peng et al. [17] proposed an improved PVO method, i.e.,
IPVO, and they used the pixel location number in the
blocks before ordering the pixel values to optimize the
process of generating the prediction error. In addition
to IPVO, another method, known as PVO-K, was pro-
posed in [15], and its aim also was to improve the PVO.
The PVO-K method treats K identical largest-valued or
smallest-valued pixels as a unit to embed secret data.
Compared with PVO, when the largest pixel value and
the second-largest value (or the smallest pixel value and
second-smallest pixel value) are equal, they are treated
as a unit, so this block may be still used to embed se-
cret data. Obviously, the PVO method is a special case
of the PVO-K method, i.e., when K=1. In [15], the em-
bedding capacity was improved by using a combination
of the PVO-1 and PVO-2 methods. But in the smooth
block, there often are more identical largest or smallest
pixel values, and the PVO-K method may change all K
pixel values to embed just one bit of secret data, so there
is still room for improving the PVO-K method. Besides,
a new path of methods has been proposed in 2015, they
break the block restrictions of other PVO-based methods,

therefore make more use of the pixels that can be utilized
to embed secrete data, and significantly enhance the per-
formance of the PVO-based method, like the PPVO [18]
and the method of Wang et al. [21]. In this paper, a strat-
egy is presented concerning ways to improve the PVO-K
method so that K bits of secret data can be embedded
into K largest-valued or smallest-valued pixels. We also
proposed a new way to produce a special block and com-
pared the performance with traditional treatments.

The remaining sections of this paper are organized as
follows. Several PVO-based methods are introduced in
Section 2. In Section 3, a new generalized PVO-K scheme
is proposed. Section 4 presents relevant experiments and
the analysis of the results. Our conclusions are presented
in Section 5.

2 Related Works

In this section, two PVO-based reversible data hiding
methods are introduced briefly, i.e., PVO [11], PVO-
K [15].

2.1 RDH Method Based On PVO

The PVO method proposed by Li et al. provided a new
predictor for the prediction error expansion, with both
largest and smallest pixel values being used in a block for
embedding data. The embedding process is firstly divide
the cover image into blocks of pixels, and number the
pixels in each block, i.e.,(x1, x2, ..., xn1×n2). Then, sort
the pixels in ascending order to get an ordered sequence
(xπ(1), xπ(2), ..., xπ(n1×n2)).

After that, count two prediction errors according Equa-
tion (1), wherein, the non-negative integer dmax repre-
sents the difference between the largest pixel value and
the second-largest pixel value; and a non-positive inte-
ger dmin represents the difference between the smallest
pixel value and the second-smallest pixel value.The secret
message b ∈ {0, 1}can be embedded when the maximum
prediction error is 1 or the minimal prediction error is
-1. Prediction errors are modified according to Equa-
tion (2)and Equation (3).At last, revise the largest and
smallest pixel values using Equation (4) and proceed to
the next block until all blocks have been processed or all
secret data have been embedded.{

dmax = xπ(n1×n2) − xπ(n1×n2−1)
dmin = xπ1 − xπ2

(1)

d′max =

 dmax ifdmax=0
dmax+b ifdmax= 1
dmax+1 ifdmax > 1

, (2)

d′min =

 dmin ifdmin=0
dmin − b ifdmin=− 1
dmin − 1 ifdmin < −1

. (3)

{
x′π(n1×n2) = xπ(n1×n2−1) + d′max

x′π(1) = xπ(2) + d′min
. (4)

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 67

Because the order of the pixel values remains un-
changed after embedding the secret data, the secret data
can be extracted in the extraction phase from the largest-
valued and smallest-valued pixels according to reverse
process of the embedding procedure. At the same time,
the pixel values can be changed back to the original val-
ues.

2.2 RDH Method Based On PVO-K

Like IPVO, PVO-K also was proposed for the purpose of
using the prediction error “0”, which is discarded in the
PVO method, but the difference is that PVO-K treats
the largest or smallest pixel values as a unit for em-
bedding secret data. Similar to these methods, we take
the procedure of embedding secret data into a maximum
number of pixels as an example; assume that the sorted
pixel values in a block are:xπ(1) ≤ ... ≤ xπ(n1×n2−K) <
xπ(n1×n2−K+1) = ... = xπ(n1×n2),where K is the num-
ber of largest-valued pixels, and the prediction error is
calculated using Equation (5).

dmax = xπ(n1×n2−K+1) − xπ(n1×n2−K). (5)

When the prediction error is “1”, one bit of secret
data can be embedded; otherwise, the K pixel values
are shifted. The prediction errors are modified by Equa-
tion (6).

d′max =

{
dmax+b ifdmax= 1
dmax+1 ifdmax > 1

. (6)

Then the largest pixel values are modified by Equa-
tion (7), where, i ∈ {n1 × n2 − K + 1, n1 × n2 − K +
2, ..., n1× n2}.

x′π(i) = xπ(i) + d′max. (7)

The common factor of PVO-K and other PVO-based
methods is that the original block sorting remains con-
stant after embedding the secret data, which makes the
extraction process more convenient.

3 Proposed Scheme

In this section, we propose a generalized scheme for the
PVO-K method with respect to embedding capacity, and
it is called GePVO-K. First, we introduce how to em-
bed one bit of secret data in each largest-valued pixel by
modifying the largest and the second-largest pixel val-
ues. Some examples are provided to demonstrate our ap-
proach. Then, the process of embedding secret data in
each smallest-valued pixel is presented. Finally, we show
the detailed steps of the embedding and extraction pro-
cedures.

3.1 Embedding Secret Data in Largest-
valued Pixels and Data Extraction
Procedure

As mentioned in the previous sections, if the PVO-K al-
gorithm embeds one bit of secret data in a block that has
K largest-valued or smallest-valued pixels, all of the K
pixels must be modified in the same way. Ou et al. [15]
indicated that when PVO-1 and PVO-2 are used together
to increase the embedding capacity of traditional PVO-
based methods; however if K > 2, the block should not be
used to embed secret data, because a larger K will lead to
a greater distortion caused by more changes in the pixels
values. In nature images, especially in the blocks of the
smooth region, K is often greater than 2, so the smooth
region always is ignored, which makes less embedding ca-
pacity. For this phenomenon, we propose an improved
method that still utilizes the largest-valued and smallest-
valued pixels in the block to embed secret data, but one
bit of secret data can be embedded in each pixel. Here,
we present the details of embedding secret data in the
largest-valued pixels as well as the extracting procedure.

3.1.1 Embedding Secret Data in Largest-valued
Pixels

First, the cover image should be divided into blocks. Let
the size of block B be n1×n2. Then, each block is visited
in a zigzag manner to establish a location map, and the
rules for establishing the map are as follows. If the block
has the pixel values that may overflow/underflow, such as
”0,” ”1,” ”254,” ”255,” the block’s position is recorded as
”2;” if all of the pixel values in the block are the same, the
block’s position is recorded as ”1;” the remaining blocks
are normal blocks, and their positions are recorded as
”0s.”

Next, we deal with each block depending on the fol-
lowing cases:

Case 1: If the position number of the block in the lo-
cation map is LM(B) = 2, the block is not used to
embed secret data, and it is skipped.

Case 2: If the position number of the block in the lo-
cation map is LM(B) = 1, i.e., all pixel values are
equal in the block B, we keep the first pixel value
unchanged and then embed the secret data in the re-
maining pixels and the pixel values are modified by
Equation (8) in a zigzag manner. It states that if a
to-be-embedded bit b = 0, do not change the pixel
value; if b = 1, increase the pixel value by one.

x′π(i) =

{
xπ(i) ifi= 1
xπ(i) + bi−1 ifi= 2, 3,...,n1× n2

. (8)

Case 3: If the position number of the block in location
map LM(B) = 0, we number the pixels in a zigzag
scanning order to get B (x1, x2, ..., xn1×n2), and then
we sort the pixel values in ascending order to obtain

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 68

a sorted block Bπ
(
xπ(1), xπ(2), ..., xπ(n1×n2)

)
. As-

sume that the ordering result is:xπ(n1×n2−K−L) <
xπ(n1×n2−K−L+1) = ... = xπ(n1×n2−K) <
xπ(n1×n2−K+1) = ... = xπ(n1×n2). That is, there are
K largest pixels xπ(n1×n2−K+1) = xπ(n1×n2−K+2) =
... = xπ(n1×n2), and L second-largest pixels
xπ(n1×n2−K−L+1) = xπ(n1×n2−K−L+2) = ... =
xπ(n1×n2−K). Then, we calculate the maximum pre-
diction error using Equation (9).

dmax = xπ(n1×n2−K+1) − xπ(n1×n2−K). (9)

Case 3-1: If dmax > 1, this block is not fit to be
used to embed secret data, and all largest pixel
values should be increased by one as Equa-
tion (10).Where,i ∈ {n1×n2−K +1, n1×n2−
K + 2, ..., n1× n2}.

x′π(i) = xπ(i) + 1. (10)

Case 3-2: if dmax = 1, K bits secret data can be em-
bedded into the largest-valued pixels. In order
to correctly find which pixels were embedded se-
cret data during extracting process, the differ-
ence between the second-largest pixels and the
third-largest pixels need to be expanded also.
Specifically, after embedding secret data, the
original largest-valued pixels may be still kept
in the position of largest-valued pixels or some
of them may change to the second-largest pix-
els. To distinguish these two situations for the
purpose of extracting secret data and recovering
the original pixels, the difference between the
second-largest pixels and the third-largest pix-
els can be used as a judgment condition and its
detailed usage will be presented in the extract-
ing procedure. So in this embedding case, first
we increase the K largest pixel values and the L
second-largest pixel values by one; then we em-
bed the secret data, br ∈ {0, 1}(r = 1, 2, ...,K),
into the largest-valued pixels in the numbering
order. If br = 0, keep the largest pixel value
unchanged; if br = 1, increase the largest pixel
value by one. In summary, the pixel values are
modified by Equation (11). Where, bi ∈ {0, 1},
i ∈ {n1×n2−K+1, n1×n2−K+2, ..., n1×n2}
and j ∈ {n1 × n2 −K − L + 1, n1 × n2 −K −
L + 2, · · · , n1× n2−K}.{

x′π(i) = xπ(i) + bi−n1×n2+K + 1
x′π(j) = xπ(j) + 1

, (11)

3.1.2 Extracting Secret Data From Larger-
valued Pixels and Restoring the Pixel Val-
ues

As can be seen from Equation (11), for a normal block
(i.e., its recorded number in the location map is 0), the
original ordering may be changed after the secret data

have been embedded. Because some largest-valued pixel
of the original block may become the second-largest after
embedding the secret data, so, in the camouflage block,
information can be hidden only in the largest-valued or
the second-largest pixels. We can determine whether the
secret data are completely hidden in the largest-valued
pixels or in both the largest-valued and the second-largest
pixels. Therefore, we can completely extract the secret
data revise the pixel values according as follows.

First, we divide the camouflage image into blocks as
we did in the embedding procedure, then, we handle each
block depending on the following cases:

Case 1: If the position number of the camouflage block
in location map LM(B) = 2, there are no hidden
secret data, and the original block is the same as the
camouflage block.

Case 2: If the position number of the camouflage block
in location map LM(B) = 1, we extract the se-
cret data starting from the second pixel. First, we
calculate the prediction error di according to Equa-
tion (12). If di = 0, extract secret data bi−1 = 0,
keeping the pixel value unchanged; if di = 1, ex-
tract the secret data bi−1 = 1, decreasing the pixel
value by one, as shown in Equation (13). Where,
i ∈ {2, 3, ..., n1× n2}.

di = x′π(i) − x′π(1), (12)

xπ(1) = x′π(1),

xπ(i) =

{
x′π(i), bi−1= 0 ifdi=0
x′π(i) − 1, bi−1= 1 ifdi= 1

.
(13)

Case 3: If the position number of the camou-
flage block in location map LM(B) = 0, we
sort the pixels in ascending order to obtain

B′π

(
x′π(1), x

′
π(2), ..., x

′
π(n1×n2)

)
, assuming that

the ordering results are x′π(n1×n2−R−S−T) <

x′π(n1×n2−R−S−T+1) = ... = x′π(n1×n2−R−S) <

x′π(n1×n2−R−S+1) = ... = x′π(n1×n2−R) <

x′π(n1×n2−R+1) = ... = x′π(n1×n2). Which means

there are R largest-valued pixels (m1), S second-
largest pixels (m2), and T third-largest pixels
(m3).

m1: x′π(n1×n2−R+1) = x′π(n1×n2−R+2) = ... =

x′π(n1×n2);

m2: x′π(n1×n2−R−S+1) = x′π(n1×n2−R−S+2) = ... =

x′π(n1×n2−R);

m3: x′π(n1×n2−R−S−T+1) = x′π(n1×n2−R−S−T+2) =

... = x′π(n1×n2−R−S).

Two prediction errors are calculated according to
Equation (14). If T does not equal to 0, it’s very
plain that the prediction errors d1 ≥ 1 and d2 ≥ 1 ;
if T equals to 0which means that there are not the
third-largest pixels, only one prediction error d1 ≥ 1

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 69

Figure 1: Example of embedding secret data in largest-valued pixels and extracting procedure

is obtained. So we process the block on the basis of
the following Cases 3-1–3-3.{

d1 = x′π(n1×n2−R+1) − x′π(n1×n2−R)

d2 = x′π(n1×n2−R−S+1) − x′π(n1×n2−R−S)
(14)

Case 3-1: If d1 > 2, there are no hidden secret data,
and we decrease R largest pixel values by one,
the pixel values are revised according to Equa-
tion (15).

xπ(i) = x′π(i) − 1, i ∈ {n1× n2−R + 1,
n1× n2−R + 2, ..., n1× n2}.

(15)

Case 3-2: If d1 ≤ 2 and d2 = 1, the secret data were
embedded in the m1 and m2 zones. First, we
decrease the value of pixels in the m1, m2, and
m3 zones by one. (Notice that d1 and d2 remain
unchanged in keeping with Equation (16).

xπ(i) = x′π(i) − 1,
i ∈ {n1× n2−R− S − T + 1,
n1× n2−R− S − T + 2, ..., n1× n2}.

(16)

Then, we extract the secret data S(B) =
{bi|bi ∈ {0, 1}, i= 1, 2,...,R+S} from the pixels
in the m1 and m2 zones, depending on the num-
bering order. We count Di one by one, where
Di is the difference in the values between the
pixels in the m1 or m2 zone and the pixels in
the m3 zone, as indicated in Equation (17). If
Di = 2, decrease the pixel value by one and
extract secret data bi = 1 ; if Di = 1, let the
pixel value remain unchanged and extract secret
data bi = 0. The extraction procedure depends
on Equation (18). Where, i ∈ {n1 × n2 − R −
S + 1, n1× n2−R− S + 2, ..., n1× n2}.

Di = x′π(i) − x′π(n1×n2−R−S),

i ∈ {n1× n2−R− S + 1,
n1× n2−R− S + 2, ..., n1× n2}.

(17)

xπ(i) =

{
x′π(i), bi= 0 ifDi= 1
x′π(i) − 1, bi= 1 ifDi= 2

(18)

Case 3-3: If d1 ≤ 2 and (d2 ≥ 2||T = 0), this
means secret data were embedded in m1 zones,
and the secret data fragment S(B)is a binary
string only including 1 (in this case, d1 = 2),
or an all 0 binary string (in this case, d1 = 1
). So, first, we decrease the value of pixels in
the m1 and m2 zones by one, and then extract
the secret data from m1 in the numbering or-
der. The secret data are determined by the
value Di (Equation (19)), which is the differ-
ence between the pixels in m1 and the pixels
in m2. If Di = 2, decrease the pixel value by
one and extract secret data bi = 1 ; if Di = 1,
keep the pixel value unchanged and extract se-
cret data bi = 0. In short, we can recover the
original pixel value and extract secret data as
Equation (20). Where, j ∈ {n1 × n2 − R −
S + 1, n1 × n2 − R − S + 2, ..., n1 × n2} and
i ∈ {n1×n2−R+1, n1×n2−R+2, ..., n1×n2}.

Di = x′π(i) − x′π(n1×n2−R),

i ∈ {n1× n2−R + 1, n1× n2−R + 2, ...,
n1× n2}.

(19)

xπ(j) = x′π(j) − 1,

xπ(i) =

{
x′π(i),bi= 0 ifDi= 1
x′π(i) − 1,bi= 1 ifDi = 2

.
(20)

3.1.3 Example of Embedding and Extraction
Procedures

For a better illustration, there are several examples to
demonstrate the above steps in Figure 1. We assume that
the block size is n1 = 2 and n2 = 3. As can be seen from
Figure 1, three blocks are selected as examples. All the
pixel values in these three blocks are numbered and sorted
firstly, for instances, the original pixel sequence in first
block is (54, 52, 52, 54, 52, 54), the sorted pixel values are
(52, 52, 52, 54, 54, 54) and their numbers in the original
block are (2, 3, 5, 1, 4, 6). There are three largest pixels
and three second-largest pixels in first block, according
embedding rules Case 3 in 3.1.1 part of Section 3.1, we
calculate the prediction error dmax = x1−x5 = 2, because

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 70

Figure 2: Example of embedding secret data in smallest-valued pixels and extracting procedure

dmax > 1, this block is not fit to be used to embed secret
data, and all largest pixel values should be increased by
one to get the pixel values (52, 52, 52, 55, 55, 55); after
that, the pixels need to be moved to their original position
according to their number (2, 3, 5, 1, 4, 6). Finally, the
pixel values of first block become to (55, 52, 52, 55, 52,
55).

The embedding procedures of the other two blocks are
similar. For the second block, the original pixel sequence
is (54, 53, 52, 54, 53, 54). After pixel numbering and sort-
ing, the pixels become (52, 53, 53, 54, 54, 54) and their
number are (3, 2, 5, 1, 4, 6). There are three largest pixels
and two second-largest pixels, we calculate the prediction
error dmax = x1 − x5 = 1. According to the embed-
ding rules in 3.1.1 part of Section 3.1, three bits secret
data can be embedded into three largest pixels, the three
largest pixels and two second-largest pixels need to be
firstly increased by one to get (52, 54, 54, 55, 55, 55),
and then three secret bits (we choose111) are embedded
into three largest pixels to get (52, 54, 54, 56, 56, 56).
Next, move them to their original position according to
the number sequence (3, 2, 5, 1, 4, 6), so the final pixel
sequence is (56, 54, 52, 56, 54, 56). For the third block, its
pixels are the same as the second block. The difference is
that we embed the secret data that has both 0 and 1 into
three largest pixels for better demonstration of different
extraction cases below.

The first step of the extraction procedures is numbering
and sorting the pixels in the block too, then the blocks
are handled according the prediction errors. As shown
in Figure 1, for the first block, the sorted pixel sequence
is (52, 52, 52, 55, 55, 55), and the prediction error d1 =
x1 − x5 = 3 > 2, which means there are no secret data
and three largest pixels need to be decreased by one to get
(52, 52, 52, 54, 54, 54), then move them to their original
position to get the original block.

For the second block, the sorted sequence is (52, 54,
54, 56, 56, 56), prediction error d1 = x1 − x5 = 2 ≤ 2.
In this case, we easily know that there are embedded se-
cret data, but we cannot determine whether it is hidden
within all the largest pixels or both the largest pixels and
the second-largest pixels. Because if the embedded se-
cret data is an all “0” string or all “1” string, all the

largest pixels remains largest after embedding procedure,
such as the second block; if the embedded secret data is
a string with both “0” and “1”, some of the largest pix-
els becomes to the second largest pixels after embedding
procedure, such as the third block. Thus, we need to cal-
culate a prediction error between the second-largest pixels
and the third-largest pixels to distinguish these two cases.
As presented in Figure 1, another prediction error of the
second block d2 = x2− x3 = 2 ≥ 2, according Case 3-3 in
B part of Section 3.1, all the secret data are embedded in
the largest pixels. Therefore, we extract the three bits of
secret data 111 and recover the pixels to get (52, 53, 53,
54, 54, 54), then we can obtain the original sequence (54,
53, 52, 54, 53, 54) by moving them to their original posi-
tions. For the third block, the sorted sequence is (52, 54,
54, 55, 56, 56), the prediction errors d1 = x1−x4 = 1 ≤ 2
and d2 = x4−x5 = 1, which means that the secret data is
in both two largest pixels and one second-largest pixels.
Therefore we can extract the secret data 101 and recover
the original pixels (54, 53, 52, 54, 53, 54), according to
Case 3-2 in 3.1.2 part of Section 3.1.

3.2 Embedding Secret Data in Smallest-
valued Pixels and Data Extraction
Procedure

Except for the special blocks (LM(B) = 1 or LM(B) = 2
), we also used the smallest-valued pixels in the normal
block to embed secret data. In order to further demon-
strate the proposed methods, Figure 2 presents several
examples of embedding data into the smallest-valued pix-
els and the data extraction procedure. Similar to the ex-
ample in Figure 1, there are three embedding cases. Case
1: The first block is not fit to embed secret data; Case 2:
The second block embeds an all “0” or “1” string; Case 3:
The third block embeds a string with both “0” and “1”.

The specific steps of embedding secret data in the
smallest pixels and extraction procedures are significant
similar to Figure 1, in order to avoid duplication, we just
take the complex cases (the third block) as an example
to illustrate the procedure. For the third block, the orig-
inal sequence (70, 71, 72, 70, 71, 72) is numbered and

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 71

Figure 3: The flowchart of proposed data embedding procedure

sorted to get (70, 70, 71, 71, 72, 72), where their num-
ber are (1, 4, 2, 5, 3, 6). There are two smallest pixels
and two second-smallest pixels, and the prediction error
dmin = x4−x2 = −1. Thus two bits of secret data can be
embedded in two smallest pixels. The two smallest pixels
and two second-smallest pixels need to be decreased by
one to get (69, 69, 70, 70, 72, 72), and then we embed
“10” in two smallest pixels in two smallest pixels to get
(68, 69, 70, 70, 72, 72). The last step of the embedding
procedure is to move them to their original positions to
get (68, 70, 72, 69, 70, 72). During extraction procedures,
the first step is the same as embedding procedure. After
numbering and sorting, we can get the sequence (68, 69,
70, 70, 72, 72). Next, we compute the prediction errors
d1 = x1 − x4 = −1, and d2 = x4 − x2 = −1. It is evident
that two secret data bits are embedded: one in the small-
est pixel and one in the second-smallest pixel. Then, the
extract procedure gets “10” from the smallest pixel and
the second-smallest pixel and then the recovery process
increases the smallest pixel by two, the second-smallest
pixel by one, and two third-smallest pixels are also in-
creased by one to get the sequence (70, 70, 71, 71, 72,
72). The last step is also to move the sequence (70, 70,
71, 71, 72, 72) according to their original positions; fi-
nally, we can obtain the original sequence (70, 71, 72, 70,
71, 72).

3.3 Proposed Data Embedding Proce-
dure

In this section, we describe the detailed steps of the em-
bedding phase in the proposed scheme. For the normal
block, first, we embed the information into the largest-
valued pixels, and, then, we reorder the pixels in the
block; next, the smallest-valued pixels also are utilized
to embed secret data. Like PVO-K, there also is the pos-
sibility of an overflow/underflow situation. So, we build a
location map to record the position of the pixels that may
overflow/underflow. In addition, we record some auxiliary
information, as shown in Table 1. We assume that the size
of the cover image is H ×W and that the minimal and
maximal block sizes are 2× 2 and 4× 4, respectively.

The detailed steps of the embedding phase are shown
as follows, and Figure 3 is the embedding flowchart.

Step 1. Divide the cover image into n1×n2 -sized blocks
and then visit each block in a zigzag manner to es-
tablish the location map according to the rules in
Section 3.1. After that, two binary bits are used to
represent a value in the location map and then the
location map is compressed using arithmetic coding,
a lossless data compression, to reduce its length.

Step 2. For each block B, if LM(B) = 2, skip; if
LM(B) = 1, embed secret data in the pixels except
for the first one; if LM(B) = 0, number and order
the pixels in the block, try to embed secret data in
the largest-valued pixels, and then reorder the pixel
values in the block and try to embed the secret data
in the smallest-valued pixels.

Step 3. When embedding the secret data is completed,
embed first 2× log2((H ×W)/(n1×n2)) + log2(H ×
W) +L1 + 4 least significant bits (LSB) of the pixels
in the cover image into the remaining blocks and then
record the last embedding position.

Step 4. Use the LSB method [4] to embed extra informa-
tion and the compressed location map into the cover
image from the first pixel.

3.4 Proposed Data Extraction Procedure

The corresponding proposed data extraction procedure is
presented in this section; its flowchart is shown in Fig-
ure 4.

Step 1. First, extract the extra information and the
compressed location map by using LSB method, and
then decompress the location map to obtain LM .

Step 2. Next, divide the camouflaged image into blocks
depending on the size that was extracted from Step1.
Then, visit the blocks in reverse order, which means
the extraction procedure must start from the last em-
bedding position. For each block, if LM(B) = 2,

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 72

Table 1: The extra information
Extra information Purposes Memory required
The compressed location map Record the special blocks L1 bits
The length of compressed location map Correctly extract the location map 2×log2((H×W)/(n1×n2)) bits
Block size n1× n2 Divide the camouflage image 4 bits
The last position of embedding secret
data i and j

Reversely extracting the secret
data.

log2(H ×W) bits

Figure 4: The flowchart of proposed data extraction procedure

skip; if LM(B) = 1, extract secret data from the pix-
els in zigzag order except the first one; if LM(B) = 0,
number and order the pixels and try to extract the
secret data from the smaller-valued pixels and then
reorder the pixels and try to extract data from the
larger-valued pixels.

Step 3. After extracting 2× log2((H ×W)/(n1×n2)) +
log2(H ×W) + L1 + 4 bits of data, revise the LSB
information of the first several pixels that were modi-
fied to embed the compressed location map and extra
information. Then, continue to extract secret data
from the remaining blocks until all blocks have been
processed.

To better demonstrate the embedding and data extrac-
tion procedures, a detailed example is given in Figure 5.

4 Experimental Results

In this section, first, we describe the experimental envi-
ronment and the evaluation criteria in Section 4.1. Then,
the results are discussed in five parts. Section 4.2 is
the self-analysis of the proposed scheme in which we dis-
cuss the relationship between embedding capacity and
the image quality; Section 4.3 compares the performance
of GePVO-K with that of PVO-K by using a different
block size; in Section 4.4, we analyze two methods of
dealing with special blocks; since the proposed scheme
is aimed mainly at enhancing the embedding capacity,
several PVO-based methods were compared with the pro-
posed scheme in terms of maximum embedding capacity

in Section 4.5; Section 4.6 shows the multi-level embed-
ding performance of several PVO-based methods, includ-
ing GePVO-K.

4.1 Experimental Environment and the
Evaluation Criteria

We tested eight cover images using the MATLAB R2010a
Platform; all of the cover images were 8-bit grayscale im-
ages, and the size of each image was 512× 512. Refer to
Figure 6. During the experiment, the secret message was
a randomly-generated string composed of 0s and 1s.

In the experiment, we used EC (embedding capacity),
bpp (bits per pixel), and PSNR (peak signal-to-noise ra-
tio) to evaluate the proposed scheme. EC means the num-
ber of embedded bits in the camouflaged image; bpp rep-
resents the average embedded bits per pixel; PSNR was
used to evaluate the quality of the camouflaged image.
PSNR is defined as Equation (21), where H and W are
the image height and width, respectively, and MSE (mean
square error) is defined as Equation (22).

PSNR = 10× log10

(
2552

MSE

)
, (21)

MSE =
1

H ×W

H∑
i=1

W∑
j=1

(CoverImage(i,j) − StegoImage(i,j))
2.

(22)

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 73

Figure 5: A detailed example of embedding and data ex-
traction procedures

Figure 6: The test cover images

Figure 7: Performance of the proposed scheme

4.2 The Analysis of Proposed Scheme

In this section, we evaluate the proposed scheme by using
eight standard grayscale images as the cover image. Fig-
ure 7 shows the relationship between embedding capac-
ity and the quality of the camouflaged image. Figure 7
shows that, like all data-hiding algorithms, the quality of
the different images gradually declined as the embedding
capacity increased. However, comparing the graphs of the
different images, it is apparent that the effects caused by
increasing the embedding capacity for the different kinds
of images are still different. For example, from the test
results of images “Baboon” and “Airplane”, it is apparent
that the degradation of the quality of image “Airplane”
is greater than that of image “Baboon” when the embed-
ding capacity was increased from 5000 to 15,000 bits. This
occurred because there are more smooth blocks in image
“Airplane”, and the quality of the image is more sensitive
to changes in these blocks. In addition, since we embed-
ded secret data in the same largest and smallest values,
the image with more smooth blocks would have the higher
embedding capacity. From the experimental results as
shown in Figure 7, the maximum embedding capacity of
image “Baboon” was the smallest, i.e., just 15,000 bits.
Compared to image “Baboon”, smoother images, such as
images “Lena” and “Elaine” can hide between 20,000 and
30,000 more bits of secret data, and the embedding capac-
ity of smoothest image, i.e., image “Airplane”, had 51,000
more bits than that of image “Baboon”.

4.3 Comparison of the Performances of
PVO-K and GePVO-K

Similar to PVO-K, the size of the block will affect the per-
formance of the proposed scheme. Therefore, we used dif-
ferent block sizes to test the performance of the GePVO-K
and PVO-K methods. Taking the local correlation of dig-
ital image into account, block sizes that are too large will
reduce the maximum embedding capacity drastically. So,
five kinds of blocks were tested, the sizes of which were
2× 2, 2× 3, 3× 3, 3× 4, and 4× 4, respectively. Tables
2-3 show the experimental results of ”Lena”, ”Airplane”.

As can be seen from the results in the Tables 2-3, in
the process of increasing the block size, the maximum em-
bedding capacity will be reduced because the relevance of
the pixel values in the block will be reduced. However,
the image quality will be enhanced. In the case of dif-
ferent blocks, GePVO-K greatly improved the maximum
embedding capacity. The PVO-K method embeds one bit
of secret data to move K bits, so the modification to each
pixel is, at most, 1, while the GePVO-K method can em-
bed K bits of data into K largest-valued pixels, and, of
course, each pixel value may be expanded by 1 or 2; in
addition, the second-largest pixels are modified by one,
but when the block is small, the modified pixels may be
shifted to the original value in the procedure of embed-
ding secret data in the smallest-valued pixels. As shown
in Example 3.4, we embedded six bits of secret data, but

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 74

the total modification to all pixels was only 2. Therefore,
although GePVO-K inevitably decreases the image qual-
ity while improving the embedding capacity, the negative
impact is not too high.

Table 2: Performance comparison between PVO-K and
proposed GePVO-K (Lena)

Lena PVO-K Proposed
B
size

EC PayloadPSNR EC PayloadPSNR Gain
in
EC

2x2 37000 0.14 51.36 44000 0.17 48.37 7000
2x3 28000 0.11 52.27 37300 0.14 49.32 9300
3x3 20000 0.08 54.32 31000 0.12 50.45 11000
3x4 16300 0.06 55.52 25700 0.10 51.41 9400
4x4 12700 0.05 56.87 21200 0.08 52.28 8500

In addition, we can determine from the experiment re-
sults, for different types of images, the performance in im-
proving the EC of the proposed scheme was not the same.
for the smoother images, i.e., ”Lena”, the average EC
was increased by about 5,800 bits; for the smoothest im-
age, ”Airplane,” the average EC was increased by about
21,000 bits. These experimental data indicate that the
performance of the proposed scheme was better for the
smoother images.

Table 3: Performance comparison between PVO-K and
proposed GePVO-K (Airplane)

Lena PVO-K Proposed
B
size

EC PayloadPSNR EC PayloadPSNR Gain
in
EC

2x2 47000 0.18 51.76 66000 0.25 48.01 19000
2x3 35800 0.14 53.36 58000 0.22 48.49 22200
3x3 24600 0.09 55.41 47900 0.18 49.31 23300
3x4 18900 0.07 56.15 41000 0.16 49.92 22100
4x4 14200 0.05 57.37 33500 0.13 50.71 19300

4.4 Handling Special Blocks

In all PVO-based methods, the overflow/underflow prob-
lem must be taken into consideration, because the bound-
ary pixel valued ”0” and ”255” will be beyond the gray
scope after the expansion. The usual practice is to modify
the boundary pixel values to a safe range and then con-
struct a map to record the location of the modified pixels.
In the proposed scheme, the overflow/underflow may oc-
cur in the pixels which are ”0,” ”1,” ”254,” and ”255.”
If these pixels are handled using traditional methods, we
must use two bits to record a modified pixel, which leads
to a doubling of the size of the location map. In addition,

since the block with same pixel values and the normal
block cannot be used in the same manner to embed se-
cret data, if data are embedded in the block with the same
pixel values, we must establish another location map to
record these blocks; however, this treatment often out-
weigh the benefits. In response to this phenomenon, we
proposed an alternative way of handling special blocks;
our location map is no longer constructed in a pixel unit,
but it records information of each block instead. If the
block may overflow/underflow, record it as ”2”; if all pixel
values in the block are equal, ”1” is recorded, the rest
blocks are recorded as ”0.”

Table 4 shows a comparison of the performance of using
two overflow/underflow handling methods in the proposed
scheme. The first method is to use the traditional way to
build a pixel location map, and we used two bits to record
the location of a modified pixel and abandoned embedding
secret data in the block with the same pixel values; the
second is to create a block location map, use two bits to
record a special block position, and do nothing with the
block that may overflow/underflow. Also, the block with
same pixel values is used to embed the secret information.

As can be seen from the data in Table 4, the second
method has better performance in both PSNR and max-
imum embedding capacity. Therefore, it was selected by
the proposed scheme. In addition, note that the location
map of the selected method is smaller than that of the
PVO-K scheme when the block size is greater than 2× 2.

Table 4: Performance comparison of two over-
flow/underflow handling methods

Images
Use pixel LM Use block LM
EC PSNR EC PSNR

Lena 42600 48.25 44000 48.37
Baboon 14700 49.79 15000 49.90
Airplane 63000 48.14 66000 48.13
Barbara 33000 48.85 34000 48.84
Elaine 26300 49.17 28000 49.17
Lake 29700 49.03 30000 49.14
Boat 29500 48.98 30000 49.00
Peppers 35000 48.58 36000 48.67
Average 34225 48.85 35375 48.90

4.5 Comparison of the Performances of
the Proposed Scheme and Several
PVO-based Methods

In this section, we evaluate our proposed GePVO-K
scheme by comparing it with several PVO-based meth-
ods. Because our GePVO-K scheme focuses on increasing
the maximum embedding capacity of the cover image, the
quality of the camouflaged image may be affected to some
degree. Table 5 shows the comparison result of PVO,
IPVO, PVO-K, as well as the proposed scheme by test-

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 75

ing eight standard gray-scale images; the block size in the
experiments was 2× 2.

From Table 5, we can conclude that the proposed
scheme successfully improved the performance of the
three compared methods in embedding capacity. The av-
erage embedding capacity of the proposed scheme was
9,625 bits more than PVO, 5,625 bits more than IPVO,
and 6,375 bits more than PVO-K. Note that the improve-
ment in the embedding capacity was more obvious for the
images with more smooth area. As can be seen from the
experimental results of ”Airplane,” the maximum embed-
ding capacity increased by nearly 20,000 bits compared
with PVO-K. With this significant improvement in em-
bedding capacity, the quality of the image will inevitably
be affected. But, in the case of substantially increasing
the EC, the PSNR remained at a high level in our pro-
posed scheme. In ”Airplane,” for example, after increas-
ing the embedding capacity by nearly 20,000 bits, the
PSNR was still 48.13 dB. Moreover, compared with two
most advanced PVO-based RDH methods, PVO-K and
PPVO, the proposed scheme also shows excellent perfor-
mance in terms of embedding capacity under the premise
of ensuring the quality of the stego-image. It achieves
greatest average EC while maintaining the average PSNR
in 48.91dB.

4.6 Multilevel Embedding Analysis

Like majority of the reversible data hiding algorithms,
GePVO-K also supports multilevel embedding, that is,
treating the camouflaged image as the new cover image
to continue embedding secret data. Fig. 8 shows the
multilevel embedding performance of PVO, IPVO, PVO-
K, and the proposed GePVO-K by testing ”Lena” and
”Airplane.”

For the proposed scheme, the largest and smallest
pixel values in the block were used to embed secret data.
Since the secret data were randomly generated, assum-
ing that the numbers of ”0” and ”1” were basically the
same. Then, after embedding the secret data, the pre-
vious amount of largest-valued and smallest-valued pix-
els was halved, which means the embedding capacity of
the next level also will be halved, and because the pixels
are moved further, the quality of the camouflaged image
will decrease step by step. Since the prediction error will
be extended by embedding 1, the other three PVO-based
methods will have a similar trend.

As can be seen from Fig. 8, the GePVO-K method
was better than the embedding capacity of the other three
methods (PVO, IPVO, PVO-K) at each embedding level,
and the total EC has more obvious differences with the
increasing of the embedding level. For image “Lena”, the
proposed method embedded a total of about 10,000 more
bits of secret data than PVO-K and IPVO, and it in-
creased EC by nearly 25,000 bits compared with PVO;
for ”Airplane,” the total EC of our proposed method has
27,000 more bits than IPVO, 37,000 more bits than PVO-
K, and nearly 54,000 more bits than PVO. At the same

time, we can notice that when using multiple levels to
embed the secret data, in the case of same EC (when
EC is greater than 65,000 bits for “Lena”, 82,000 bits
for “Airplane”), the quality of the camouflaged image in
the proposed scheme was better and the degree of image
distortion did not decline sharply as it did in the other
methods.

Since our proposed scheme aims to enhance the perfor-
mance of the embedding capacity of PVO-K by embed-
ding K bits of secret data into K largest-valued/smallest-
valued pixels, the block constrains of PVO-K still not be
broken. Due to the reason that the PPVO scheme not
only breaks the block constrains but also reuses the pix-
els to embed secret data, it achieves best multilevel em-
bedding performance. However, compared with another
PVO-based scheme, i.e., Wang et al.s method, the pro-
posed scheme has better performance in each embedding
level.

(a) Lena

(b) Airplane

Figure 8: Multilevel embedding performance comparison
of proposed and other five PVO-base methods

5 Conclusions

In this paper, we presented a new PVO-based RDH
method, which is the enhancement on the basis of PVO-K
method. It is an extension of PVO-K, and it no longer
treats the largest and smallest values in the block as a unit
to embed secret data, but it embeds the data in each of

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 76

Table 5: Performance comparison between proposed scheme and several PVO-based methods

Images
PVO IPVO PVO-K PPVO Wang’s method Proposed

EC PSNR EC PSNR EC PSNR EC PSNR EC PSNR EC PSNR
Lena 32000 52.32 38000 52.35 37000 52.02 44000 51.25 38000 52.15 44000 48.37
Baboon 13000 51.75 13000 51.80 13000 52.00 15000 51.50 13000 51.85 15000 49.90
Airplane 38000 53.12 52000 52.50 47000 52.24 69000 50.95 52000 52.00 66000 48.13
Barbara 27000 52.24 29000 52.05 29000 52.16 33000 51.55 31000 52.45 34000 48.84
Elaine 21000 52.05 24000 52.00 23000 51.87 28000 50.00 25000 51.78 28000 49.17
Lake 23000 52.43 26000 51.79 26000 51.78 29000 52.65 26000 51.85 30000 49.14
Boat 24000 52.00 26000 51.80 26000 51.82 29000 51.20 26000 51.95 30000 49.00
Peppers 28000 52.05 30000 52.00 31000 51.92 33000 51.30 30000 52.00 36000 48.67
Average 25750

52.25
29750

52.04
29000

51.98
35000

51.30
30125

52.00
35375

48.91
(payload) (0.098) (0.113) (0.111) (0.133) (0.115) (0.135)

the largest-valued and smallest-valued pixels. Therefore,
the maximum embedding capacity has been improved sig-
nificantly. Also, since it modifies more pixel values, the
quality of the image will be subject to a certain decrease,
but because of the modified pixel values may be shifted
towards the original position in the procedure of embed-
ding secret data in smallest-valued pixels, the quality of
the camouflaged image can still be maintained at a high
level in the case of maximum embedding capacity. And
when embedding secret data with multiple levels, the pro-
posed method achieved better performance in both EC
and image quality than the other four PVO-based meth-
ods.

The proposed scheme also established a block location
map instead of a pixel-based location map, and it pro-
cessed each block in the different cases. It skipped the
blocks that may overflow/underflow, and utilized blocks
with the same pixel values, which further increased the
embedding capacity; in addition, the quality of the cam-
ouflaged image was improved to some extent due to the
reduced size of the location map and the smaller modifi-
cation of the amplitudes of the pixel values.

Acknowledgments

This research work was partially supported by the Min-
istry of Science and Technology of the Republic of China
under the Grant No. MOST105-2221-E-324 -014 and
MOST 103-2632-E-324-001-MY3.

References

[1] K. Bharanitharan, C. C. Chang, H. R. Yang, and
Z. H. Wang, “Efficient pixel prediction algorithm for
reversible data hiding,” International Journal of Net-
work Security, vol. 18, no. 4, pp. 750–757, 2016.

[2] M. U. Celik, G. Sharma, A. M. Tekalp, et al., “Loss-
less watermarking for image authentication: a new
framework and an implementation,” IEEE Transac-

tions on Image Processing, vol. 15, no. 4, pp. 1042–
1049, 2006.

[3] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber,
“Lossless generalized-lsb data embedding,” IEEE
Transactions on Image Processing, vol. 14, no. 2,
pp. 253–266, 2005.

[4] C. K. Chan and L. M. Cheng, “Hiding data in im-
ages by simple lsb substitution,” Pattern Recogni-
tion, vol. 37, no. 3, pp. 469–474, 2004.

[5] J. Fridrich, M. Goljan, and R. Du, “Lossless data
embedding: new paradigm in digital watermark-
ing,” EURASIP Journal on Applied Signal Process-
ing, vol. 2002, no. 1, pp. 185–196, 2002.

[6] Y. Hu, H. K. Lee, and J. Li, “De-based reversible
data hiding with improved overflow location map,”
IEEE Transactions on Circuits and Systems for
Video Technology, vol. 19, no. 2, pp. 250–260, 2009.

[7] B. Jana, D. Giri and S. K. Mondal, “Dual-image
based reversible data hiding scheme using pixel value
difference expansion,” International Journal of Net-
work Security, vol. 18, no. 4, pp. 633–643, 2016.

[8] L. Kamstra and H. J. Heijmans, “Reversible data
embedding into images using wavelet techniques and
sorting,” IEEE Transactions on Image Processing,
vol. 14, no. 12, pp. 2082–2090, 2005.

[9] S. K. Lee, Y. H. Suh, and Y. S. Ho, “Reversiblee im-
age authentication based on watermarking,” in 2006
IEEE International Conference on Multimedia and
Expo, pp. 1321–1324, IEEE, 2006.

[10] F. Li, Q. Mao, and C. C. Chang, “A reversible data
hiding scheme based on iwt and the sudoku method,”
International Journal of Network Security, vol. 18,
no. 3, pp. 410–419, 2016.

[11] X. Li, J. Li, B. Li, and B. Yang, “High-fidelity re-
versible data hiding scheme based on pixel-value-
ordering and prediction-error expansion,” Signal
Processing, vol. 93, no. 1, pp. 198–205, 2013.

[12] M. Liu, H. S. Seah, C. Zhu, W. Lin, and F. Tian, “Re-
ducing location map in prediction-based difference
expansion for reversible image data embedding,” Sig-
nal Processing, vol. 92, no. 3, pp. 819–828, 2012.

International Journal of Network Security, Vol.20, No.1, PP.65-77, Jan. 2018 (DOI: 10.6633/IJNS.201801.20(1).08) 77

[13] J. Mielikainen, “Lsb matching revisited,” IEEE Sig-
nal Processing Letters, vol. 13, no. 5, pp. 285–287,
2006.

[14] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible
data hiding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 3, pp. 354–
362, 2006.

[15] B. Ou, X. Li, Y. Zhao, and R. Ni, “Reversible
data hiding using invariant pixel-value-ordering and
prediction-error expansion,” Signal Processing: Im-
age Communication, vol. 29, no. 7, pp. 760–772,
2014.

[16] F. Peng, X. Li, and B. Yang, “Adaptive reversible
data hiding scheme based on integer transform,” Sig-
nal Processing, vol. 92, no. 1, pp. 54–62, 2012.

[17] F. Peng, X. Li, and B. Yang, “Improved pvo-based
reversible data hiding,” Digital Signal Processing,
vol. 25, pp. 255–265, 2014.

[18] X. Qu and H. J. Kim, “Pixel-based pixel value order-
ing predictor for high-fidelity reversible data hiding,”
Signal Processing, vol. 111, pp. 249–260, 2015.

[19] D. M. Thodi and J. J. Rodŕıguez, “Expansion embed-
ding techniques for reversible watermarking,” IEEE
Transactions on Image Processing, vol. 16, no. 3,
pp. 721–730, 2007.

[20] J. Tian, “Reversible data embedding using a differ-
ence expansion,” IEEE Transactions on Circuits Sys-
tems for Video Technology, vol. 13, no. 8, pp. 890–
896, 2003.

[21] X. Wang, J. Ding, and Q. Pei, “A novel reversible
image data hiding scheme based on pixel value order-
ing and dynamic pixel block partition,” Information
Sciences, vol. 310, pp. 16–35, 2015.

[22] X. Wang, X. Li, B. Yang, and Z. Guo, “Efficient gen-
eralized integer transform for reversible watermark-
ing,” IEEE Signal Processing Letters, vol. 17, no. 6,
pp. 567–570, 2010.

[23] Y. L. Wang, J. J. Shen, M. S. Hwang, “An improved
dual image-based reversible hiding technique using
LSB matching”, International Journal of Network
Security, vol. 19, no. 5, pp. 858–862, 2017.

[24] Z. H. Wang, X. Zhuang, C. C. Chang, C. Qin, and
Y. Zhu, “Reversible data hiding based on geometric
structure of pixel groups,” International Journal of
Network Security, vol. 18, no. 1, pp. 52–59, 2016.

[25] S. Zhang, T. Gao, L. Yang, “A reversible data hiding
scheme based on histogram modification in integer
DWT domain for BTC compressed images,” Inter-
national Journal of Network Security, vol. 18, no. 4,
pp. 718–727, 2016.

[26] X. Zhang and S. Wang, “Efficient steganographic em-
bedding by exploiting modification direction,” IEEE
Communications Letters, vol. 10, no. 11, pp. 781–
783, 2006.

Biography

Jian-Jun Li received the B.Sc. degree in information en-
gineering from Xian University of Electronic Science and
Technology, Xian, China, and the M.Sc. and Ph.D. de-
grees in electrical and computer from The University of
Western Ontario and University of Windsor, Canada sep-
arately. He is currently working at HangZhou Dianzi Uni-
versity as a chair professor. His research interests include
micro-electronics, audio, video and image processing al-
gorithms and implementation.

Yun-He Wu is in his Third year of the master program
at Hangzhou Dianzi University, Zhejiang, China, in 2016.
His major is Computer Science and Technology. He re-
ceived his BS degree in Computer Science and Technology
in 2014 in Henan University of Science and Technology,
Henan, China. His research interests include data hiding,
video coding/decoding and image processing.

Chin-Feng Lee received Ph.D. degree in Computer Sci-
ence and Information Engineering in 1998 from National
Chung Cheng University in Taiwan. She is currently a
professor in the Department of Information Management
at Chaoyang University of Technology, Taiwan. Her re-
search interests include steganography, image processing,
and data mining.

Chin-Chen Chang received the B.S. degree in ap-
plied mathematics and the M.S. degree in computer and
decision sciences from National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., in 1977 and 1979, respectively.
He received the Ph.D. degree in computer engineering
from National Chiao Tung University, Hsinchu, in 1982.
From July 1998 to June 2000, he was Director of the Ad-
visory Office, Ministry of Education, R.O.C. From 2002
to 2005, he was a Chair Professor at National Chung
Cheng University. From February 2005, he has been a
Chair Professor at Feng Chia University. In addition, he
was severed as a consultant to several research institutes
and government departments. He is currently a Fellow of
IEEE and a Fellow of IEE, UK. His current research in-
terests include database design, computer cryptography,
image compression, and data structures.

