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Abstract

Recently, cost-based Autonomous Response System
(ARS) proposals are based on intrusion detection analy-
sis. However, the implementation of the analysis in multi-
class classification-based ARS potentially leads to a wrong
response action set decision. This is because the analysis
may produces irrelevant response value, as it is not consid-
ering the false possibility in a true positive condition. In
this paper, we introduce ARS based on cost analysis from
a multi-class classification output. The analysis is not
only considering the possibility of a right response, but
also the possibility of a wrong response from false classi-
fication prediction. The response value and expected lost
rate are introduced to quantitatively estimate the best
response action set. Our simulation for Denial of Service
(DoS) attack cases, confirmed the capability of response
action set decision algorithm. Our proposed system pro-
vides more accurate estimation of response value which
leads to lower expected lost rate.

Keywords: Autonomous Response System; Classification;
Decision Analysis; Denial of Service; Intrusion Detection

1 Introduction

To stop the traffic flooding attack in Denial-of-Service
(DoS) is one important task in network security. Intru-
sion Detection and Response System (IDRS) is one se-
curity mechanism which aims to mitigate the attack im-
pacts on a victim while keeping the damage level to a
minimum [8]. Autonomous response system (ARS) is a
kind of IRS, which responses to the detected attack au-
tonomously without human intervention. The system is
not only required to accurately detect the attacks, but
also adaptively determines the best response action set
to stop the attacks. Actions such as traceback [28], In-
trusion Detection System (IDS) based filtering [12, 16],

rate-limiting [13, 20], artificial immunity [1, 2], are exam-
ples of DoS attack response proposals. And in [17], the
defensive mechanism was categorized by capability focus
of each approach.

The heart of an ARS is the decision analysis process,
as it is responsible for the decision to be made. Research
on cost-based decision analysis has their own character-
istics and mechanism in determining the variables. Most
approaches obliged to assess every single risk and cost em-
broiled in decision analysis, such in [3, 6, 10]. But, the
major issue of cost-based decision analysis is the neces-
sity to estimate many building factors which have to be
defined first during implementation.

To overcome above limitations, several research has
proposed the decision analysis, which only directly con-
cerns with IDS effectiveness. In [25], they have pro-
posed decision analysis which considers damage lost and
response cost consequences by no intrusion condition.
These approaches have not considered the lost or cost
consequences by intrusion condition. And in [15], they
have modified the previous analysis of cost and lost con-
sequences according to IDS possible conditions which are
no intrusion and intrusion. The research has proposed
IDS value to quantitatively measure IDS effectiveness by
considering most relevant costs of the decision process.
Cost analysis also used in Intrusion Detection Network
research [4, 5] which used to measure the effectiveness of
detection feedbacks in collaboration selection process.

However, the cost-based decision analysis for intrusion
detection cannot be directly applied to the multi-class in-
trusion classification cases. Furthermore, it potentially
leads to less precise response action set and higher lost
rate. This is because the output of intrusion classification
provides more action set possibilities. Thus, the decision
analysis must take into account all consequences possi-
bility, including from wrong response possibility. This is
because there is still the possibility of false in every classi-
fication algorithm. From previous intrusion classification
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Table 1: Example of intrusion classification output case

algorithm research reports; such in [18, 19, 22]; still, no
classifier has a perfect accuracy. For example, in Table 1,
the true positive (TP ) state in intrusion classification,
may consist of several specific false predictions, such as
TPAB (false as attack A was predicted as attack B), etc.
Each false prediction will take effect on cost and lost con-
sequences in the decision analysis. When this situation is
neglected, then the lack of proper decision may be ended
in higher system lost.

Therefore, we propose false-aware cost-based decision
algorithm for classification-based ARS. Our decision algo-
rithm quantitatively estimates response value of each pos-
sible set of response action, and determine best response
action set based on response value. We have upgraded
the state-of-the-art cost-based decision analysis in [15],
by considering the possibility of right or wrong response
consequences in the analysis process. Thus, it leads to es-
timate the relevant best response action set, as it provides
more precise response value estimation on all possible re-
sponses. We have validated and tested the decision algo-
rithm by synthetic confusion matrices and by the used of
three different classification algorithms using KDD Cup
1999 DoS/DDoS revised dataset in [24].

Our decision analysis can accommodate the necessity of
cost-based decision analysis for classification-based ARS.
To the extent of our knowledge, this is the first research
that shows false-aware cost-based decision analysis on in-
trusion classification. Our decision analysis provides a
quantitative estimation of response value and expected
lost rate based on classification output. Our proposal is
important due to the recent development of ARS, which
does not only detect the existence of attack but also deter-
mines relevant response action set. In addition, our paper
differs from the related study by providing a complete al-
gorithm that covers an autonomous response capability.

This paper is orderly written as follows. In Section 2,
discuss the state-of-the-art of response system. In Sec-
tion 3, our novel decision analysis proposal is introduced
with an example of an intrusion classification case. Sec-
tion 4 shows the response system design in complete
framework and algorithm, and also discuss experimental
and performance evaluation procedure. Finally, in Sec-
tion 5, the evaluation results are shown and analyzed to
validate our proposal. Section 6 summarized our conclu-
sions and an open problem for possible further research.

2 Related Work

In respect of response system, decision analysis has al-
ready been studied in previous research. Game theory
is one widely used analysis in response system. In [29],
they proposed automated response based on a Stackel-
berg stochastic game which is a two-player game-theoretic
response and recovery strategy, named response and re-
covery engine (RRE). The multi-objective response action
selection quantitatively ranks by fuzzy logic, and the op-
timal action is determined from game-theoretic optimiza-
tion process.

The probabilistic method also occupied in decision
analysis. In [14], a probability analysis based on stochas-
tic Petri nets, consider detection result in a network
which comprised of many nodes. By adjusting a mini-
mum threshold, a dynamic response system was devel-
oped based on the detected attacker strength. Rein-
forcement learning was used in [13], which proposed au-
tonomous response by distributing reinforcement learn-
ing of throttle agents. Those agents adaptively and au-
tonomously response DoS attack by learning the scale of
rate-limiting action during reinforcement learning.

Cost-benefit analysis is one promising method in re-
sponse system [15]. However, it has limitation as all of
the cost must be defined first and have to be updated
periodically, otherwise it will be static cost analysis. Re-
search in [11] has proposed risk analysis by damage cost,
operational cost and response cost in a cost-sensitive anal-
ysis for IDS. This proposal determines the autonomous
response, according to the cumulative cost matrix that
combines the different cost features. While others work
in the scope of technical approach, in [6] has proposed a
cost-benefit analysis which has considered the technical
and managerial aspects. The analysis estimates the Re-
turn on Investment (ROI) variables in determining best
IDS system which provides better ROI.

Cost-based decision analysis based on intrusion detec-
tion in [5, 15, 25, 26] have gone beyond the static cost
by dynamically calculate the cost based on IDS output.
In [25, 26], they have proposed decision analysis based on
cost per unit lost ratio, which considers damage Lost and
response Cost by no intrusion condition. Then, [15] have
upgraded the decision analysis by simplifying cost-benefit
estimation. It proposed IDS Value to quantitatively mea-
sure IDS effectiveness by considering most relevant costs
in an ARS (Believe Desire Intention (BDI) agent environ-
ment.

Research in [5] also consider cost analysis of detection
feedbacks by the used of false positive and false nega-
tive feedbacks. However, those proposals still not pay
attention to the possibility of wrong response in intrusion
classification output case. We develop beyond those exist-
ing cost-based decision analysis by concentrating on cost-
based analysis which considers the possibility of wrong
response.
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3 False-Aware Cost-based Deci-
sion Analysis

Research in [5, 15, 25, 26], are fundamentally con-
structed our false-aware cost-based decision analysis for
classification-based response system. The analysis con-
sists of response decision nodes and event nodes. A re-
sponse decision node is possible response action taken by
response system at an operating point. An event node
is network condition uncertainty at an operating point.
From the combination of possible taken response and con-
dition uncertainty, decision analysis may end up in con-
sequences which are cost or lost condition. In decision
analysis, the first important step is to determine the en-
vironment and workflow of the system. It significantly af-
fects the result of decision analysis. In this proposal, the
analysis is developed according to the framework such in
Figure 1.

Definition 1. The Possible responses are all possible re-
sponse actions that available for the ARS to react to any
predicted attack.

The possible responses at a given operating point are
whether the system chose to respond or not respond to
any predicted attack. By this situation, the possible re-
sponses are no-response and response to the predicted at-
tacks. In classification case, the predicted attack may
consist of several types of attack. Thus, the possible re-
sponses are no-response and power set of responses to pre-
dicted attacks. For example, from a classification report
such in Table 1, the all possible responses are no-response,
response to attack A, response to attack B, and response
to both attacks A and B.

Definition 2. Cost is a condition where the system takes
any precautionary response action. The response took spe-
cific cost related to certain action set, based upon the pre-
dicted class of attack.

Definition 3. Lost is a condition where the system suf-
fers any lost from the attack as system take no-response
or wrong response when the attack occurred. The lost is
related to damage lost from not responding to the predicted
class of attack.

We have upgraded the decision tree analysis proposed
in [5, 15, 25, 26], by considering all possible consequences
according to intrusion classification output. Our decision
tree analysis not only considers lost consequence by the
no-response decision but also lost consequence by wrong
response decision. This approach is based on the real
condition probability from possible responses. As system
took response due to any certain type of attack, it might
end up in cost consequence when the response was right,
or in lost consequence as the response was wrong. From
this process, we have optimized the decision tree analysis
as depicted in Figure 2.

Definition 4. The expected cost of response is the sum
of product of expected consequence if the system takes any

Figure 1: Traffic flow in our proposed ARS

response. In intrusion detection case, the expected cost of
response is related to false positive, false negative, and a
true positive.

In a cost-based decision analysis for intrusion classifica-
tion, it estimates the expected cost and lost condition for
each possible response. From classification output con-
fusion matrix in Table 1, the system has information of
hit rate (H = TP/(TP + FN)) and False alarm rate
(F = FP/(FP +TN)). Given the prior probability of an
intrusion is happening (p), the expected cost in each pos-
sible condition is then estimated by decision tree analysis
in Figure 2.

Definition 5. The expected cost of an operating point is
the sum of the product of the expected cost of response
from each possible condition. Thus, the expected cost per
unit lost of operating point (M) is the cost of an operating
point normalized by unit lost.

The expected cost per unit lost of an operating point is
dependent on the cost of an operating point in No-Alarm
and in an Alarm condition. To estimate the cost per unit
lost ratio (M), all cost per unit lost ratio of all possible
responses need to be defined first. For example, in clas-
sification case such in Table 1, the all possible responses
are summarized in Table 2. In No-Alarm condition, the
cost per unit lost ratio given every possible response are
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Table 2: Cost analysis based on possible responses in Table 1

Report Traffic PossibleResponse
No Response Response Attack

A
Response Attack
B

Response Attack
A B

No
Alarm

Normal 0 C(TN) C(TN) C(TN)

Attack A L(FNA) C(FNA) L(FNA) C(FNA)
Alarm Normal 0 C(FPA) C(FPB) C(FPA + FPB)

Attack A L(TPAA + TPAB) C(TPAA) +
L(TPAB)

C(TPAB +
L(TPAB + TPAA)

L(TPAB) +
C(TPAA + TPAB)

Figure 2: Cost-based decision tree for intrusion classifica-
tion that considers right or wrong response

such in Equation (1) to Equation (4).

M(NoResponse|NoAlarm)

= C(NoResponse|normal) + C(NoResponse|AttackA)

= p(1−H)

(1)

M(ResponseA|NoAlarm)

= C(ResponseA|normal) + C(ResponseA|AttackA)

=
C

L
((1− p)(1− F )) +

C

L
(p(1−H))

(2)

M(ResponseB |NoAlarm)

= C(ResponseB |normal) + C(ResponseB |AttackA)

=
C

L
((1− p)(1− F )) + (p(1−H))

(3)

M(ResponseA+B |NoAlarm)

= CResponse(A+B)|normal) + C(Response(A+B)|AttackA)

=
C

L
((1− p)(1− F )) +

C

L
(p(1−H))

(4)

From Equation (1) to Equation (4) system can esti-
mates expected cost to lost ratio from No-Alarm condi-
tion which is such in Equation (5).

MNoAlarm =

min


(p(1−H)),
C
L (((1− p)(1− F )) + (p(1−H)))),
((C

L ((1− p)(1− F ))) + p(1−H)),
(C
L ((1− p)(1− F )) + (p(1−H)))


(5)

The same procedure is performed to estimate the cost
per unit lost ratio in an Alarm condition. The cost per
unit lost ratio is estimated as every possible response
given Alarm condition, such in Equation (6) to Equa-
tion (9).

M(NoResponse|Alarm)

= C(NoResponse|normal) + C(NoResponse|AttackA)

= pH(
(TPAA + TPAB)

TP
)

(6)

M(ResponseA|Alarm)

= C(ResponseA|normal) + C(ResponseA|AttackA)

=
C

L
((1− p)F (

FPAA

FP
) + pH(

TPAA

TP
))

+ pH(
TPAB

TP
)

(7)

M(ResponseB |Alarm)

= C(ResponseB |normal) + C(ResponseB |AttackA)

=
C

L
((1− p)F (

FPBB

FP
) + pH(

TPAB

TP
)) + pH

(8)

M(ResponseA+B |Alarm)

= C(ResponseA+B |normal) + C(ResponseA+B |AttackA)

=
C

L
((1− p)F + pH)) + pH(

TPAB

TP
)

(9)

Thus, the expected cost to lost ratio given Alarm con-
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dition will be such in Equation (10).

MAlarm =

min


pH( (TPAA+TPAB)

TP ),
C
L ((1− p)F (FPAA

FP ) + pH(TPAA

TP ))
+pH(TPAB

TP ),
C
L ((1− p)F (FPBB

FP ) + pH(TPAB

TP )) + pH,
C
L ((1− p)F + pH)) + pH(TPAB

TP )


(10)

Finally, the expected cost per unit lost(M) is the sum
of the product of the expected cost per unit lost of detec-
tor’s reports at an operation point which are No-Alarm
and Alarm condition, which is M = MNoAlarm+MAlarm.

Definition 6. The response value such in [15]; namely
IDS value; is an estimated value of the possible responses
at a given operating point.

It was derived from the normalization between actual
reduction of expected cost and maximum possible reduc-
tion of expected cost. Actual reduction of expected cost
is the reduction of actual expected cost (M) over the ex-
pected cost which based only on the information of the
probability of intrusion (Mprop). And maximum possible
reduction is the reduction between actual expected cost
per unit lost of operating point (M) over the expected cost
of perfect classifier (Mper). Mprop is the expected cost
that corresponds only to the information of the probabil-
ity of intrusion (p), such in Equation (11). The expected
cost of a perfect classifier (Mper) was achieved when ex-
pected cost per unit lost was applied in a perfect classifier
which has H = 1 and F = 0, such in Equation (12).

Mprop = min(p,
C

L
) (11)

Mper = min(p,
C

L
p). (12)

The system estimates the response value (V ) which is
the same procedure as IDS value from [15] such in Equa-
tion (13). The difference is in response value, the system
objective is to evaluate the value of every action response
set. To extend the analysis, we provide the response value
calculation algorithm in Section 4.

V =
(Mprop −M)

(Mprop −Mper)
(13)

Definition 7. Best response action set (a), is the set
of action determined from related to cost to lost ratio
(C
L ) when decision analysis reaches a maximum response

value.

For the ARS, the best response was automatically de-
termined from minimal expected cost per unit lost. How-
ever, from this analysis, the best response is just the deci-
sion of whether to respond or not to all predicted attacks
(chosen from possible responses). The actual action taken
by ARS is response action set ({a}) at a determined best
response. The best response action set then acquired from
action set which is related to cost to lost ratio (C

L ) from
obtained maximum response value (Vmax).

Definition 8. Lost rate parameter (L) is the expected
lost consequence at a given expected cost per unit lost,
normalized by maximum lost consequence.

To estimate lost rate (L), the system estimates the
maximum cost consequence from confusion matrix in-
put. It is the sum of product of true in true positive,
and all False Negative. From the resulting expected cost
consequence, the system can estimate expected lost con-
sequence by a reduction between maximum lost conse-
quence and expected cost consequence. The lost rate is
then estimated by the expected lost consequence divided
by the maximum lost consequence, such in Equation (14).

L =
(TP + FN)− (M(trueTP+FN)

M |Vmax

TP + FN
. (14)

4 System Design

4.1 Framework and Algorithm

Our proposed system may reside on any node in a net-
work, including in near destination network as it provides
more benefit in security system [22]. Figure 3 repre-
sents our framework. The input of our system is basically
raw incoming traffic records, which is packet level data.
The first stage of our framework is basic features gen-
eration process, which is to generate each traffic feature
of each data traffic. Assumed, the output of traffic fea-
tures generation process is a set of traffic features records
X = {x1, x2, x3, ... xg}. Each data in x then enters the
second stage; the classification system; to predict types
of each individual data in record x. The system evalu-
ates every classification output in confusion matrix and
gets set of g confusion matrix records Y = {y1, y2, y3,
... yg}. Hit rate (H), false rate (F ) and the probability
of attack (p) are straightly calculated from each confu-
sion matrix records y in Y . When the traffic data are
predicted as normal, then the data enter the fifth stage
which is traffic forwarding process. But, when the traffic
data are predicted as an attack, then the system enters
the third stage. At this stage, the system estimates the
response value of each confusion matrix from the earlier
step. The decision analysis applied to estimates a set of
response value of each y; which produces V = {v1, v2, v3,
... vg}. In the final stage, the system determines the best
responses Z = {z1, z2, z3, ... zg} for every estimated re-
sponse value (v). And finally determines best response
action set A = {a1, a2, a3, ... ag} from related cost to lost
ratio (C

L ) at given maximum response value.
In this research, we present the algorithm of au-

tonomous response in Algorithm 1. The algorithm firstly
determines all possible responses of given classification
output (yg), which is no-response and all subsets of the
attack detected responses. Then, the system estimates
the cost per unit lost value for every possible response
in No-Alarm and Alarm condition. This was done by
following decision-tree analysis in Figure 2. All possible
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Figure 3: Framework of classification-based response sys-
tem

responses are represented in a predicted set. The system
then estimates the expected cost per unit lost (Mg) from
the minimal value of MAlarm +MNoAlarm, for every pos-
sible action (represented by col = ∀predicted). From the
expected cost per unit lost calculation (Mg), the system
then estimates the best response (zg), response value (vg)
using Equation (13) and best response action (ag).

4.2 Test and Data Acquisition

In general, we evaluate our proposed ARS in two stages
by doing a comparison between our decision analysis and
state-of-the-art cost-based decision analysis in [15]. First
is validation, using synthetic confusion matrix which best
represents the possible condition of classification output.
Second, we evaluate the system by the used of three differ-
ent classification algorithms. We use KDDCup 99 revised
dataset in [24] as input for three classification algorithm
to evaluate our decision analysis. The classification was
done for all DoS/DDoS data in KDDCup 99 revised, ex-
cept for Pod, teardrop, and Land attack. This proposal
is the extension of our previous research in the classifi-
cation algorithm in [18]. First is Minimal Mahalanobis
Distance Classification (MMDC) algorithm, which is our
proposed classification algorithm. We have upgraded the
algorithm by the used of minimal triangle area Maha-
lanobis distance to classify data from [22, 23]. Second is
Stream Homogeneous Group Classification (SHGC) algo-
rithm, which is our proposal in [18]. And the last is the
covariance feature space classification (CFSC) algorithm
in [7], which is stream group-based classification with-
out homogeneous grouping. However, in this paper, we
only present the comparison to reveal the effectiveness of
false-aware decision analysis, instead of doing a compari-
son between detection or classification algorithms.

Algorithm 1 Response value (V) estimation

1: Begin
2: Initialize input : ConfusionMatrixY =
{y1, y2, · · · , yg} ; p = {predictedattackinyg} ;
q = {actualtrafficinxg}

3: while yg 6= {} do
4: for (C

L ) =0.01 to 0.99 do
5: Calculate H,F, p
6: {attack} ← Powersetof{p}
7: predicted← {normal} ∪ {attack}
8: i← size(predicted)
9: {traf} ← Powersetof{q}

10: actual← {normal} ∪ {traf}
11: j ← size(actual)
12: GenerateCostTableNoAlarm
13: GenerateCostTableAlarm
14: for col = 1 to j do
15: CostNoAlarmorderX(col)) ←

sum(CostTableNoAlarmg(:, col, 1) ∗ (C
L ))

16: LostNoAlarm(orderX(col))) ←
sum(CostTableNoAlarmg(:, col, 2))

17: CLNoAlarm(col) ← CostNoAlarmorderX(col) +
CostNoAlarmorderX(col)

18: CostAlarm(orderX(col))) ←
sum(CostTableAlarmg(:, col, 1) ∗ (C

L ))
19: LostAlarm(orderX(col))) ←

sum(CostTableAlarmg(:, col, 2))
20: CLAlarm(col) ← CostAlarmorderX(col) +

CostAlarmorderX(col)

21: end for
22: for col = 1 to j do
23: M(NoAlarmorderX(col)) ←

min(CostNoAlarmorderX(col) +
CostNoAlarmorderX(col))

24: zg(C
L )NoAlarm ← predicted|min(orderX(col))

25: M(AlarmorderX(col)) ←
min(CostAlarmorderX(col) +
CostAlarmorderX(col))

26: zg(C
L )Alarm ← predicted|min(orderX(col))

27: end for
28: Mg ←M(NoAlarmorderX(col)) + M(AlarmorderX(col))

29: MPer ← min(p, C
L p)

30: MProp ← min(p, C
L )

31: Vg(C
L ) ← (MProp −Mg)/(MProp −MPer)

32: end for
33: zg ← zg(C

L )NoAlarm ∪ zg(C
L )Alarm

34: vg ← max(Vg(C
L ))

35: ag ← ∃ag : (C
L |ag) = (C

L |vg)
36: end while
37: End

5 Result and Analysis

5.1 Validation Using Synthetic Confusion
Matrices

We do validation of our proposal by generating synthetic
confusion matrix such in Table 3. Suppose, we have
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Table 3: Synthetic confusion matrix cases

ConfMat1 which represents a high accuracy with some
False Negative, ConfMat2 which represents a high accu-
racy with some false positive, ConfMat3 which represents
a low accuracy with low false in true positive, and Conf-
Mat4 which represents a low accuracy with high false in
true positive. From these examples, the system deter-
mines possible responses set.

The curves of response value (V ) toward the differ-
ent cost to lost ratio (C

L ), show the value of best re-
sponse action set for given best response set which is
bestresponse = responsetoNeptuneSmurfBack. It is
obtained as the response provides minimal cost per unit
lost among all possible responses set elements. Figure 4
shows that ConfMat2 is the best classification algorithm
among these four. The curve from ConfMat2 shows high
response value in C

L < 0, 56 which means the damage cost
is almost two times higher than response cost. However,
when C

L > 0, 56 then the best algorithm is ConfMat1,
which means the system may afford the higher cost to
reach a higher response value. In ConfMat2, higher false
positive affects the higher cost but no lost consequences.
It means when the C

L > p, the higher cost has no benefit as
the lost consequence of false positive is none. Even when
the cost of action gets higher, the damage lost is none.
As for ConfMat1 with higher false negative, the higher
cost takes effect on higher response value. It means more
response need to be taken to lower the lost consequence
from undetected attack in a false negative.

The used of response value in our proposal can ac-
curately estimate the performance of ARS at the corre-
sponding response action set. The lower response value
represents the lower accuracy of classification output,
which mostly influences by higher false prediction in true
positive (TP ). The differences are depicted in Figure 5.
In the case of ConfMat3 and ConfMat4, our analysis can
differentiate the quality of response estimated from classi-
fication output. The lower accuracy of ConfMat4 can be
estimated by lower response value. However, the analy-
sis in [15] can not differentiate the quality between them.
Even when the accuracy of ConfMat4 is getting worse

Figure 4: Response value computed over four synthetic
confusion matrix cases

Figure 5: Response value comparison from the validation
process

(increasing false in true positive), the IDS value remains
high as long as the H,F and p values are the same. For
ConfMat1 and ConfMat2 input, which have no false pre-
diction in true positive, both decisions generate the same
IDS values.

Wrong estimation of response value (V ) potentially
leads to poor response action set {a}. It is important
as the action set is determined from the relation between
estimated response value (V ) and cost to lost ratio (C

L ).
If the response value is wrong, so does the action set de-
termined. In this research, best response action set {a}
is determined from the maximum response value. For
example, in ConfMat3 case. By the used of our pro-
posed analysis, the best response action set was action
set related to C

L = 0.79 at Vmax = 0.956. By this condi-
tion, estimated best response action set is an action set
{a(C

L ) : C
L = 0.79} and the expected cost was estimated

at M = 0.625. Thus, the system potentially experiences
a maximum unresolved attack (expected lost rate (L)) of
maximum expected lost divided by maximum actual lost,
which is 3,47%. However, when the system occupies deci-
sion analysis from [15], the best response value is achieved
at V = 0.956. Then the response action set is estimated
at {a(C

L ) : C
L = 0.77} and expected cost M = 0.610.

Thus, it is worse than our proposal as it potentially raises
maximum unresolved attack to 5.83%. The raising ex-
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Figure 6: Lost rate exploration from the validation pro-
cess

pected lost rate (L) is also shown in ConfMat4 condition,
which is the L increases from 28.47% to 29.72%.

From the response system point of view, the expected
lost rate is expected lost when the system takes any action
on estimated response value. Thus, the difference lost
rates are revealed from the difference expected cost per
unit lost (M) provided by both decision analysis. The
expected lost rate also can be used to estimates response
action set. It is used when the system has any expected
toleration of lost rate. Figure 6 shows the comparison of
expected lost rate(L) between our proposal and [15] for
ConfMat3 and ConfMat4. The lower curves show better
expected lost rate result. As for ConMat1 and ConfMat2,
the lost rates are exactly the same as there are no false in
the true positive in both cases.

5.2 Simulation Using Classification Algo-
rithms

From classification outputs, the ARS autonomously de-
cide whether to respond or not with 1 + 2n possible re-
sponse subsets (1 is for no-response, and n is the number
of predicted attacks). From our simulation using KDD-
Cup 99 revised dataset, decision analysis adaptively de-
cides whether to respond or not according to a certain op-
erating point. Best response from minimal expected cost
per unit lost is {bestresponse} = {responsetoNeptune ∩
Smurf ∩ Back}, which is the same for all classification
outputs. However, the minimal expected cost per unit
lost value of each analysis and case is different. It makes
the response value and best response action set are differ-
ent among these three. The MMDC algorithm which is
single by single data analysis provides best response value
as the accuracy is relatively higher than SHGC, which is
99.48% compared to 99.05% at an SHGC group size of
50. The higher IDS value from [15] analysis does not al-
ways represent better classification accuracy, which leads
to wrong response action set ({a}). The response value
curves of these three algorithms are shown in Figure 7 for
a group size of 50.

The expected lost rate of an SHGC algorithm at a
group size of 50 is the lowest among test cases, which has

Figure 7: Response value comparison computed over
KDD’99 revised dataset

Figure 8: Lost rate exploration computed over KDD’99
revised dataset

a minimum expected lost rate at 0% for C
L >= 0.78. It

is because when the system occupies best response action
set at C

L > 0.78 then the minimum lost is only influenced
by the value of false in false positive which is zero. How-
ever, as the false negative rate of MMDC is slightly higher
than SHGC, then the expected lost rate is slightly higher
for C

L < 0.79. And from the expected lost rate curves,
it visually seems that CFSC has lower expected lost rate
for C

L < 0.79. The lost rate of classification outputs is de-
picted in Figure 8. From all result of expected lost rate,
our proposal has shown better expected lost rate in every
test case. However, as the number of false in true posi-
tive is very small compared to overall data, then the lost
consequence is remained unnoticed in the scale of 10−3%.

In this paper, we only describe the autonomous re-
sponse action set as a common process. But still, this
proposal has not managed to decide which is possible re-
sponse action set specified to specific cost to lost ratio
(C
L ). It remains an open problem in this report. This is

because each response action in a set has a different re-
sponse cost in a different environment. And up until now,
there is still no proposal to describe the specific response
action related to specific response cost to lost ratio. In [6],
specified cost related to dollar cost in investment and op-
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erational process are operated in a cost-based analysis. In
[21], the response actions optimal strategy was identified
by decision weight and decision sequence in the analytical
hierarchy process. This approach has developed optimal
strategy selection analysis, but still, has not mentioned
the appropriate lost if the strategy was not deployed. For
example, in report and alert process, it certainly takes
response cost but has no effect on the targeted attack.
Research in [9] has proposed a taxonomy of response ac-
tions for a specific case in a relational database. The re-
sponse action set was divided into three categories which
are conservative, fain-grained and aggressive. In [27], the
time processing costs of request packets were analyzed by
implementing DoS rate limiting process in Linux Click
router.

6 Conclusions

This paper has proposed ARS based on cost-based deci-
sion analysis for multi-class DoS classification. Our cost-
based decision analysis takes beneficial of classification
output, which leads to related consequences of every pos-
sible response. The false-aware analysis is done by consid-
ering the possibility of wrong response in decision anal-
ysis. Our proposed system provides a quantitative cal-
culation of response value which is used to estimate the
best response action set autonomously. In low accuracy
of classification output, our false-aware decision analysis
provides more precise estimate of response value and ex-
pected lost rate than traditional cost-based analysis. It
can accurately differentiate the classification output qual-
ity with the existence of false in true positive. Result
regarding response value and expected lost rate have vali-
dated using synthetic test-case, and tested by the used of a
well-establish KDD Cup 1999 DoS/DDoS attack dataset.

In this study, ARS is developed based on the classifica-
tion algorithm output. Later, classification results can be
exchanged between ARS and forming collaborative multi-
agent system. It looks promising because, by information
exchange between agents, ARSs can form collaborative
ARSs that can classify, do decision analysis, evaluate, and
ultimately overcome the attacks on the network. The ex-
ploration of the cost of the different response action also
a part of our future research as it will beneficial for the
cost-based response system.
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