
International Journal of Network Security, Vol.2, No.3, PP.205–209, May 2006 (http://isrc.nchu.edu.tw/ijns/) 205

A Hash-based Strong Password Authentication
Protocol with User Anonymity

Kumar Mangipudi and Rajendra Katti

(Corresponding author: Kumar Mangipudi)

Department of Electrical and Computer Engineering, 1411 Centennial Blvd,

North Dakota State University, Fargo, ND 58105, USA (Email: {kumar.mangipudi, rajendra.katti}@ndsu.edu)

(Received Aug. 8, 2005; revised and accepted Sep. 21, 2005)

Abstract

Password authentication protocols range from complex
public-key cryptosystems to simple hash-based password
authentication schemes. One common feature of these
protocols is that the user’s identity is transmitted in plain
during the authentication process, which allows an at-
tacker to monitor the user’s activities. In many cases,
the user’s anonymity is a desirable security feature. In
this paper, we propose a hash-based Strong Password Au-
thentication Protocol with user Anonymity (SPAPA). We
also analyze the security of our proposed scheme against
known attacks.

Keywords: Anonymity, authentication, hash-based, strong
password

1 Introduction

User authentication is an important security mechanism.
Sometimes a key exchange mechanism is also included in
the authentication scheme. More often it is not uncom-
mon to verify the identities of the communicating party
before allowing him/her to access a remote server or the
system’s resources. Until now, a variety of authentica-
tion protocols ranging from complex public-key cryptosys-
tems to simple password based authentication schemes
have been proposed. These password based authentica-
tion schemes can be categorized into two types, one may
use a weak password and the other requires strong pass-
words. A strong password has high entropy and thus
cannot be guessed easily. On the other hand a weak pass-
word can easily be guessed because of its low entropy and
therefore weak-password authentication schemes employ
public-key techniques, imposing a heavy computational
load on the system. In contrast, the strong password
authentication schemes consists only simple operations,
i.e., cryptographic hash function and XOR (exclusive-or)
operations. Hence, the strong password authentication
schemes are more suitable for constrained environments
(smart card applications) because of simple design, light

computational overhead and easy implementation.

One common feature of the hash-based authentication
protocols (referred in the next section) is that the user’s
identity is transmitted in plain during the authentication
process, which allows an attacker to monitor the user ac-
tivities. In many cases, it is of utmost importance to pro-
vide anonymity so that the adversary cannot trace user
activity. In this paper, we propose a hash-based Strong
Password Authentication Protocol with user Anonymity
(SPAPA). The strong password, which has high entropy,
can also be referred to as a ”key”. The rest of the paper
is organized as follows. We review the related work in
Section 2. Our method (described in Section 4) is an im-
provement of Lin et al.’s [8] protocol, which is described
in Section 3. We analyze the security of our proposed
protocol in Section 5 followed by conclusions in Section 6.

2 Related Work

Lamport’s protocol is the first hash-based password
authentication protocol that was proposed almost two
decades ago [6]. In this scheme, it is not possible to
impersonate the user either by eavesdropping on the au-
thentication message or by reading the database in the
server. But, the application of the Lamport’s scheme is
questionable because of its high hash overhead and the
necessity to reset the password in addition to being vul-
nerable to the reply attack. Later Haller [3] proposed,
the S/KEY, which is a deployable version of the Lam-
port’s scheme, but it is also vulnerable to the reply at-
tack as shown by Mitchell [9]. Gong [2] proposed an op-
timal authentication protocols that is resistant to pass-
word guessing attacks. CINON [11] and PERM [12] are
the one time password schemes proposed by Shimizu and
Shimizu et al., respectively. While the former is very in-
convenient to the user as he has to memorize two random
numbers, the later succumbs to the man-in-the-middle at-
tack and the impersonation attack. Again, Sandirigama
et al. [10] proposed a simple strong-password authenti-
cation protocol, SAS, which was designed to be superior



International Journal of Network Security, Vol.2, No.3, PP.205–209, May 2006 (http://isrc.nchu.edu.tw/ijns/) 206

Registration Phase:
Step User Server
R1 A, h2(P ⊕ N) →
R2 ← K = h2(P ⊕ N) ⊕ h(x||A)

Figure 1: Regisration phase of LSH-OSPA

to other schemes, in storage utilization, processing time,
and transmission overhead. Later, Lin et al. [7] found
SAS to be vulnerable to the replay attack and the denial-
of-service attack, as such proposed the OSPA (Optimal
Strong Password Authentication) protocol. The OSPA is
a refined scheme that was claimed to be secure against the
stolen-verifier attack, the replay attack and the denial-of-
service attack. Unfortunately, Chen and Ku [1] presented
the stolen-verifier attack on OSPA. Further to this, Tsuji
and Shimizu [13] showed a man-in-the-middle attack on
OSPA. Again the OSPA protocol was refined in [8] so
that it resists the guessing attack, the replay attack, the
impersonation attack, and the stolen-verifier attack. This
was later crypt analyzed by Ku et al. [4], only to show the
methods to mount two well known attacks, the denial-of-
service and the replay attack. Recently, Ku [5] proposed a
hash-based strong password authentication protocol with-
out using smart cards. Unfortunately, the author did not
consider incorporating the user anonymity.

3 Lin-Shen-Hwang’s Protocol

In this section, we describe the Lin-Shen-Hwang’s Proto-
col OSPA [8] (LSH-OSPA) and the attacks presented by
Ku et al. on this protocol. For the rest of our discussion
we shall use the following nomenclature. U , S and E de-
note the user, server and adversary, respectively. A is the
user’s identity and P is a high entropy strong password
or the user’s key. x is the server’s secret key. N and N ′

represent two different one time generated random num-
bers (nonce). h(m) and hkey(m) are a one way hash and
keyed hash functions on message m, respectively. The
keyed hash function can also be referred to as a Message
Authentication Code (MAC). || and ⊕ are the concatena-
tion and bitwise exclusive XOR operations, respectively.

3.1 Lin-Shen-Hwang’s Protocol

LSH-OSPA protocol comprises of two phases: the regis-
tration phase and the authentication phase. The registra-
tion phase is invoked once for registering the user using a
secure channel while the authentication phase is executed
every time the user logs-in the system or the authentica-
tion server via a common (insecure) channel. Figures 1
and 2 depict the registration phase and the authentica-
tion phase of LSH-OSPA, respectively, whose details are
given below:

In Step R1 of the Registration phase (Figure 1), U

generates N ; calculates h2(P⊕N) and sends it along with

his/her identity to the server S. Then, S stores the verifier
h2(P ⊕N) and the user’s identity in its database. In Step
R2, S issues a smart card storing K = h2(P⊕N)⊕h(x||A)
to U . Finally, the user’s smart card stores K and N .
A user can re-register with the server as and when it is
required.

In Step A1 of the authentication phase (Figure 2), U

inserts his/her smart card into a login device and keys
in the password P , and then the smart card computes
c1 = K ⊕ h2(P ⊕N) = h(x||A), c2 = c1 ⊕ h(P ⊕N), c3 =
h(c1) ⊕ h2(P ⊕ N ′), where N ′ is a new nonce generated
by U . Next, U sends A, c2, c3 to S in Step A2. After
receiving U ’s login request, S first computes h(x||A) and
then uses h(x||A) and the received c2 to compute v i.e.,
v = h(x||A) ⊕ c2 = h(P ⊕ N). If h(v) equals the stored
verifier h2(P ⊕N), S approves U ′s login request and com-
putes h2(P ⊕N ′) = h2(x||A)⊕ c3. Finally, S updates the
verifier h2(P ⊕N) with h2(P ⊕N ′) for U ’s next login.

3.2 Weakness of Lin-Shen-Hwang’s Pro-
tocol

Ku et al. [4] showed the weakness of LSH-OSPA proto-
col by presenting a Denial-of-Service (DoS) attack and a
replay attack. We show only the DoS attack. For com-
plete details refer to Ku et al. [4]. During the Step A2 of
LSH-OSPA, an adversary E replaces the transmission of
c3 with the transmission of an equal-sized random num-
ber, denoted by R while the transmission of A and c2 are
left unchanged. Upon receiving the modified message, S

computes v = h(x||A)⊕c2 = h(P ⊕N). Since h(v) equals
the stored verifier h2(P⊕N), S approves A’s login request
and computes h2(x||A)⊕R. Then, S updates the verifier
h2(P⊕N) with h2(x||A)⊕R for U ’s next login. Although
S can successfully verify the authenticity of the user U in
this session, the user’s subsequent login requests will be
denied unless he re-registers with S again. Thus, a DoS
attack as E can easily lock the account of any user.

4 Strong Password Authenti-

cation Protocol with User
Anonymity (SPAPA)

In this section, we propose SPAPA that circumvents the
above presented attacks. Our protocol achieves user
anonymity by making the user transmit a temporary iden-
tity h(A||N ||P ) instead of his/her true identity, A during
authentication phase. Similar to LSH-OSPA, the SPAPA
has two phases, details of which are shown in Figure 3
(the registration phase, which is executed through a se-
cure channel) and Figure 4 (the authentication phase that
is executed in real time in a hostile environment).

In Step R1 of the registration phase (Figure 3), U

generates N and sends his/her identity A and the com-
puted values of h2(P ⊕ N), h(A||N ||P ) to S. Upon re-
ceiving the message from U , in Step R2, S calculates



International Journal of Network Security, Vol.2, No.3, PP.205–209, May 2006 (http://isrc.nchu.edu.tw/ijns/) 207

Authentication phase:
Step User Server
A1 Computes c1, c2, c3

A2 Sends {A, c2, c3} → Computes v and verifies h(v)

Figure 2: Authentication phase of LSH-OSPA

Registration Phase in (SPAPA):
Step User Server
R1 A, h2(P ⊕N), h(A||N ||P ) →
R2 ← K = h2(P ⊕N)⊕ h(x||A)

Figure 3: Registration phase of SPAPA via a secure channel

K = h2(P ⊕ N) ⊕ h(x||A); sends K; and stores A,
the temporary identity (TID) h(A||N ||P ) and the veri-
fier h2(P ⊕ N). Finally, U ’s smart card stores K and
N .

In Step A1 of the authentication phase (Figure 4), U

keys in the password P . Then his/her smart card gener-
ates a new nonce N ′; calculates c1 and the current (TID)
h(A||N ||P ) using the stored values of K and N ; calculates
the next (TID’) = h(A||N ′||P ), c2, c3, c4, c5; c1 through c5

are computed as:

c1 = K ⊕ h2(P ⊕N) = h(x||A),

c2 = h(c1)⊕ h(P ⊕N),

c3 = h(c1)⊕ h(A||N ′||P ),

c4 = h(c1)⊕ h2(P ⊕N ′),

c5 = hKEY(h2(P ⊕N ′)||h(A||N ′||P )||h(P ⊕N))

and stores N ′ instead of N . Here, the h(x||A), a shared
secret between the user and server serves as the key i.e.,
KEY=h(x||A) for computing c5.

Next, U sends {h(A||N ||P ), c2, c3, c4, c5} to S in Step
A2. Note that the transmitted or received information is
enclosed in curly braces. Upon receiving the message from
the user, S calculates h(x||A) based on h(A||N ||P ) from
its database; computes v = h2(x||A) ⊕ c2 = h(P ⊕ N);
checks if h(v) = h2(P ⊕ N) (stored verifier); then it
performs a bit-wise XOR using h2(x||A) on c3 and c4

to retrieve h(A||N ′||P ) and h2(P ⊕ N ′), respectively.
The server now checks the integrity of the received
h(A||N ′||P ), h2(P ⊕N ′), and h(P ⊕N) using the keyed
hash function before granting access to the user and fi-
nally stores h(A||N ′||P ) and h2(P ⊕ N ′) for the user’s
next login.

5 Security Analysis

In this section, we analyze the security of the SPAPA
protocol. Assuming that the hash function, h(m) is a
collision-free, Strong, one-way, Hash-Function (SHF), P

is a strong password and the server’s secret key, x is un-
der strict protection, our proposed SPAPA is resistant

to the following known attacks and solves the two un-
resolved problems mentioned by Chen and Ku [1]. (i)
The SHF does not allow an adversary to impersonate the
user login even though he has stolen the user’s verifier.
(ii) c5 = hKEY(h2(P ⊕N ′)||h(A||N ′||P )||h(P ⊕N)) pro-
tects the integrity of the transmitted message. In practice,
compromising x, results in compromising the entire sys-
tem, which requires re-initialization of the system where
in all the users re-register with the server.

5.1 User Anonymity

An adversary cannot identify the person who is trying
to login, as his identity A, the random number N and
his password P are hashed together to generate the TID,
whose value varies for every login because of a different
N(N 6= N ′) i.e., h(A||N ||P ) 6= h(A||N ′||P ).

5.2 Stolen Smart Card or Online Guess-
ing Attack

Since the password P is a strong password and the server
only allows a definite number of login attempts, an adver-
sary E cannot impersonate the user by stealing his smart
card that stores K and the previous nonce N .

5.3 Offline Guessing Attack

An adversary who intercepts a login request
{h(A||N ||P ), c2, c3, c4, c5} over a public network cannot
derive the password P from the message because of SHF.

5.4 Stolen-Verifier Attack

Suppose an adversary has stolen the verifier h2(P ⊕
N) and intercepted user i’s N th login request
{h(Ai||Ni||P ), c2, c3, c4, c5} over the public network.
He/she cannot identify the user and at the same time
cannot derive P , h(P ⊕ N) and h2(P ⊕ N ′) from c2, c4

and the verifier h2(P ⊕N), because h is a strong one way
hash function.



International Journal of Network Security, Vol.2, No.3, PP.205–209, May 2006 (http://isrc.nchu.edu.tw/ijns/) 208

Authentication phase in (SPAPA):
Step User Server
A1 Computes h(A||N ||P ), h(A||N ′||P ),

c1, c2, c3, c4, c5.

A2 Sends {h(A||N ||P ), c2, c3, c4, c5} → Computes v, verifies h(v), and stores
h(A||N ′||P ) and h2(P ⊕N ′)

Figure 4: Authentication phase of SPAPA

5.5 Replay Attack

A reply attack is not possible with SPAPA due the
following two reasons. First, the TID does not provide
an adversary enough information to verify that two
successive log-in requests belong to the same user.
Second, consider that the adversary was wise enough
to eavesdrop on (n − 2)th and (n − 1)th login requests

{h(A||N (n−3)||P ), c
(n−2)
2 , c

(n−2)
3 , c

(n−2)
4 , c

(n−2)
5 } and {h(A

||N (n−2)||P ), c
(n−1)
2 , c

(n−1)
3 , c

(n−1)
4 , c

(n−1)
5 }, respectively

before A’s nth login. If he tries to launch a reply attack
and hence an impersonation attack similar that was
described in [4] by replacing whole or a part of A’s nth

login request, {h(A||N (n−1)||P ), c
(n)
2 , c

(n)
3 , c

(n)
4 , c

(n−2)
5 }

with the eavesdropped messages then the server denies
the current login request. Two such cases are detailed
below. Note bold letters indicate the replaced values.

Case 1:

{h(A||N (n−1)||P ), c
(n)
2 , c

(n−2)
3

, c
(n−2)
4

, c
(n−2)
5

}, where
c5

(n−2) = hKEY(h2(P ⊕N (n−2))||h(A||N(n− 2)||P )||h
(P ⊕ N (n−3))). Then the server calculates

v = h(P ⊕ N (n−1)) from c
(n)
2 ; compares h(v)

with the stored verifier and calculates c5 =
hKEY(h2(P ⊕N (n−2))||h(A||N (n−2)||P )||h(P ⊕N (n−1))).

Since the transmitted c
(n−2)
5

is not equal to the calcu-
lated c5, the server denies the current login request.

Case 2:

{h(A||N (n−1)||P ), c
(n−2)
2

, c
(n−2)
3

, c
(n−2)
4

, c
(n−2)
5

}, the
server denies the request though the transmitted

c
(n−2)
5

and calculated c5 are equal to hKEY(h2(P ⊕
N (n−2))||h(A||N (n−2)||P )||h(P ⊕N (n−3))), but the trans-
mitted verifier v = h(P⊕N(n−3)) calculated form

c
(n−2)
2

⊕ h2(x||A)) is not equal to the stored verifier
h(v = h(P ⊕ N (n−1))), which was updated during A’s
(n-1)th login request.

5.6 DoS Attack

In a DoS attack, the adversary uses some ways so
that the server denies the subsequent access requests
of the legitimate user (refer to the DOS attack in Sec-
tion 3). Consider that the adversary corrupts c3, c4

which contain h(A||N ′||P ) and h2(P ⊕N ′) by intercept-
ing the transmitted message {h(A||N ||P ), c2, c3, c4, c5}
and replacing it with another set of numbers such as

{h(A||N ||P ), c2, cA3, cA4, c5}. Then the server returns a
failure on the integrity check as shown below. Let D1, D2,
DA1 and DA2 are the results of the following computa-
tions, D1 = h(A||N ′||P ) = c3⊕h(c1), D2 = h2(P ⊕N ′) =
c4 ⊕ h(c1), DA1 = cA3 ⊕ h(c1) and DA1 = cA4 ⊕ h(c1),
respectively and v = h2(x||A) ⊕ c2 = h(P ⊕ N). Then
c5 = hKEY(D2||D1||v)hKEY(DA2||DA1||v) because D1 and
D2 differ from DA1 and DA2, respectively and hence the
server denies the adversary’s attempt to the user account.

6 Conclusion

In this paper, we proposed a hash-based strong password
authentication protocol with user anonymity (SPAPA).
The user’s anonymity is highly required in a hostile en-
vironment as it prevents observing the user’s activity. In
addition, the SPAPA protocol is very simple and contains
only hash functions and XOR operations, which are suit-
able for power and computation constrained smart card
applications.

References

[1] M. Chen, and W. Ku, “Stolen-verifier attack on two
new strong-password authentication protocols,” IE-
ICE Transactions on Communications, vol. E85-B,
no. 11, pp. 2519–2521, 2002.

[2] L. Gong, “Optimal authentication protocols resistant
to password guessing attacks,” in Proceedings of the
8th IEEE Computer Security Foundation Workshop,
pp. 24–29, 1995.

[3] N. M. Hailer, “The S/KEY (TM) one-time password
system,” in Proceedings of the Internet Society Sym-
posium on Network and Distributed System Security,
pp. 151–158, 1994.

[4] W. C. Ku, H. C. Tsai, and S. M. Chen, “Two sim-
ple attacks on Lin-Shen-Hwang’s strong password au-
thentication protocol,” ACM Operating Systems Re-
view, vol. 37, no. 4, pp. 26–31, 2003.

[5] W. C. Ku, “A hash-based strong-password authen-
tication scheme without using smart cards,” ACM
Operating Systems Review, vol. 38, no. 1, pp. 29–34,
2004.

[6] L. Lamport, “Password authentication with insecure
communication,” Communications of the ACM, vol.
24, no. 11, pp. 770–772, 1981.



International Journal of Network Security, Vol.2, No.3, PP.205–209, May 2006 (http://isrc.nchu.edu.tw/ijns/) 209

[7] L. Lin, H. M. Sun, and T. Hwang, “Attacks and so-
lutions on strong-password authentication,” IEICE
Transactions on Communications, vol. E84-b, no. 9,
pp. 2622–2627, 2001.

[8] W. Lin, J. J. Shen, and M. S. Hwang, “Security en-
hancement for optimal strong password authentica-
tion protocol,” ACM Operating Systems Review, vol.
37, issue 2, pp. 7–12, 2003.

[9] C. J. Mitchell and L. Chen, “Comments on the
S/KEY user authentication scheme,” ACM Operat-
ing Systems Review, vol. 30, no. 4, pp. 12–16, 1996.

[10] M. Sandirigama, A. Shimizu, and M. T. Noda,
“Simple and secure password authentication protocol
(SAS),” IEICE Transactions on Communications,
vol. E83-B, no. 6, pp. 1363–1365, 2000.

[11] A. Shimizu, “A dynamic password authentication
method by one-way function,” IEICE Transactions
on Fundamentals, vol. J73-D-I, no. 7, pp. 630–636,
1990.

[12] A. Shimizu, T. Horioka, and H. Inagaki, “A password
authentication methods for contents communication
on the Internet,” IEICE Transactions on Communi-
cations, vol. ESI-B, no. 8, pp. 1666–1673, 1998.

[13] T. Tsuji and A. Shimizu, “An impersonation at-
tack on one-time password authentication protocol
OSPA,” IEICE Transactions on Communications,
vol. E86-B, no. 7, pp. 2182–2185, 2003.

Kumar Mangipudi received his
Diploma in Electrical and Electron-
ics Engineering in 1994 from State
Board of Technical Education, AP,
India and his AMIE (B.S) in Electri-
cal Engineering from the Institution
of Engineers (India) in 2000. While
pursuing his AMIE, he worked on as

an Instrumentation Engineer executing the design, test-
ing, and commissioning of instrumentation control sys-
tems for process industry at various places in India and
Dubai, UAE. In 2002 he obtained his M.S in Electrical
Engineering form South Dakota School of Mines & Tech-
nology. He is currently a PhD candidate in the depart-
ment of Electrical and Computer Engineering at North
Dakota State University. His interests are in Network Se-
curity, Cryptography, VLSI, and Embedded Systems.

Rajendra Katti received his B. Tech
degree from the Indian Institute of
Technology (Bombay), India in 1983.
He received his M.S. in Mechanical En-
gineering from the University of Idaho
in 1985, his M.S. in Electrical Engi-
neering from Washington State Uni-
versity in 1987, where he also earned

his PhD in Electrical Engineering in 1991. Dr. Katti
teaches courses related to Digital Systems and Computer
Architecture. Dr. Katti has received funding from the
National Science Foundation in the area of Performance
Modeling of Computer Architectures and Cryptography.
His interests are in Cryptographic Hardware, Finite Field
arithmetic, Fault Tolerant computing and Computer Ar-
chitecture. He has published over 40 journal and confer-
ence papers on these topics. He was a senior design engi-
neer at the Intel Corporation in 2000 and 2001 where he
worked in the Design for Testability Group. He has also
taught at the Wichita State University in Kansas. He has
collaborated with the IBM Almaden Research Center for
the development of unidirectional error correcting codes.
He is currently an Associate Professor in the Department
of Electrical and Computer Engineering at North Dakota
State University.


