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Abstract

A directed signature scheme allows a designated verifier
to directly verify a signature issued to him, and a third
party to check the signature validity with the help of the
signer or the designated verifier as well. Due to its merits,
the directed signature scheme can be applied on some per-
sonally or commercially sensitive occasions. Up to now,
there are several directed signature schemes having been
proposed. However, to our best knowledge, none of them
has provided the provable security proof. Therefore, in
this paper, we would like to formally define the directed
signature, and present a new directed signature scheme
based on RSA assumption, then use the techniques from
provable security to analyze the security of our proposed
scheme.
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1 Introduction

Digital signature is one of the most important techniques
in modern information security system for its function-
ality of providing data integrity and authentication. A
normal digital signature [4, 8, 9] has the property that
anyone having a copy of the signature can check its va-
lidity using the corresponding public information. This
“self-authentication” property is necessarily required for
some applications of digital signature such as official docu-
ments issued by some authorities. However, it is not suit-
able for some other applications, where a signed message
is personally or commercially sensitive to the signature
receiver, for example as in a bill of tax, a bill of health,
etc. Therefore, to prevent potential misuse of signatures,
it is preferable to place some restrictions on this property.

To achieve this purpose, Lim and Lee [5] first proposed
the concept of directed signature at Auscrypto’ 92. In a

directed signature scheme, when a signer sends a signed
message m to a designated verifier (receiver), then only
the designated verifier can directly verify the signature
on message m while the others know nothing on the ori-
gin and validity of the message m without the help of
the signer or the designated verifier. On the other hand,
if necessary, both the signer and the designated verifier
can prove to any third party that the signature is a valid
signature on the message m issued by the signer to the
designated verifier. This property enables a dispute reso-
lution in case that the signer tries to deny her signature
or the designated verifier tries to deny the directedness of
the signature.

In [5], Lim and Lee presented such a directed signature
scheme based on GQ scheme [4]. Recently, other directed
signature schemes based on Schnorr signature [9] also have
been proposed [6, 7]. However, as we know, none of them
has provided the provable security proof. On the other
hand, there still does exist a directed signature scheme
based on RSA assumption presently, though the ordinary
RSA digital signature is very popular. Therefore, in this
paper, we would like to formally define the directed signa-
ture scheme, and present a new directed signature scheme
based on RSA assumption, then use the techniques from
provable security to analyze its security. Our proposed di-
rected signature scheme is converted by an ordinary RSA
signature scheme, but it is fit for signing personally or
commercially sensitive message and may be useful to the
Internet community and Web-based systems community.

The rest of the paper is organized as follows. Section
2 contains some preliminaries about RSA problem, some
notations and the formal definitions of directed signature
scheme. Section 3 presents our proposed scheme, followed
by the security analysis in Section 4. Finally, Section 5
concludes our paper.
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2 Preliminaries

2.1 RSA Problem

Definition 1 (RSA Problem) Let n = p·q be the prod-
uct of two large primes of similar size and e, d be two
integers such that e · d ≡ 1 mod ϕ(n), where ϕ(n) =
(p− 1) · (q − 1). Given n, e, y ∈ Z∗

n, compute the modular
e-th root x of y such that xe = y mod n. We define by
SuccRSA

Z∗n
(A) the success probability of an algorithm A in

solving the RSA Problem as

SuccRSA

Z∗n
(A) = Pr[A(n, e, y = xe mod n) = x ∈ Z

∗

n]

we say that the RSA assumption holds if SuccRSA

Z∗n
(A) is

negligible for any probabilistic polynomial time adversary
A.

2.2 Notations

We let N = {1, 2, 3, . . .} be the set of positive integers. If
x is a string, then |x| denotes its length, while if S is a
set then |S| denotes its size. If k ∈ N then 1k denotes

the string k ones. If S is a set then s
R
←− S denotes the

operation of picking a random element s of S uniformly.
We indicate that Alice is a signer, Bob is the desig-

nated signature verifier and Carol is any third party in
the following scheme.

2.3 Framework of Directed Signature

A directed signature (DS) scheme consists of four
algorithms: Key Generation, Signature Generation,
Signature Directed Verification, and Signature

Public Verification.

• Key Generation (KG): On input of an unary string
1k where k is a security parameter, it outputs a per-
sonal public and private key pair (pk, sk).

• Signature Generation (SG): On input of a mes-
sage m, a signer Alice’s public and private key pair
(pkA, skA), and a designated verifier Bob’s public key
pkB, it outputs a signature σ.

• Signature Directed Verification (DV): On in-
put of a purported signature σ, a message m, a
signer Alice’s public key pkA, and a designated ver-
ifier Bob’s public and private key pair (pkB , skB), it
outputs “accept” if (m, σ) is valid with respect to
pkA, and “reject” otherwise.

• Signature Public Verification (PV): On input
of a purported signature σ, a message m, a signer
Alice’s public key pkA, a designated verifier Bob’s
public key pkB, and a verifiable Aid provided by the
signer Alice or the designated verifier Bob, it outputs
“accept” if (m, σ) is valid with respect to pkA, and
“reject” otherwise.

These algorithms must satisfy the standard consis-
tency constraint of the directed signature, i.e. if
σ = SG(pkA, skA, pkB, m) and Aid is provided by
Alice or Bob, DV(pkA, pkB, skB, m, σ) = accept, and
PV(pkA, pkB,Aid, m, σ) = accept.

The security of a directed signature scheme consists
of two requirements: the unforgeability property and the
verifiable directedness property. We say a directed signa-
ture scheme is secure if it satisfies two requirements.

Definition 2 (Unforgeability) Let A be an adversary
and Alice be a signer that involved in the following game.

1) (pkA, skA) ← KG(1k); where (pkA, skA) is the public
and private key pair of Alice.

2) A is given the public key pkA of Alice, a des-
ignated verifier Bob’s public and private key pair
(pkB, skB) ← KG(1k), and allowed to make signing
oracle query to Alice adaptively.

3) Finally, A outputs a signature σ(m). A wins the
game if σ(m) is accepted. We define the success prob-
ability of A as

Succ
EUF

DS (A) = Pr





(pkA, skA)← KG(1k);
σ(m)← AS(pkA, pkB , skB)
: DV(pkA, pkB, skB , σ(m)) = accept.



 .

We say a DS signature scheme is unforgeable if the prob-
ability SuccEUF

DS (A) is negligible in the game.

Definition 3 (Verifiable Directedness) We say a
digital signature scheme is a DS scheme, if (i) only the
designated verifier Bob can verify the authenticity of a
purport signature issued to him; (ii) a third party Carol
is able to verify a signature only with the help of the
signer Alice or the designated verifier Bob.

3 Our Proposed Scheme

In this section, based on the framework defined in Sec-
tion 2.3, we will introduce our DS scheme based on RSA
assumption.

Key Generation: For a given security parameter k, Al-
ice first chooses two large prime pa and qa, where
|pa| = |qa| = k, and computes na = pa · qa and
ϕ(na) = (pa − 1) · (qa − 1). Then, she chooses a ran-
dom odd number ea ∈ [1, . . . , ϕ(na)] and computes
da such that ea · da ≡ 1 (mod ϕ(na)). At last, she
keeps skA = da as her private key and publishes the
corresponding public key pkA = (na, ea). Besides,
Alice also publishes a secure one-way hash function
H , where H : {0, 1}∗ → Z∗

na
.

Similarly, Bob also first chooses two large prime pb

and qb such that |pb| = |qb| = k, and computes nb =
pb · qb and φ(nb) = (pb − 1) · (qb − 1). Then, he
chooses two parameters eb, db ∈ [1, . . . , ϕ(nb)] such
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that eb · db ≡ 1 (mod ϕ(nb)). At last, he keeps db as
his private key skB and publishes the corresponding
public key pkB = (nb, eb).

Note that both pkA = (na, ea) and pkB = (nb, eb)
should be certified by a trusted authority.

Signature Generation Suppose that the signer Alice
wants to send a signature of message m to a desig-
nated verifier Bob so that only Bob can directly verify

it. Alice first chooses a random number r
R
←− Z∗

nb
,

and computes R1, R2, where

R1 = (r + m)eb mod nb (1)

R2 = H(m, r)da mod na (2)

Then, Alice sends the signature σ = (R1, R2), to-
gether with the message m, to the designated verifier
Bob.

Signature Designated Verification Upon receiving
σ = (R1, R2) and m, the designated verifier Bob first
uses his private key db to compute R′

1, where

R′

1 = R1
db −m = (r + m)ebdb −m = r mod nb (3)

Then, Bob checks the following equality

H(m, R′

1) = R2
ea mod na (4)

If it does hold, σ = (R1, R2) will be accepted.

Signature Public Verification In time of trouble or if
necessary, either the signer Alice or the designated
verifier Bob provides an Aid R′

1 = r ∈ Z∗
nb

to a
third party Carol, Carol is then able to verify the
signature σ = (R1, R2) as follows,

First, Carol checks the validity of R′
1 by the following

equality

R1 = (R′

1 + m)eb mod nb (5)

If it holds, R′
1 = r ∈ Z∗

nb
will be accepted, otherwise

rejected. Then, with valid R′
1, Carol can verify the

signature σ = (R1, R2) by Equation (4).

Clearly, if Alice, Bob and Carol all follow the issuing
protocol, then from Equations (1)-(5), Bob and Carol al-
ways can verify the authenticity of a signature. Hence,
the correctness follows.

4 Security

In this section, we will show that our proposed DS scheme
satisfies the requirements stated in Section 2.3.

Theorem 1 Let A be an adversary which can produce,
with success probability ε, an existential forgery under
chosen-message attacks [3] within a time τ , after qh and
qs queries to the hash function H and the signing oracle

respectively. Then the RSA problem can be resolved with
another probability ε′ within time τ ′, where

ε′ ≥
1

(qs + 1)exp(1)
· ε

τ ′ ≤ τ + (qh + 2 · qs + 2) · Texp

with exp(1) the Napierian logarithm base and Texp the
time for an exponentiation evaluation.

Proof: We now provide the proof of this theorem by the
formalism introduced by Shoup [10, 11]. We define a se-
quence of games G1, G2, · · · , of modified attack games
starting from the actual game G0. Then, with these in-
cremental games, we reduce a RSA problem instance (i.e.,
given na, ea, y = xea mod na, compute such an x ∈ Z

∗
na

)
to an attack against the directed signature. We show that
the adversary A can help us to resolve the RSA problem.
Game G0: This is an actual game, in the random or-
acle model [1]. The adversary A is allowed to access a
random oracle H and a signing oracle S. Moreover, the
private-public key pair (skB = db, pkB = (nb, eb)) of the
designated verifier Bob is also available to A.

To break the directed signature, the adversary A out-
puts its forgery, one then checks whether it is a valid sig-
nature or not. Note that the adversary A asks qs queries
to the signing oracle S and qh queries to the random oracle
H, at most qs +qh +1 queries are asked to the random or-
acle during this game, since each signing query may make
such a new query, and the last verification step does too.
We denote by Forge0 the event that the forged signature
is valid and use the same notation Forgen in any game
Gn. By definition,

ε = SuccEUF

DS (A) = Pr[Forge0]. (6)

Game G1: In this game, we will simulate the hash oracle
H as usual by maintaining a hash list ΛH, the signing
oracle S and the last verification step.

• For a hash query H(m, r ∈ Z∗
nb

), such that a record
(m, r,⊥,⊥, h) appears in ΛH, h will be responded

to A. Otherwise, a random number h
R
←− Z∗

na
is

chosen, and a record (m, r,⊥,⊥, h) will be added to
ΛH. Note that the third and fourth components of
the records of ΛH will be explained in Game G2.

• For a signing query S(m), one first chooses a random

number r
R
←− Z∗

nb
, then asks for h = H(m, r) to the

H-oracle. The signature σ is then defined as σ =
SG(pkA, skA, pkB, m).

• The game ends with the verification of the output
(m, σ = (R1, R2)) for the adversary A. One first
uses skB = db to compute r = R1

db − m mod nb

and asks for h = H(m, r), then checks whether
DV(pkA, pkB, skB , m, σ) = accept.

From the simulation above, the game is perfectly indis-
tinguishable from the actual attack. Therefore,

Pr[Forge1] = Pr[Forge0]. (7)
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Game G2: To implant the challenge y = xea mod na

into hash answer, a real value α between 0 and 1 is intro-
duced, which will be made precise later [2]. In this game,
we modify the H oracle query, and leave other oracles
unchanged.

• For a hash query H(m, r ∈ Z∗
nb

), such that a record
(m, r, u, t, h) appears in ΛH, h will be responded toA.

Otherwise, one chooses a random number u
R
←− Z∗

na
,

and

– with probability α, sets h = uea mod na and
t = 1;

– with probability 1− α, sets h = y · uea mod na

and t = 0.

Finally, a record (m, r, u, t, h) will be added to ΛH.

Because u is randomly chosen from Z∗
na

, then h is uni-
formly distributed in Z∗

na
, and this game is therefore per-

fectly indistinguishable from the previous one. Hence,

Pr[Forge2] = Pr[Forge1]. (8)

Game G3: In this game, we modify the signing oracle S
query.

• For a signing query S(m), one first looks up
(m, r, u, t, h) in ΛH.

– If t = 1, one sets σ = (R1 = (r + m)eb mod
nb, R2 = u ∈ Z∗

na
) and returns it to A. Ob-

viously, σ = (R1, R2) satisfies the verification
Equations (3)-(4).

– If t = 0, one terminates the game and reports
failure.

Unless one signing query fails (t = 0) with probability
1 − α, this game is indistinguishable from the previous
one. Therefore,

Pr[Forge3] = αqs × Pr[Forge2]. (9)

By now, we have completed the simulation of hash or-
acle H as well as the signing oracle S. Then, we try
to use A’s forgery (m, σ = (R1, R2)) to resolve the RSA
problem. One looks up (m, r, u, t, h) in ΛH. In the found
record,

• If t = 1, with probability α, one stops the game and
reports failure.

• If t = 0, with probability 1−α, one derives the chal-

lenge x by computing
R2

u
mod na, since

R2
ea = h = y · uea = (xu)

ea mod na

⇒ R2 = xu mod na ⇒ x =
R2

u
mod na

As mentioned in Game G0, there are at most qs+qh+1
hash oracle queries, and each query requires one exponen-
tiation evaluation, thus it costs (qs + qh + 1)Texp. In the
signing query, each query also requires one exponentiation
evaluation to compute R1 = (r+m)eb mod nb. Then, the
time cost here is qsTexp. Finally, in the verification step,
another exponentiation evaluation is required for comput-
ing Rea

2 mod na. Plus the time τ of running the adversary
A, the time τ ′ of one to resolve RSA problem is bounded
by τ + (qh + 2 · qs + 2) · Texp in the end.

Therefore, based upon the analysis above, within the
time τ + (qh + 2 · qs + 2) · Texp, the success probability of
one to resolve the RSA problem is

SuccRSA

Z∗n
(τ + (qh + 2 · qs + 2) ·Texp) = (1−α)×Pr[Forge3].

(10)
From Equations (6), (7), (8), (9) and (10), we have

SuccRSA

Z∗n
(τ + (qh + 2 · qs + 2) · Texp)

= (1− α)× Pr[Forge3]
= (1− α)× αqs × Pr[Forge2]
= (1− α)× αqs × Pr[Forge1]
= (1− α)× αqs × Pr[Forge0]

And then,

SuccEUF

DS (A) ≤
1

(1− α)× αqs
×

SuccRSA

Z∗n
(τ + (qh + 2 · qs + 2) · Texp)

Since the maximum value of (1 − α) × αqs is
1

qs + 1
·

(

1

1+ 1

qs

)qs

, when α =
qs

qs + 1
, we will have

SuccEUF

DS (A) ≤ (qs + 1)

(

1 +
1

qs

)qs

×

SuccRSA

Z∗n
(τ + (qh + 2 · qs + 2) · Texp)

And for enough large qs,
(

1 + 1
qs

)qs

≈ exp(1), the

Napierian logarithm base, so we have

SuccEUF

DS (A) ≤ (qs + 1)exp(1)×

SuccRSA

Z∗n
(τ + (qh + 2 · qs + 2) · Texp)

This completes the proof. �

Theorem 2 Our proposed scheme is really a directed sig-
nature scheme.

Proof: To verify a signature (σ = (R1, R2), m), R′
1 =

R1
db −m = r mod nb must be available. Therefore, only

the designated verifier Bob can verify its authenticity due
to his private key db. As far as a third party Carol is
concerned, to compute r from R1 is equivalent to solve
the RSA problem. However, when Carol holds r with
the help of Alice or Bob, he can easily verify the signa-
ture. Hence, our proposed scheme is actually a directed
signature scheme. �
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5 Conclusions

The directed signature, due to its unforgeability and veri-
fiable directedness properties, is very useful in some prac-
tical applications, where a signed message is personally or
commercially sensitive. In this paper, we have formally
defined the directed signature, then proposed a new di-
rected signature scheme based on the RSA assumption
and used the techniques from provable security to ana-
lyze the security of our proposed scheme.
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