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Abstract

In this paper, a setup-driving verifiably committed sig-
nature based on the strong RSA assumption within the
standard complexity model is presented. The idea behind
our construction is that given any valid partial signature
of a message m, if an arbitrator with its auxiliary input
is able to generate variables called the resolution of mes-
sage m such that the distribution of the resulting variables
is indistinguishable from that generated by the primary
signer alone from the viewpoints of all verifiers, then from
which a committed signature can be derived.

Keywords: Fair exchange protocols, strong RSA assump-
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1 Introduction

The research of fair exchange protocols has a rich history
due to its fundamental importance, we refer the reader
to [10] for general reference. A fair-exchange protocol
typically consists of three participants: a client (a pri-
mary signer), a merchant (a co-signer) and a trusted third
party (TTP). TTP can be on-line at the expense of the
TTP becoming a potential bottleneck, or off-line, mean-
ing that it only gets involved when something goes wrong.
Off-line fair-exchange protocols can be classified into two
categories: with or without initial-key-setup procedures.
An off-line fair-exchange protocol is called setup-free if no
initial-key-setup procedure run between a primary signer
and its TTP is involved except for one requirement that
the primary signer can obtain and verify TTP’s certifi-
cate and vice versa. An off-line fair-exchange protocol
is called setup-driving if an initial-key-setup protocol run
between a primary signer and its TTP must be involved
such that at the end of the key setup protocol, the pri-
mary signer and its TTP share prior auxiliary informa-
tion. This shared auxiliary information enables TTP to
convert any valid partial signature into the corresponding
full signature if a confliction occurs between the primary

∗Partial results have been published in PKC’04 [18].

signer and its co-signer (and thus the fairness of protocols
can be achieved inherently).

In PODC 2003, Park, Chong, Siegel and Ray [15] pro-
vided a novel method of constructing fair exchange pro-
tocol by distributing the computation of RSA signature.
This approach avoids the design of verifiable encryption
scheme at the expense of having the arbitrator store a
piece of prime signer’s secret key (please refer to [1, 2, 3, 4]
for more details). Based on Park et.al’s study, Dodis and
Reyzin [10] presented a unified model for non-interactive
fair exchange protocols which results in a new primitive
called verifiably committed signatures later. Verifiably
committed signatures are the following thing: Alice can
produce a partial signature to Bob; upon receiving what
she needs from Bob, she can convert it to a full signa-
ture. If she refuses, the trusted third party Charlie can
do it for her upon receipt of partial signature and proper
verification that Bob fulfilled his obligation to Alice.

Park, Chong, Siegel and Ray’s fair exchange protocol
is actually a verifiably committed signature scheme since
the mechanism of the non-interactive fair exchange is the
same thing as a verifiably committed signature. Unfortu-
nately this verifiably committed signature is totally break-
able in the registration phase [10]. Dodis and Reyzin [10]
then presented a remedy scheme by utilizing Boldyreva’s
non-interactive two-party multi-signature scheme [5].

Security in the random oracle model does not im-
ply security in the real world. The existence of verifi-
ably committed signature is obvious in the standard com-
plexity model provided the underlying signature schemes
are provably secure in the standard complexity model as
two signatures with keys (pk1, sk1), (pk2, sk2), and let
PK = (pk1, pk2), SK = (sk1, sk2) and σ = (σ1, σ2) are
sufficient to build a secure verifiably committed signature.

The challenge problem is to construct a verifiably com-
mitted signature consistent with a stand-alone signature
scheme in the standard complexity model [19, 20]. In this
paper, we are able to provide a setup-driving verifiably
committed signature based on the strong RSA assump-
tion. The idea behind the construction is that given any
valid partial signature of message m, if an arbitrator with
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its auxiliary input is able to generate variables called the
resolution of message m such that the distribution of the
variables is indistinguishable from those generated by the
primary signer alone from the viewpoints of any verifier,
then from which a verifiably committed signature can be
derived.

2 Syntax and Security Definitions

The following definition of verifiably committed signa-
tures is formalized the SAME thing as non-interactive
fair exchanges introduced by Park, Chong, Siegel and Ray
[15]. Therefore, the committed schemes presented in this
report should be viewed as the actual fair exchange pro-
tocols working in the real world.

Syntax: A verifiably committed signature involves a
primary singer Alice, a co-signer (or a verifier) Bob and an
arbitrator (or TTP) Charlie, and is given by the following
efficient procedures:

Key generator KG: This is an interactive protocol be-
tween a primary signer and an arbitrator, by the end
of which either one of the parties aborts, or the pri-
mary signer learns her secret signing key SK, the
arbitrator learns his secret key ASK, and both par-
ties agree on the primary signer’s public key PK and
partial verification key APK;

Fully signing algorithm Sig and its correspondent veri-
fication algorithm V er: These are conventional sign-
ing and verification algorithms. Sig(m, SK) run by
the primary signer, outputs a full signature σ on m,
while V er(m, σ, PK) run by any verifier, outputs 1
(accept) or 0 (reject);

Partially signing algorithm PSig and the correspondent
verification algorithm PV er: These are partial sign-
ing and verification algorithms, which are similar
to ordinary signing and verification algorithms, ex-
cept they can depend on the public arbitration key
APK. PSig(m, SK, PK, APK), run by the pri-
mary signer, outputs a partial signature σ′, while
PV er(m, σ′, PK, APK), run by any verifier, outputs
1 (accept) or 0 (reject);

Resolution algorithm Res: This is a resolution algorithm
run by the arbitrator in case the primary singer re-
fuses to open her signature σ to the verifier, who
in turn possesses a valid partial signature σ′ on m
and a proof that he fulfilled his obligation to the
primary signer. In this case, Res(m, σ′, ASK, PK)
should output a valid full signature of m.

Correctness of verifiably committed signatures states
that:

• V er(m, Sig(m, SK), PK) = 1;

• PV er(m, PSig(m, SK, PK, APK), PK, APK) = 1;

• V er(m, Res(PSig(m, SK, PK, APK), ASK,
APK, PK), PK) = 1.

2.1 Security of Verifiably Committed Sig-
natures

Recall that a verifiably committed signature is formalized
the same thing as a non-interactive fair exchange. The
security of verifiably committed signature scheme should
consist of ensuring three aspects: security against a pri-
mary signer Alice, security against a verifier Bob, and
security against a co-singer/abitrator Charlie. And refer
the reader [10, 15, 19, 20] for further reference.

Security against malicious primary signer Alice: Intu-
itively, a primary signer Alice should not provide a partial
signature which is valid both from the viewpoints of a co-
signer and an arbitrator but which will not be opened
into the primary signer’s full signature by the honest ar-
bitrator1. More formally, Let P be an oracle simulating
the partial signing procedure PSig, and R be an oracle
simulating the resolution procedure Res. Let k be sys-
tem security parameter. We require that any probabilis-
tic polynomial time Adv succeeds with at most negligible
probability in the following experiment.

Experiment 1 (security against malicious primary
signer Alice):

• Key generation: (SK∗, PK, ASK, APK) ←
KG∗(1k), where KG∗ denotes the run of key gener-
ator KG with the dishonest primary signer by the
adversary, and SK∗ denotes the adversary’s states.

• Res oracle query: In this phase, for each adaptively
chosen message mj, the adversary computes its par-
tial signature σj

′ for mj . Finally the adversary for-
ward σj

′ to the oracle R to obtain the full signature
σj of message mj , where 1 ≤ j ≤ p(k), and p(·)
is a polynomial. At the end of R oracle query, the
adversary produces a message and its full signature
pair (m, σ), i.e., (m, σ′) ← AdvR(SK∗, PK, APK),
σ ← Adv(m, σ′, SK∗, APK, PK), where m 6= mj ,
1 ≤ j ≤ p(k).

• Success of Adv := [PV er(m, σ′, APK, PK) = 1 ∧
V er(m, σ, PK) = 0].

Definition 1 A verifiably verifiably committed signature
is secure against malicious primary signer Alice, if any
probabilistic polynomial time adversary Adv associated
with Resolution oracle, succeeds with at most negligible
probability, where the probability takes over coin tosses in
KG(·), PSig(·) and R(·).

Security against malicious co-signer Bob: We consider
the following scenario: suppose a primary signer Alice and
a co-signer Bob are trying to exchange signature in a fair
way. Alice wants to commit to the transaction by provid-
ing her partial signature. Of course, it should be computa-
tionally infeasible for Bob to compute the correspondent

1The security preventing a malicious third party from forging
valid partial signatures is stated as security against an malicious
arbitrator below as a malicious arbitrator is the most powerful ad-
versary in the security model.
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full signature from any partial signature. More formally,
we require that any probabilistic polynomial time adver-
sary Adv succeeds with at most negligible probability in
the following experiment:

Experiment 2 (security against malicious co-signer
Bob):

• Key generation: (SK, PK, ASK, APK) ← KG(1k),
where KG is run by the honest primary signer and
honest arbitrator/TTP Charlie. Adversary Adv are
admitted to make queries to the two orales P and R.

• P and R oracle query: For each adaptively chosen
message mj , the adversary obtains the partial signa-
ture σj

′ of message mj by querying the partial sign-
ing oracle P . Then the adversary forward σj

′ to the
resolution oracle R to obtain the full signature σj of
message mj, where 1 ≤ j ≤ p(k), and p(·) is a poly-
nomial. At the end of oracle both P and R queries,
the adversary produces a message-full signature pair
(m, σ) ← AdvP,R(PK, APK).

• Success of adversary Adv := [V er(m, σ, PK) =
1 ∧ m /∈ Query(Adv, R)], where Query(Adv, R) is
the set of valid queries the adversary Adv asked
to the resolution oracle R, i.e., (m, σ′) such that
PV er(m, σ′) = 1.

Definition 2 A verifiably verifiably committed signature
is secure against any malicious co-signer Bob, if any prob-
abilistic polynomial time adversary Adv associated with
partial signing oracle P and the resolution oracle R, suc-
ceeds with at most negligible probability, where the proba-
bility takes over coin tosses in KG(·), P (·) and R(·).

Security against malicious arbitrator Charlie: Even
though the arbitrator is semi-trusted, the primary signer
does not want this arbitrator to produce a valid signature
which the primary signer did not intend on producing. To
achieve this goal, we require that any probabilistic poly-
nomial time adversary Adv associated with partial signing
oracle P , succeeds with at most negligible probability in
the following experiment:

Experiment 3 (security against malicious arbitrator
Charlie):

• Key generation: (SK, PK, ASK∗, APK) ←
KG∗(1k), where KG∗(1k) is run by the dishonest
cosigner or arbitrator. Adversary Adv are admitted
to make queries to the partial signing oracle P .

• P oracle query: For each adaptively chosen message
mj , the adversary obtains the partial signature σj

′

for mj from the oracle P , where 1 ≤ j ≤ p(k),
and p(·) is a polynomial. At the end of the partial
partial signing oracle query, the adversary produces
a message-full signature pair (m, σ), i.e., (m, σ) ←
AdvP (ASK∗, PK, APK).

• Success of adversary Adv := [V er(m, σ, PK) = 1 ∧
m /∈ Query(Adv, P )], where Query(Adv, P ) is the

set of valid queries Adv asked to the partial oracle
P , i.e., (m, σ′) such that PV er(m, σ′) = 1.

Definition 3 A verifiably verifiably committed signature
is secure against malicious arbitrator Charlie, if any prob-
abilistic polynomial time adversary Adv associated with
partial signing oracle P , succeeds with at most negligible
probability, where the probability takes over coin tosses in
KG(·), P (·).

Definition 4 A verifiably verifiably committed signature
is secure if it is secure against malicious primary signer
Alice, malicious co-signer Bob and malicious arbitrator
Charlie.

3 Verifiably Committed Signa-

tures from Strong RSA As-
sumption - Theoretical Consid-

erations

3.1 The Description of Verifiably Com-
mitted Signature Scheme

We utilize Zhu’s signature as primary building block to
construct verifiably committed signature scheme [16]. We
remark that the use of Zhu’s signature is not essential.
The Cramer-Shoup’s signature including trapdoor hash
signature [9], Camenisch and Lysyanskaya [7] and Fis-
chlin’s signature scheme [11] are all suitable for our pur-
pose. However, among the signatures mentioned above,
Zhu’s signature is the most efficient (please refer to ap-
pendix 1 and appendix 2 for more details).

• Key generation algorithm: Let p, q be two large safe
primes (i.e., p − 1 = 2p′ and q − 1 = 2q′, where
p′, q′ are two primes with length (l′ + 1)). Let n =
pq and QRn be the quadratic residue of Z∗

n. Let
X, g, h ∈ QRn be three generators chosen uniformly
at random. The public key is (n, g, h, X, H), where
H is a collision free hash function with output length
l. The private key is (p, q).

• Signature algorithm: To sign a message m, a (l + 1)-
bit prime e and a string t ∈ {0, 1}l are chosen at ran-
dom. The equation ye = XgthH(m) mod n is solved
for y. The corresponding signature of the message m
is (e, t, y).

• Verification algorithm: Given a putative triple
(e, t, y), the verifier checks that e is an (l + 1)-bit
odd number. Then it checks the validity of X =
yeg−th−H(m) mod n. If the equation is valid, then
the signature is valid. Otherwise, it is rejected.

Strong RSA assumption: Strong RSA assumption was
introduced by Baric and Pfitzmann [6] and Fujisaki and
Okamoto [12]: The strong RSA assumption is that it is
hard, on input an RSA modulus n and an element z ∈ Z∗

n,
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to compute values e > 1 and y such that ye = z mod n.
More formally, we assume that for all polynomial time
circuit families Ak, there exists a negligible function ν(k)
such that:

Pr[n← G(1k), z ← Z∗
n, (e, y)← Ak(n, z) : e > 1 ∧ ye

= z mod n] = ν(k)

The following lemma, due to Guillou-Quisquater [14],
is useful to prove the security of the verifiably committed
signature scheme.

Lemma 1 (Guillou-Quisquater Lemma) Suppose
we = zb and d = gcd(e, b). Then there exists an efficient
algorithm computing the (e/d)-th root of z.

Zhu’s signature scheme is immune to adaptive chosen-
message attack (in the sense of Goldwasser, Micali and
Rivest [13]) under joint assumptions of the strong RSA
problem as well as the existence of collision free hash func-
tion.

Based on Zhu’s signature scheme, we are ready to de-
scribe the new verifiably committed signature below.

Key generation algorithm: We choose two safe primes
p = 2p′ + 1, q = 2q′ + 1 and compute N = pq. Denote
the quadratic residue of Z∗

N by QRN . Let x, h1, h2 be ele-
ments chosen uniformly at random from the cyclic group
QRN . Let PriG be a prime generator. On input 1k, it
generates 2s+1 primes, each with bit length (l +1). The
prime pair {ei,1, ei,2} is indexed by some i ∈ I (1 ≤ i ≤ s).
The public key (X, g1, g2) is computed from x, h1, h2 and
(e1,2, e2,2, · · · es,2) as follows:

X ← xe1,2e2,2···es−1,2es,2 mod N

g1 ← h1
e1,2e2,2···es−1,2es,2 mod N

g2 ← h2
e1,2e2,2···es−1,2es,2 mod N

Denote a subset of index set in which each index i has
been used to sign some message by Iused. We then build
a public accessible prime list table PriT as follows. On
input i ∈ Iused, PriT outputs {ei,1, ei,2}.

The primary signer’s public key PK is (N , X , g1, g2,
H , PriT , Iused).

The private key SK is {x, h1, h2, p, q, (ei,1, ei,2),
1 ≤ i ≤ s)}, where H is a publicly known collision-free
hash function.

The APK of the arbitrator is (N , X , g1, g2, H , PriT ,
Iused).

The secret key of the co-signer ASK is {x, h1, h2, (e1,2,
e2,2, · · ·, es,2)}.

Partial signing algorithm PSig and correspondent ver-
ification algorithm PV er: To sing a message m, we choose
i ∈ I \ Iused and a random string ti,1 ∈ {0, 1}l. The equa-
tion:

y
ei,1

i,1 = Xg
ti,1

1 g
H(m)
2 mod N.

is solved for yi,1

We then update the index Iused by accumulating

Iused ← Iused ∪ {i}

The partial signature of message m is σ′ = (i, ei,1, ti,1,
yi,1).

On upon receiving a putative partial signature σ′ =
(i, ei,1, ti,1, yi,1), the verification algorithm checks whether
i ∈ Iused or not, if i /∈ Iused, then it outputs 0, otherwise,
it runs PriT , on input i to obtain a prime pair (ei,1, ei,2),
and it outputs 1, i.e., PV er(m, σ′) = 1 if σ′(m) satisfies
the equation:

X = y
ei,1

i,1 g
−ti,1

1 g
−H(m)
2 mod N

Full signing algorithm Sig and correspondent verifica-
tion algorithm V er: To fully sign the message m, for the
given i, we obtain the prime pair {ei,1, ei,2} by running
PriT on input i ∈ Iused. Then we choose a random string
ti,2 ∈ {0, 1}l uniformly at random and compute yi,2 from
the equation:

y
ei,2

i,2 = Xg
ti,2

1 g
H(ti,1||m)
2 mod N

The corresponding full signature σ of the message m is
defined below:

σ := (i, ei,1, ei,2, ti,1, ti,2, yi,1, yi,2)

To verify the correctness of full signature scheme σ, the
verification algorithm checks whether i ∈ Iused or not, if
i /∈ Iused, then it outputs 0, otherwise, it runs PriT , on
input i to obtain a prime pair (ei,1, ei,2). Finally it tests
whether the following equations are valid:

X = y
ei,1

i,1 g
−ti,1

1 g
−H(m)
2 mod N and

X = y
ei,2

i,2 g
−ti,2

1 g
−H(ti,1||m)
2 mod N

If both equations are valid, then the verification func-
tion outputs V er(m, σ) = 1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature
σ′ = (i, ei,1, ti,1, yi,1) of message m, the arbitrator runs
the prime list table PriT on input i ∈ Iused to obtain
the pair of primes (ei,1, ei,2), and checks whether ei,1 is
a component of partial signature σ′ (such a prime ei,1 is
called a valid prime). If it is valid then the arbitrator
checks the valid of the following equation:

y
ei,1

i,1 = Xg
ti,1

1 g
H(m)
2 mod N

If it is valid, the arbitrator then computes:

Xi ← xe1,2···ei−1,2ei+1,2···es,2

gi,1 ← h1
e1,2···ei−1,2ei+1,2···es,2 and

gi,2 ← h2
e1,2···ei−1,2ei+1,2···es,2 .

Finally, the co-singer chooses a random string t′i,2 ∈

{0, 1}l and computes yi,2 from the following equation:

yi,2 = Xigi,1
t′i,2gi,2

H(ti,1||m) mod N.

The output of the resolution algorithm is (i, ei,1, ei,2,
ti,1, t′i,2, yi,1, yi,2). Obviously,

X = y
ei,2

i,2 g
−t′i,2

1 g
−H(ti,1||m)
2 mod N.
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We remark that the choice of random string t′i,2 ∈

{0, 1}l in the resolution phase does not dependent on the
random string ti,2 in the full signature algorithm. If we
insist on the same string used in the resolution algorithm
Res, then the random pair (ti,1, ti,2) can be listed as pub-
lic known random string set which is also indexed by the
set I.

We also remark that the number of signature is
bounded by s, where s(·) is a polynomial of security pa-
rameter k. This is an interesting property as a primary
signer can specify the number of signatures for each cer-
tificate during its validity duration.

3.2 The Proof of Security

In this subsection, we are able to prove that the main
result stated below:

Theorem 1 The verifiably committed signature is secure
under the strong RSA assumption and the assumption
that H is collision resistant in the standard complexity
model.

Proof: Security against the primary signer Alice is trivial
since the arbitrator holds ASK in the protocol. Q.E.D.

Security against the verifier Bob: Assume that proto-
col is not secure against the verifier attack. That is, there
is an adversary playing the role of verifier in the actu-
ally protocol, who is able to forge a full signature σ of a
message m (m 6= mi, 1 ≤ i ≤ f) with non-negligible prob-
ability after it has queried partial signing oracle and reso-
lution oracle of messages m1, · · · , mf , each is chosen adap-
tively by the adversary. Let (i, ei,1, ei,2, ti,1, t

′
i,2, yi,1, yi,2)

be the full signature provided by the partial signing oracle
and the resolution oracle corresponding to a set of mes-
sages mi (1 ≤ i ≤ f). We consider three types of forgeries
as that in [9]:

1) for some 1 ≤ j ≤ f , ek = ej,2 and t′k,2 = t′j,2, where
k /∈ {1, · · · , f};

2) for some 1 ≤ j ≤ f , ek = ej,2 and t′k,2 6= t′j,2, where
k /∈ {1, · · · , f};

3) for all 1 ≤ j ≤ f , ek 6= ej,2, where k /∈ {1, · · · , f}.

We should show that any forgery scheme of the three
types will lead to a contradiction to the assumptions of
the theorem. This renders any forgery impossible.

By the security definition, the adversary can query the
types of oracles: partial signing oracle and resolution or-
acle. Therefore we should describe the two oracles in the
following simulation according to the forgery types de-
fined above.

Type 1 forgery: On input (z, e), where z ∈ Z∗
N , e is

a (l + 1)-bit prime, we choose (2f − 1) primes (ei,1, ei,2)
for 1 ≤ i 6= j ≤ f , each with length (l + 1)-bit. The j-th
prime pair is defined by (ej,1, e). We compute PK and

APK by choosing z1, z2 ∈ Z∗
N uniformly at random and

computing

g1 ← z1
2e1,1e1,2···ef,1ef,2z

B

B = 2e1,1e1,2 · · · ej−1,1ej−1,2ej,1ej+1,1 · · · ef,1ef,2

g2 ← z
2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

X ← z2
2βe1,1e1,2···ef,1ef,2z

C

C = 2e1,1e1,2 · · · ej−1,1ej−1,2ej,1ej+1,1ej+1,2 · · ·

ef,1ef,2(−α)

where α ∈ {0, 1}l+1 and β ∈ ZN are chosen uniformly at
random.

Since the simulator knows each ei,1 (1 ≤ i ≤ f), there-
fore it is easy to compute the partial signing oracle of
message mi (1 ≤ i ≤ f). And it is also easy to compute
the resolution of i-th message i 6= j queried to resolution
oracle query Res. What we need to show is how to sim-
ulate the j-th resolution oracle query. This can be done
as follows:

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj)

= z2
2β

∏
1,···f

(ei,1ei,2)
z1

2t′j,2

∏
1,···f

(ei,1ei,2)
× zB

B = 2e1,1e1,2 · · · ej−1,1ej−1,2ej,1ej+1,1ej+1,2 · · ·

ef,1ef,2(−α + t′j,2 + H(tj,1||mj))

Now we set −α+ t′j,2 +H(tj,1||mj) = 0, i.e., t′j,2 = α−
H(tj,1||mj). To show that the simulation is not trivial, we
should show that t′j,2 is uniformly distributed over {0, 1}l

with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen
uniformly at random, the probability that t′j,2 belongs to
the correct interval and it does so with the correct uniform
distribution can be computed as follows:

(2l+1 − 1−H(tj,1||mj)− 2l + 1) + H(tj,1||mj)

(2l+1 − 1−H(tj,1||mj)) − (−H(tj,1||mj)) + 1
= 1/2

Suppose the adversary is able to forge a faking signa-
ture (k, ek,1, ek,2, t

′
k,1, t

′
k,2, yk,1, yk,2) of message mk, where

ek,2 = ej,2 and t′k,2 = t′j,2, k /∈ {1, · · · , f}. We can not as-
sume that ek,2 = ej,2, t′k,2 = t′j,2 and yk,2 = yj,2 as H is a
collision free hash function. Now we have two equations:

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj) and

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj)

It follows that

(
yj,2

yk,2
)ej,2 = g2

H(tj,1||mj)−H(tk,1||mk) = zB

B = 2e1,1e1,2 · · · ej−1,1ej−1,2ej,1ej+1,1ej+1,2 · · ·

ef,1ef,2(H(tj,1||mj)−H(tk,1||mk))

where ej,2 = e. Consequently, one is able to extract the e-
th root of z with non-negligible probability. It contradicts
the standard RSA assumption.

Type 2 forgery: On input z and e, where z ∈ Z∗
N , e is

a (l + 1)-bit prime, we choose (2f − 1) primes (ei,1, ei,2)
for 1 ≤ i 6= j ≤ f . The j-th prime pair is defined by
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(ej,1, e). We compute PK and APK by choosing z1, z2 ∈
Z∗

N uniformly at random and computing

g1 ← z
2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2 ···ef,1ef,2

g2 ← z1
2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2···ef,1ef,2

X ← g
−α
1 z2

2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2 ···ef,1ef,2

where z1, z2 ∈ ZN and α ∈ {0, 1}l are chosen uniformly at
random. Since QRN is a cyclic group, we can assume that
g1, g2 are generators of QRN with overwhelming proba-
bility.

where z1, z2 ∈ ZN and α ∈ {0, 1}l are chosen uniformly
at random. Since QRN is a cyclic group, we can as-
sume that g1, g2 are generators of QRN with overwhelm-
ing probability.

Since ei,1 for 1 ≤ i ≤ f are known therefore, the par-
tial singing oracle is perfect from the point views of the
adversary. To simulate the i-th message mi (i 6= j) to the
resolution oracle, we select a random string t′i,2 ∈ {0, 1}l

and computes:

y
ei,2

i,2 = Xg1
t′
i,2g2

H(ti,1||mi)

= ((z1
H(ti,1||mi)z2)

B
z
2ei,1(t′

i,2−α)
∏

s 6=i,j
es,1es,2

)ei,2

B = 2e1,1e1,2 · · · ei−1,1ei−1,2ei,1ei+1,1ei+1,2 · · · ef,1ef,2

The output of resolution oracle is (i, ei,2, yi,2, t
′
i,2).

To sign the j-th message mj, the signing oracle sets
t′j,2 ← α and computes:

yj,2
ej,2 = ((z1

H(tj,1||mi)z2)
2ej,1

∏
s 6=j

es,1es,2)ej,2

where ej,2 = e.
Let Res(mk) = (k, ek,2, yk,2, t

′
k,2) be a legal signature

generated by the adversary of message mk 6= mi for all
1 ≤ i ≤ f . By the assumption, we know that

yk,2
ek,2 = Xg1

t′k,2g2
H(t′k,1||mk) and

yj,2
ej,2 = Xg1

t′j,2g2
H(t′j,1||mj).

Consequently, we have the following equation:

(
yk,2

yj,2
)ej,2 = g1

t′k,2−t′j,2g2
H(t′k,1||mk)−H(t′j,1||mj)

Equivalently,

z
2(α−t′k,2)ej,1

∏
i6=j

ei,1ei,2

= (z1
2ej,1(H(t′j,1||mj)−H(t′k,1||mk))

∏
i6=j

ei,1ei,2)ej,2

Since t′j,2 = α and tk,2 6= t′j,2, it follows that α− t′k,2 6=
0. We then apply Guillou-Quisquater lemma to extract
the e-th root of z. This contradicts the standard RSA
assumption.

Type 3 forgery: On input z, where z ∈ Z∗
N , we choose

2f primes (ei,1, ei,2) for 1 ≤ i ≤ f and compute the PK
and ASK as follows:

g1 ← z2e1,1e1,2···ef,1ef,2 and

g2 ← ga
1 , X ← gb

1

where a, b ∈ {1, n2}.

Since the simulator knows all prime pairs, it follows it
can simulate both partial signing and resolution queries.
Let Res(mk) = (k, ek,2, yk,2, t

′
k,2) be a legal signature

generated by the adversary of message mk 6= mi for all
1 ≤ i ≤ f . It yields the equation

yk,2
ek,2 = Xg

t′k,2

1 g2
H(tk,1||mk) = zE

where E = 2(b + t′k,2 + aH(tk,1||mk))e1,1e1,2 · · · ef,1ef,2

Since we are able to compute the e
E -th root of z pro-

vided e is a not a divisor of E according to the lemma
of Guillou and Qusiquater [14], it is sufficient to show
that e is not a divisor of E with non-negligible probabil-
ity. Due to the the fact that gcd(e, e1,1e1,2 · · · ef,1ef,2) =
1, it is sufficient to show that e is not a divisor of
b+t+aH(tk,1||mk)) with non-negligible probability. Since
b ∈ (1, n2), it follows that one can write b = b′p′q′ + b′′.
Therefore, the probability that b + t + aH(m) ≡ 0 mod e
is about 1/e.

Security against the arbitrator Charlie: Even though
the arbitrator is semi-trusted, the primary signer does
not want this arbitrator to produce valid signature which
the primary signer did not intend on producing. In other
words, if the arbitrator is able to forge a partial signa-
ture of a message m, then we make use of Charlie as a
subroutine to break the strong RSA assumption. Since
Charlie holds the correspondent ASK, therefore we can
assume that Charlie succeeds in forging a valid partial sig-
nature with non-negligible probability. The simulation is
the same as the proof of Zhu’s signature, therefore omit-
ted.

4 Verifiably Committed Signature
from Independent Signatures -

Real World Applications

Although the existence of verifiably committed signa-
ture is obvious since two arbitrary signature schemes
with keys (pk1, sk1), (pk2, sk2), and let PK = (pk1, pk2),
SK = (sk1, sk2) and σ = (σ1, σ2) is sufficient to build
a secure verifiably committed signature even in the stan-
dard complexity model. If one is able to construct efficient
yet secure verifiably committed signatures from two arbi-
trary schemes with considerable efficiency compared with
the theoretically interested schemes, then the effect is also
non-trivial from the point views of practical applications.
Motivated by the real world considerations, we try to pro-
vide two types of verifiably committed signatures from a
pair of independent ordinary signatures. We emphasize
that the schemes presented in this section is interesting
only from the point views of practical applications.
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4.1 Verifiably Committed Signature from
a Pair of Independent Zhu’s Signa-
tures

The first verifiably committed signature is from a pair of
independent Zhu’s signatures described as follows:

Key generation algorithm: (N1, N2, X1, X2, g1, h1, g2,
h2, H) ← Setup(1k), where Ni = piqi and pi =
2p′i + 1, qi = 2q′i + 1, i = 1, 2. Let Gi be the
quadratic residue of Z∗

Ni
. Let g1, h1 be two gener-

ators of group G1 and g2, h2 be two generators of
G2. Let X1 ∈ QRN1 and X2 ∈ QRN2 are two
random chosen elements. Let H be a collision free
hash function with output length l, eg, l= 160. The
public key PK = (N1, N2, X1, X2, g1, h1, g2, h2, H),
APK = (N2, X2, g2, h2, H). The secret key SK =
(p1, q1, p2, q2) and ASK = (p2, q2).

Partial signing algorithm PSig and correspondent verifi-
cation algorithm PV er: To partially sign a message
m, an (l + 1)-bit prime e and an l-bit string t are
chosen uniformly at random. The equation

ye
1 = X1g

t
1h

H(m)
1 mod N1

is solved for y1. The partial signature of message m
is σ′ = (e, y1, t). The partial verification algorithm
outputs 1, i.e., PV er(m, σ′) = 1 if σ′(m) satisfies the
equation:

ye
1 = X1g

t
1h

H(m)
1 mod N1.

Full signing algorithm Sig and correspondent verifica-
tion algorithm V er: To fully sign a message m, the
primary signer solves the equation

ye
2 = X2g

t
2h

H(m)
2 mod N2

is solved for y2. The corresponding full signature
of the message m is σ = (e, t, y1, y2). To verify the
correctness of signature scheme, it tests whether the
equations

ye
1 = X1g

t
1h

H(m)
1 mod N1 and

ye
2 = X2g

t
2h

H(m)
2 mod N2.

If both equations are valid, then the verification func-
tion outputs V er(m, σ) = 1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature
σ′ = (e, y1, t) of message m, the arbitrator computes

y2 from the equation ye
2 = X2g

t
2h

H(m)
2 mod N2. The

output of Res(m, σ′) =σ(m) := (e, t, y1, y2).

We remark that the modulus N1 and N2 are chosen in-
dependently except for the same bit-length (|N1| = |N2| =
2k, k is the system security parameter). The safe primes
(p1, q1) are chosen by the primary signer while (p2, q2)

are jointly chosen by the primary signer and the arbi-
trator, e.g., the arbitrator chooses (p2, q2) uniformly at
random for a prime number set, signs-then-encrypts the
prime numbers, and sends the cipher-text to the primary
signer.

We remark that at the registration stage in a fair ex-
change system, a primary signer Alice has to prove to
the certificate authority (CA) that N1 and N2 are prod-
ucts of safe primes without revealing (p1, q1) and (p2, q2).
This can be done using zero-knowledge protocol of Ca-
menisch and Michels [8]. After verifying the construction
of N1, N2, the CA issues a certificate CertN1,N2 .

We also remark that if e is an (l + 1)-bit prime cho-
sen uniformly at random for partially sign a message m,
which is co-prime with φ(N1) then we can assume that
gcd(e, φ(N2)=1 also duo to the fact that Ni = piqi and
pi = 2p′i + 1, qi = 2q′i + 1, pi, qi, and p′i and q′i are primes
with the same bit length for i = 1, 2.

There are two independent signatures used in our veri-
fiably committed signature scheme nevertheless the proto-
col is efficient and is nontrivial as we can reuse the random
string t and prime number e.

Similarly, it is not hard for one to prove the security
against primary signer Alice, verifier Bob and arbitrator
Charlie respectively under the strong RSA assumption
and the assumption that H is collision resistant.

4.2 Verifiably Committed Signature from
Cramer-Shoup Scheme Defined over
QRN

In this subsection, we define a Cramer-Shoup like (CS-
like) trapdoor hash scheme in a quadratic residue as the
trapdoor information allows the arbitrator to control the
full signature as follows:

• Key generation algorithm: (N1, N2, X1, X2, h, g1,
g2, H) ← Setup(1k), where Ni = piqi and pi =
2p′i + 1, qi = 2q′i + 1, i = 1, 2. Let p1, p2, q1, q2

be four large primes such that pi − 1 = 2p′i and
qi−1 = 2q′i, where p′i, q

′
i are two l′-bit strings, i = 1, 2.

Let Ni = piqi and QRNi
be the quadratic residue

of Z∗
Ni

. Let X1, h be two generators of QRN1 . Let
X2, g1, g2 be three generators of QRN2 . The public
key is (N1, N2, X1, X2, h, g1, g2, H). The private key
is (p1, q1, p2, q2).

• Signature algorithm: To sign a message m, an (l+1)-
bit prime e and a string t ∈ {0, 1}l is chosen uni-
formly at random. The equation:

ye = X1h
H(X2gt

1g
H(m)
2 mod N2) mod N1

is solved for y. The corresponding signature of the
message m is (e, t, y).

• Verification algorithm: Given a putative triple
(e, t, y), the verifier first checks that e is an odd (l+1)-
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bit number. Second it checks the validity of the equa-
tion:

X1 = yeh−H(X2gt
1g

H(m)
2 mod N2) mod N1.

If the equation is valid, then the verifier accepts, oth-
erwise, it rejects.

The proof of security is very similar to that of Cramer-
Shoup’s signature scheme [9], therefore omitted.

Based on the above CS-like signature scheme, we are
now able to describe alternative verifiably committed sig-
nature scheme below:

Key generation algorithm: (N1, N2, X1, X2, h, g1, g2,
H) ← Setup(1k), where Ni = piqi and pi = 2p′i +
1, qi = 2q′i + 1, i = 1, 2. Let p1, p2, q1, q2 be four
large primes such that pi − 1 = 2p′i and qi − 1 =
2q′i, where p′i, q

′
i are two l′-bit strings, i = 1, 2. Let

Ni = piqi and QRNi
be the quadratic residue of Z∗

Ni
.

Let X1, h be two generators of QRN1 . Let X2, g1, g2

be three generators of QRN2 . The primary signer’s
public key PK is (N1, N2, X1, X2, h, g1, g2, H), the
private key SK is (p1, q1, p2, q2). The APK of the
arbitrator is (N2, X2, g1, g2, H), and the secret key
ASK is (p2, q2).

Partial signing algorithm PSig and correspondent veri-
fication algorithm PV er: To partially sign a message
m, a (l+1)-bit prime e and a l-bit string t are chosen
at random. The equation:

ye
1 = X1h

H(X2gt
1g

H(m)
2 mod N2) mod N1

is solved for y1. The partial signature of message m
is σ′ = (e, t, y1). The partial verification algorithm
outputs 1, i.e., PV er(m, σ′) = 1 if σ′(m) satisfies the
equation:

ye
1 = X1h

H(X2gt
1g

H(m)
2 mod N2) mod N1

Full signing algorithm Sig and correspondent verifica-
tion algorithm V er: The equation

ye
2 = X2g

t
1g

H(m)
2 mod N2

is solved for y2. The corresponding full signature
of the message m is σ = (e, t, y1, y2). To verify the
correctness of full signature scheme, it tests whether
the equations

ye
1 = X1h

H(X2gt
1g

H(m)
2 mod N2) mod N1 and

ye
2 = X2g

t
1g

H(m)
2 mod N2.

If both equations are valid, then the verification func-
tion outputs V er(m, σ) = 1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature
σ′ = (e, t, y1) of message m, the arbitrator computes
y2 from the equation

ye
2 = X2g

t
1g

H(m)
2 mod N2.

The output of Res(m, σ′)=σ(m) := (e, t, y1, y2).

The remarks on the the first verifiably committed sig-
nature scheme is also suitable for this scheme. And the
proof of security of the second scheme is very similar with
that of the first one, therefore omitted.

5 Conclusion

In this report, we provide a setup-driving verifiably com-
mitted signature from the strong RSA assumption based
on Zhu’s signature scheme. As the verifiably committed
signature formalized the same thing as the fair exchange
protocol, our scheme is actually a fair exchange protocol
with provably secure.
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Appendix 1: Cramer-Shoup’s Sig-

nature Scheme and Its Variations

Cramer-Shoup’s trapdoor hash scheme: Cramer and
Shoup presented an elegant signature scheme called trap-
door hash function defined below (see [9] for more details):

• Key generation algorithm: Let p, q be two safe primes
(p − 1 = 2p′ and q − 1 = 2q′, where p′, q′ are two
primes) with length l′. Let n = pq and QRn be the
quadratic residue of Z∗

n. Let x, h be two generators
of QRn. Also chosen are a group G of order s, where
s is an (l + 1)-bit prime, and two random generators
g1, g2 of G. The public key is (n, h, x, g1, g2, H) along
with an appropriate description of G including s. The
private key is (p, q).

• Signature algorithm: To sign a message m, an (l+1)-
bit prime e and a string t ∈ Zs is chosen uniformly
at random. The are chosen at random. The equa-

tion ye = xhH(gt
1g

H(m)
2 ) mod n is solved for y. The

corresponding signature of the message m is (e, t, y).

• Verification algorithm: Given a putative triple
(e, t, y), the verifier first checks that e is an odd (l+1)-
bit number. Second it checks the validation that
x = yeh−H(gt

1g
H(m)
2 ) mod n. If the equation is valid,

then the verifier accepts, otherwise, it rejects.

Zhu’s signature scheme: In Cramer-Shoup’s scheme,
another extra group G is defined. From the point views
of computational complexity it is non-trivial work if one
can reduce the computational and communication com-
plexity while its provability and efficiency can be main-
tained. Based on this observation, Zhu provides a varia-
tion scheme below [16]:

• Key generation algorithm: Let p, q be two large safe
primes such that p − 1 = 2p′ and q − 1 = 2q′,
where p′, q′ are two primes with length (l′ + 1). Let
n = pq and QRn be the quadratic residue of Z∗

n. Let
X, g, h be three generators of QRn. The public key is
(n, g, h, X, H), where H is a collision free hash func-
tion with output length l. The private key is (p, q).

• Signature algorithm: To sign a message m, a (l + 1)-
bit prime e and a string t ∈ {0, 1}l are chosen at ran-
dom. The equation ye = XgthH(m) mod n is solved
for y. The corresponding signature of the message m
is (e, t, y).

• Verification algorithm: Given a putative triple
(e, t, y), the verifier first checks that e is an odd (l+1)-
bit number. Second it checks the validation that
X = yeg−th−H(m) mod n. If the equation is valid,
then the verifier accepts, otherwise, it rejects.

Camenisch-Lysyanskaya’s signature scheme: In
SCN’02, Camenisch and Lysyanskaya [7] presented
alternative signature scheme. The Camenisch and
Lysyanskaya signature is described as follows (see [7] for
more details).

• Key generation algorithm: On input 1k, choose a
special RSA modulus n = pq, p = 2p′ +1, q = 2q′ +1
of length ln = 2k. Choose, uniformly at random,
a, b, c ∈ QRn. Output PK = (n, a, b, c), and SK =
p.

• Message space. Let lm be a parameter. The message
space consist of all binary string of length lm. Equiv-
alently, it can be thought of as consisting of integers
in the range [0, 2lm).

• Signing algorithm: On input m, choose a random
prime number e > 2lm+1 of length le = lm + 2, and
a random number s of length ls = ln + lm + l, where
l is a security parameter. Compute the value v such
that

ve = cambs mod n

• Verification algorithm: To verify that the tuple
(e, s, v) is a signature on message m in the message
space, check that ve = cambs mod n and check that
2le > e > 2l2−1.
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Fischlin’s signature scheme: Later a similar modifica-
tion is presented in PKC’03 by Marc Fischlin. Fischlin’s
signature scheme is defined as follows [11]:

• Key generation: Generating n = pq, where p = 2p′ +
1 and q = 2q′ + 1 for primes p, q, p′, q′. Also pick
three quadratic residue h1, h2, x ∈ QRn. The public
key verification key is (n, h1, h2, x) and the private
key is (p, q).

• Signing: To sign a message m calculate the l-bit hash
value H(m) with a collision-intractable hash func-
tion H(·). Pick a random (l + 1)-bit prime e, and a
random l-bit string α and compute a representation
(−α,−(α⊕H(m)), y) of x with respect to h1, h2, e, n,
i.e.,

ye = xh1
αh2

α⊕H(m) mod n.

Computing this e-th root y from xh1
αh2

α⊕H(m) is
easy given the factorization of n. The signature is
(e, α, y).

• Verification algorithm: On upon receiving a triple
(e, α, y), one checks that e is an odd (l + 1)-bit inte-
ger and α is l bits long string, finally it checks the
validity of the equation ye = xh1

αh2
α⊕H(m) mod n.

It is valid, then it output ”ACCEPT”, otherwise, it
outputs ”REJECT”

The relationship between Zhu’s signature and
Camenisch-Lysyanskaya’s signature scheme is obvious.
Here we remark the relationship between Zhu’s signature
schemes and Fischlins’s scheme therefore.

• It is clear that the algebraic structures of Zhu’s and
Fischlin’s signature are same;

• If there is no collision hash function involved in the
above two schemes, then it is not hard to show that
the above two signature schemes are equivalent in the
same security level. More precisely, if Zhu’s scheme
can be broken by an adversary A with non-negligible
probability then there exists an adversary BA so
that Fischlin’s signature scheme can be broken with
the same probability. The statement is also true by
means of vis-a-vis argument.

• In case of a collision free hash function involved in
both schemes, suppose Zhu’s signature scheme can be
broken with non-negligible probability, i.e., there is
an adversary A is able to forge a faking message m in
Zhu’s signature scheme, denoted by σ(m) = (e, y, t)
with non-negligible probability. Then there exists an
adversary BA in Fischlin’s signature scheme so that
it is able to produce a valid signature σ(m′) = (e, y, t)
for any message in the set S := {m′|H(m)⊕H(m′) =
t}, where t is a component of faking signature σ(m)
correspondent to Zhu’s signature scheme. The state-
ment is also true by means of vis-a-vis argument.

Appendix 2: Security Proof of

Zhu’s Signature Scheme (A Refined
Version of the Previous Work [16,

17])

Main result: Zhu’s signature scheme is immune to adap-
tive chosen-message attack under the strong RSA assump-
tion and the assumption that H is a collision resistant.

Proof: Assume that the signature scheme is NOT
secure against adaptive chosen message attack. That
is, there is an adversary, who is able to forge the sig-
nature (e, t, y) of a message m(m 6= mi, 1 ≤ i ≤
f) with non-negligible probability after it has queried
correspondent signature of each message m1, · · · , mf ,
which is chosen adaptively by the adversary. Let
(e1, t1, y1), · · · , (ef , tf , yf) be signatures provided by the
signing oracle corresponding to a set of messages
m1, · · · , mf . We consider three types of forgeries: 1) for
some 1 ≤ j ≤ f , e = ej and t = tj ; 2) for some 1 ≤ j ≤ f ,
e = ej and t 6= tj ; 3) for all 1 ≤ j ≤ f , e 6= ej . We
should show that any forgery scheme of the three types
will lead to a contradiction to the assumptions of the the-
orem. This renders any forgery impossible.
Type 1 - Forger:
We consider an adversary who chooses a forgery signa-
ture such that e = ej for a fixed j: 1 ≤ j ≤ f , where
f is the total number of the queries to the signing or-
acle. If the adversary succeeds in a signature forgery
as type1 with non-negligible probability then given n,
we are able to compute z1/r with non-negligible prob-
ability, where r is a (l + 1)-bit prime. This contra-
dicts to the assumed hardness of the standard RSA prob-
lem. We state the attack in details as follows: given
z ∈ Z∗

n and r, we choose a set of total f − 1 primes
with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef uniformly at
random. We then create the correspondent public key
(X, g, h) of the simulator as follows: given z ∈ Z∗

n and
r, we choose a set of total f − 1 primes with length
(l+1)-bit e1, ...ej−1, ej+1, ..., ef uniformly at random. We
choose w, v ∈ Zn uniformly at random, and compute
h = z2e1...ej−1ej+1...ef , g = v2e1···ef z2e1...ej−1ej+1...ef and
X = w2βe1···ef z2e1...ej−1ej+1...ef (−α), where α ∈ {0, 1}l+1

and β ∈ Zn are chosen uniformly at random.
Since the simulator knows each ei, therefore it is easy to

compute the i-th signing query. What we need to show is
how to simulate the j-th signing query. This can be done
as follows:

y
ej

j = XgtjhH(mj)

= (wβvtj )2e1···ef z2e1...ej−1ej+1...ef (−α+tj+H(mj))

Now we set −α + tj + H(mj) = 0, i.e, tj = α−H(mj).
To show the simulation above is non-trivial, we should

show ti is uniformly distributed over {0, 1}l with non-
negligible amount. Since α ∈ {0, 1}l+1 is chosen uni-
formly at random, i.e., 0 ≤ α ≤ 2l+1 − 1, the probability
tj belongs to the correct interval and it does so with the
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correct uniform distribution can be computed as follows:

(2l+1 − 1−H(mj)− 2l + 1) + H(mj)

(2l+1 − 1−H(mj))− (−H(mj)) + 1
= 1/2

Suppose the adversary is able to forge a faking sig-
nature of message m, denoted by (e, y, t), such that
ej = e(= r), tj = t. Notice that one can not assume that
ej = e, tj = t and yj = y, since H is a collision free hash
function. Now we have two equations: ye

j = XgthH(mj)

and ye = XgthH(m). Consequently, we obtain the equa-
tion:

(
yj

y
)e = hH(mj)−H(m) = z2e1,...ej−1,ej+1,...,ef(H(mj)−H(m))

It follows that one can extract the e-th root of z with
non-negligible probability. Therefore, we arrive at the
contradiction of the standard hardness of RSA assump-
tion.
Type 2 - Forger:
We consider an adversary who succeed in forging a valid
signature such that e = ej , t 6= ej for a fixed j: 1 ≤ j ≤ f ,
where f is the total number of the queries to the signing
oracle. If the adversary succeeds in a signature forgery
as type1 with non-negligible probability then given n, we
are able to compute z1/r with non-negligible probabil-
ity for a given z and r, where r is a (l + 1)-bit prime.
This contradicts to the assumed hardness of the stan-
dard RSA problem. We state the attack in details as
follows: given z ∈ Z∗

n and r, we choose a set of total
f − 1 primes with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef

at random. We then create the correspondent public key
(X, g, h) of the simulated signature scheme as follows:
g = z2e1...ej−1ej+1...ef , h = v2e1...ef and X = g−αw2e1...ef ,
where w, v ∈ Zn and α is a l-bit random string. Since
QRn is a cyclic group, we can assume that g, h are gen-
erators of QRn with overwhelming probability. To sign
the i-th message mi(i 6= j), the signing oracle selects a
random string ti ∈ {0, 1}l, and computes:

yi
ei = ((wvH(mi))2e1...ei−1ei+1...ef z2(ti−α)Πs 6=i,s 6=jes)ei

The output of the signing oracle is a signature of message
mi, denoted by σ(mi) = (ei, yi, ti).

To sign the j-th message mj , the signing oracle, sets
tj ← α and computes:

yj
ej = ((wvH(mj ))2Πs 6=jes)ej

The output of the signing oracle is a signature of message
mj , denoted by σ(mj) = (ej , yj , tj).

Let σ(m) = (e, y, t) be a valid signature forged by the
adversary of message m. By assumption, we know that
ye = XgthH(m). Consequently, we have the following
equation:

gtj hH(mj)yj
ej = gthH(m)ye

Equivalently

z2(α−t)Πi6=jei = (v2(H(m)−H(mj ))Πi6=jei
y

yj
)ej

Since tj = α and t 6= tj by assumption, it follows
that t 6= α. We then apply Guillou-Quisquater lemma to
extract the r-th root of z, where r = ej .
Type 3 - Forger:
We consider the third type of the attack: the adversary
forgery is that for all 1 ≤ j ≤ f , e 6= ej . If the adversary
succeeds in forgery with non-negligible probability, then
given n, a random z ∈ Z∗

n, we are able to compute z1/d

(d > 1 ) with non-negligible probability, which contradicts
to the assumed hardness of strong RSA assumption. We
state our attack in details as follows: we generate g and
h with the help of z. We define g = z2e1...ef and h = ga,
where a ∈ (1, n2), is a random element. We can assume
that g is a generator of QRn with overwhelming proba-
bility. Finally, we define X = gb, where b ∈ (1, n2). Since
the simulator knows the all ej , the signature oracle can be
perfectly simulated. Let (e, t, y) be a forgery signature of
message m. It yields the equation ye = XgthH(m) = zE,
where E = (b + t + aH(m))2e1...ef .

Since we are able to compute (e/E)-th root of z pro-
vided e is a not a divisor of E according to the lemma of
Guillou and Qusiquater, it is sufficient to show that e is
not a divisor of E with non-negligible probability. Due to
the the fact that gcd(e, e1e2 · · · ef ) = 1, it is sufficient to
show that e is not a divisor of b + t + aH(m) with non-
negligible probability. Since b ∈ (1, n2), it follows that
one can write b = b′p′q′ + b′′. Therefore, the probability
that b + t + aH(m) ≡ 0 mod e is about 1/e.

Remark on Type 3- Forger: To show that e|(b + t +
aH(m) with negligible probability, one may make use
of randomness of a ∈ (1, n2). That is one can write a
as a = a′p′q′ + a′′. It follows a′ is a random element
from the adversary’s view. Hence the probability that
b + t + aH(m) ≡ 0 mod e is about 1/e. Thus, with non-
negligible probability, e is not a divisor of b + t + aH(m).
We point out that since the adversary may find H(m) = 0,
the term aH(m) may be cancelled in the formula in the
equation. Thus the random argument must be done in
term b instead of aH(m) since collision-resistance does
not imply zero-finder intractability in general. This re-
mark also suitable for Cramer-Shoup’s argument.
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