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Abstract

Suppose that an organization O wants to do the follow-
ing: to reveal only part of its network map; to filter un-
wanted traffic passing through its network; and to route,
to the right destination, legitimate traffic intended for
hidden parts of its network. This would enable O to
perform traffic filtering and routing with improved resis-
tance against network mapping attacks. This paper pro-
poses a provably-secure hierarchical identity-based group
signature scheme which meets the above requirements,
and is scalable to large, distributed, and hierarchically-
structured networks.

Keywords: Group signature, hierarchical networks,
identity-based cryptography, sender anonymity, traffic fil-
tering

1 Introduction

Let G be a group of users composed of hierarchically-
structured and non-overlapping subgroups. Hierarchical
anonymous authentication (HAA) refers to the process
whereby: (1) any third party can determine which sub-
group of G a given user is part of; and (2) no one, except a
designated member1 of a user’s subgroup, is able to deter-
mine the identity of this user. One application of HAA is
traffic filtering and routing in partially-hidden networks.

Suppose, for instance, that a company O wants to
achieve the following goals: (G1) O wants to reveal only
part of its network map to third parties; (G2) O wishes to
stop unwanted traffic passing through its network; and,
(G3) when legitimate network traffic is intended for hid-
den parts of its network, O wants to route this traffic to
the right destination nodes.

G1 may be motivated by the desire to achieve both in-

1The designated member of this subgroup will henceforth be
called the subgroup leader.

creased privacy and improved resistance against network
mapping attacks. (These attacks precede most harm-
ful network-based attacks.) G2 is useful to combat de-
nial of service attacks, and this goal could be achieved
by stopping all network messages passing through O’s
network, except those which come from O’s subnets and
those which respond to recent messages coming from O’s
subnets. (Remark that, if O’s network is virtual, then
network messages coming from O’s subnets may either
enter or exit O’s physical network. In particular, net-
work messages coming from a mobile device belonging
to O can send messages which virtually come from O’s
network, but physically come from another network.) Fi-
nally, G3 is essential to the use of networks. In particular,
O could use a designated node of each one of its subnets
in order to route messages intended for specific nodes of
this subnet. Consequently, O could organize its network
nodes into hierarchically-structured and non-overlapping
subnets, and use HAA in order to achieve G1, G2 and G3.
HAA is therefore useful for traffic filtering and routing in
partially-hidden and hierarchically-structured networks.

1.1 A First Attempt to Support HAA

One attempt to support HAA is to use group signatures
(GS)2 [1, 14]. GS schemes are cryptographic primitives
enabling each member of a given group to sign on be-
half of the group, in such a way that only a designated
group leader is able to identify the issuer of any given valid
group signature. Thus, one can associate a group signa-
ture scheme with each subgroup of a group, and use these
schemes to support HAA, when the subgroups are hierar-
chically structured. This methodology, however, has the
following two limitations. First, a central trusted party
must generate a distinct set of public parameters for each

2Note that schemes which do not provide source authenticity
(e.g. through digital signatures) are not suitable for HAA, since
network messages can be spoofed (i.e. misattributed to legitimate
sources).
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subgroup. Ideally, there would be one small set of public
parameters which could be used to verify signatures issued
on behalf of all subgroups. Second, one central trusted
party (associated with the large group) must both gen-
erate each one of the subgroup parameters, and secretly
send secret parameters to each subgroup leader. When
the hierarchy is large (or becomes large as subgroups are
added), it is more efficient to have a scheme whereby a
central entity dynamically delegates to other entities (e.g.
subgroup leaders) the task of generating and distributing
secret subgroup parameters. Hence, this attempt to sup-
port HAA is neither space efficient nor computationally
efficient in the case of large hierarchies (e.g. hierarchies
composed of 10,000 nodes and 500 subgroups). Conse-
quently, a novel cryptographic primitive needs to be de-
signed in order to support HAA in large networks.

1.2 Related Work

Scalable Cryptography. This paper is concerned
with mechanisms which are scalable to large, distributed,
and hierarchically-structured networks. While certificate-
based public-key cryptography requires the distribution
and management of public-key certificates, identity-based
(ID-based) cryptography removes this requirement by
allowing public keys to be derived from entity iden-
tifiers (e.g. email addresses, telephone numbers, or
IP addresses). In large and distributed networks, ID-
based cryptography is therefore more convenient than
certificate-based cryptography. Moreover, a class of
schemes called hierarchical ID-based (HIB) cryptosystems
are suitable for hierarchically-structured networks. HIB
cryptosystems enable a root private key generator (PKG)
to delegate the generation and secure distribution of ID-
based private keys to lower PKGs, which recursively do
the same, in such a way that end-nodes are authenticated
and securely obtain their private keys. ID-based cryptog-
raphy was introduced by Shamir [34], and Horwitz and
Lynn [22] described the first hierarchical ID-based encryp-
tion (HIBE) scheme. Since then, various HIBE and hier-
archical ID-based signature (HIBS) schemes have been
proposed [5, 6, 17, 20, 25, 29].

Hierarchical Group Signatures and Related

Primitives. Trolin and Wickstrōm [35] recently pre-
sented the first formal treatment of hierarchical group sig-
nature (HGS). Their work focuses on groups whose struc-
ture (i.e. the number and identity of subgroups) is hidden
to third parties. (This class of HGS scheme is henceforth
called HGS-Class-1 schemes, while HGS schemes sup-
porting HAA are called HGS-Class-2 schemes.) Trolin
and Wickstrōm describe a provably secure HGS-Class-1
scheme, but the scheme is suboptimal (for reasonable se-
curity parameters, producing group signature requires a
few hundred exponentiations). Group signatures for hier-
archical multigroups had already been considered by Kim
et al. [26], but the scalability of Kim et al.’s scheme is
hampered by the fact that both group leaders and sign-
ers must register in a central authoritative party before

signers are able to issue group signatures. Moreover, Kim
et al.’s scheme does not feature a hierarchical identifica-
tion procedure for group leaders, which makes the scheme
non adequate for HGS-Class-1 applications. Anonymous
authentication schemes were presented by Brickell et al.
[10], featuring identity escrow (i.e. a designated party is
able, under special circumstances, to identity the issuer
of anonymous authenticating tokens). However, these
schemes do not efficiently handle hierarchically structured
groups (as HGS schemes would). Anonymous authentica-
tion schemes with subset queries were also proposed (cf.
[18, 19, 33]). These schemes enable an authenticating
party to determine whether the issuer of a given authen-
ticating token belongs to a subset of the system users.
Such a subset may be the subset of another one – thereby
yielding a hierarchical setting. However, [18, 19, 33] do
not provide identity escrow. Boneh and Franklin [7] pre-
sented the first anonymous authentication scheme with
subset queries, identity escrow, and signer revocation ca-
pability. However, the work required by provers (e.g.
signers) and verifiers, in this scheme, is linear with re-
spect to the number of subsets. This is suboptimal. For
instance, when subsets are structured as a rooted tree,
the work required by provers may be expected to be con-
stant, and the work required by verifiers to be linear with
respect to the depth of a specific subset (i.e. logarithmic
in the total number of subsets). This is what our pro-
posed scheme achieves. (Table 1 presents an overview of
the aforementioned schemes’ limitations.)

1.3 Contributions

The aim of this paper is twofold. First, we seek to for-
malize the security of HGS-Class-2 schemes. (Note that
the formal security of HGS-Class-1 schemes has already
been investigated by Trolin and Wickstrōm [35], in the
framework of certificate-based cryptography.) Second, we
seek to devise a provably secure HGS-Class-2 scheme.

We propose a hierarchical ID-based group signature
(HIBGS) scheme, with the following group signature
properties. First, the scheme allows each signature verifier
to use a locally kept list of revoked-user tokens, in order
to determine the revocation status of signers, at signature
verification time. (Group signatures having this feature
are said have Verfier-Local Revocation (VLR) capability
[9].) Second, the scheme enables subgroup leaders to co-
generate their subgroup members’ keys, but prevents sub-
group leaders from being able to sign on behalf of their
subgroup members. This stands in contrast with Boneh
and Shacham’s recent group signature scheme [9]. Third,
the proposed scheme provides a mechanism for signers to
be able to reuse the same private key to generate mul-
tiple group signatures (unlike Chen et al.’s ID-based GS
scheme [16].) Fourth, the scheme describes a signature
verification procedure whose computational cost is only
logarithmic with respect to the number |SGL| of sub-
groups in a given hierarchy. This improves Boneh and
Franklin’s anonymous authentication scheme with sub-



International Journal of Network Security, Vol.2, No.2, PP.91–104, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 93

Table 1: Limitations of previous work related to HIBGS
Category Limitations

Group Signature No hierarchical key generation

[1, 2, 3, 9, 11, 12, 13, 14, 15, 16, 23, 24, 28, 30, 31, 32, 36]

(HGS-Class-1 ) Hierarchical Group Signature Very expensive signing and verifying

[35] Does not support HAA

Hierarchical ID-based Signature No signer anonymity

[5, 6, 17, 20, 25, 29]

Group Signature for Hierarchical Subgroups Mandatory Central Registration for group leaders and signers

[26] Not suitable for HGS-Class-1 applications

Anonymous Authentication with ID Escrow Not efficient for hierarchically structured groups

[10]

Anonymous Authentication with Subset Queries No identity escrow

[18, 33, 19]

Anonymous Authentication with Subset Queries and ID Escrow Not efficient for hierarchically structured groups

[7]

set queries [7], whose signing and signature verification
costs grow linearly with respect to |SGL|. Fifth, the sug-
gested scheme is provably secure in the the random ora-
cle model [4], assuming the intractability of the bilinear
Diffie-Hellman problem (see Section 2.) Sixth, the pro-
posed scheme enables signature verifiers to assess the va-
lidity of group signatures, without the need to obtain cer-
tified copies of group public keys. This stands in contrast
to all certificate-based group signature schemes, including
[7, 9].

Additionally, our proposed scheme has the following
features, as a hierarchical GS scheme. First, it prevents
the ancestors of any subgroup leader gl from imperson-
ating gl in her interactions with existing members of gl’s
subgroup. This is achieved by requiring each subgroup
leader to run confidential and authenticated communi-
cations with her subgroup members, based on a secret
which is unique to the pair (subgroup member, subgroup
leader). Second, it is a HGS-Class-2 scheme, and thereby
supports hierarchical anonymous authentication. Third,
it is scalable, in the sense that it enables subgroup lead-
ers to generate (on their own) their descendants’ private
keys. This stands in contrast with Kim et al.’s multi-
group scheme [26], which requires both subgroup lead-
ers and signers to register with a central trusted party.
Fourth, it is efficient, featuring constant-length keys and
a constant-time signing procedure.

Noteworthy is the fact that our HIBGS scheme fea-
tures constant-size signatures (even in the hierarchical
setting). This property was obtained from the key gener-
ation algorithm of a related hierarchical ID-based encryp-
tion scheme [29], whose description is beyond the scope
of this paper. However, let us underscore two steps and
two conditions required to obtain our proposed HIBGS
scheme, from this HIBE scheme.

� Leader (i.e. subgroup leader) keys had to be modified
in such a way that they are different from subgroup mem-
ber’s signing keys. This is due to the fact that signing keys
should be co-generated with subgroup members (so that
leaders are not able to sign on behalf of subgroup mem-
bers), while subgroup leaders should be able to generate
the full key of each one of their children (i.e. sub-leaders).

This difference between sub-leader keys and signer keys
also implies that a new algorithm had to be designed for
the generation of signing keys. Avoiding member imper-
sonation by key-issuing leaders is not a trivial task: one
must describe a mechanism which guarantees that any
given signature was issued with a subgroup member’s se-
cret, without revealing this secret, yet showing that the
secret is bound to the key given by the subgroup leader
to the signer.
� The user key generation procedure had to be redesigned
in such a way that one signing key enables its intended
user to issue multiple group signatures. Note that this fea-
ture cannot be achieved using Chen et al’s [16] approach,
since that approach requires each user to obtain a sign-
ing key for each issued group signature. Our approach is
different, as shown in §3.
� The new key generation algorithm needed to be modi-
fied in such a way that it remains provably secure, in the
random oracle model.
� Keys of the resulting scheme also had to remain of con-
stant length, and signatures had to remain of constant
size.

For our proposed scheme, it was also necessary to de-
vise a threat model for HGS-Class-2 schemes, and to
prove the security of our proposed scheme with respect to
this model. To devise this model, we extended Boneh and
Schacham’s security model for group signature schemes
with VLR capability in such a way that attempts of lead-
ers to sign on behalf of their subgroup members are taken
into consideration.

The sequel is organized as follows. Section 2 presents
the number theoretic assumptions on which the security
of our proposed HIBGS scheme is based. Section 3 de-
scribes our proposed HIBGS scheme, and Section 4 dis-
cusses its computational and space requirements in com-
parison with related schemes. Section 5 summarizes the
security guarantees of our scheme, and Section 6 con-
cludes the paper.
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2 Number Theoretic Assumptions

Let G1 and G2 be two Abelian groups of prime order
q, where G1 is additive and G2 is multiplicative. Let

P
(1)
0 ∈ G∗

1 be a generator of G1. A Bilinear pairing ê

is a map ê : G1 × G1 → G2 such that ê(aP
(1)
0 , bP

(1)
0 ) =

ê(P
(1)
0 , P

(1)
0 )ab for all a, b ∈ Z∗

q . The map ê is said to
be an admissible pairing if it is a non-degenerate, com-
putable Bilinear pairing. Let A be an attacker modelled
as a probabilistic Turing machine. The computational
Diffie-Hellman (CDH ) problem [8] is that in which A

is to compute abP
(1)
0 , given (G1, q, P

(1)
0 , aP

(1)
0 , bP

(1)
0 ) and

a security parameter k, where a, b ∈ Z∗
q are unknown.

The decisional Diffie-Hellman (DDH ) problem [8] is that

in which A is to guess whether cP
(1)
0 = abP

(1)
0 , given

(G1, q, P
(1)
0 , aP

(1)
0 , bP

(1)
0 , cP

(1)
0 ) and a security parameter

k, where a, b, c ∈ Z∗
q are unknown. G1 is called a Gap-

Diffie-Hellman group if the CDH is intractable in G1, but
the the DDH can be solved in polynomial time in G1.
The Bilinear Diffie-Hellman (BDH ) problem [8] is that

in which A is to compute ê(P
(1)
0 , P

(1)
0 )abc given a security

parameter k, the tuple (G1, q, P
(1)
0 , aP

(1)
0 , bP

(1)
0 , cP

(1)
0 )

where a, b, c ∈ Z∗
q are unknown, and given the fact that

the CDH problem cannot be solved in polynomial time
with non-negligible advantage in both G1 and G2. The
Double Discrete Logarithm (DDL) problem [12] is that
in which A is to compute an unknown c ∈ Z∗

q given both

(acP
(1)
0 , a, P

(1)
0 ). Konama et al. [27] proved that the DDL

problem is as at least as hard as the discrete logarithm
(DL) problem modulo a prime.

3 Proposed HIBGS Scheme

Since the design of a HIBGS scheme is complex, Sec-
tion 3.1 presents an overview of our HIBGS scheme, while
the actual scheme is described in Section 3.2. (Important
symbols used in the proposed scheme are presented in
Table 2.)

3.1 Overview

Principals. The following parties are involved in
our scheme: one root leader (rLead), one set of |SGL|
subgroup leaders, |SGL| sets of subgroup members, one
set of signature verifiers (i.e. third parties who can ver-
ify HGS signatures), and one arbitrator (i.e. a trusted
third party). The subgroups are organized in a tree-
shaped hierarchy, and each subgroup is identified by the
ID-tuple of its subgroup leader. For instance, any second-
level subgroup is identified by an ID-tuple of the form
ID2 = (ID1, ID2), where ID1 = (ID1) refers to the
ID-tuple of a first-level subgroup leader. Moreover, each
member of a subgroup is identified by an indexed ID-tuple
whose prefix is the ID-tuple of the subgroup. For exam-
ple, the ith member of the ID2 is identified by ID2[i].

Key Generation. The proposed HIBGS scheme
has three key generation algorithms. These are the
Root Setup algorithm, the Leader-Key Generation al-
gorithm, the User-Key Generation algorithm. � The
Root Setup algorithm defines various secret and pub-
lic parameters which are used by others methods of
the scheme. �The Leader-Key Generation algorithm
is used by each subgroup leader to generate the pri-
vate key of her children subgroups (i.e. the subgroups
placed directly below the leader’s subgroup). The pri-
vate key of each tth-level subgroup leader is a tuple
(SIDt

, EIDt
, S̃IDt

, RIDt+1
, R̃IDt+1

, st), where the first five
entries are used to issue signing keys and the last entry
is unique to the tth hierarchical level. Moreover, the first
five entries of a subgroup leader’s private key are gener-
ated with random elements αIDt

and α̃IDt
which make

the private key unique to the branch and level of the corre-
sponding subgroup. Furthermore, the first five entries of
the a subgroup leader’s private key are generated in such
a way that: none can be derived from the others; none can
be derived from the private key of a subgroup leader of
the same level; and none can be derived from the private
key of a subgroup leader or a subgroup member located
below the current subgroup leader. These conditions im-
ply that subgroup leaders located on different branches
of a subgroup hierarchy cannot derive one another’s pri-
vate keys. � The third key generation algorithm of the
proposed HIBGS scheme is the User-Key Generation al-
gorithm. This procedure is used by each subgroup mem-
ber (say IDt[i]) and her subgroup leader to co-generate
IDt[i]’s private key. This process is initiated by IDt[i]
who generates a key mgtIDt[i]

and hides it from IDt by
raising a known basis to the exponent mgtIDt[i]

. This
hiding process yields a membership token mtIDt[i]

which

IDt[i] gives to IDt. IDt then verifies (in zero knowledge)
that IDt[i] knowsmgtIDt[i]

, and computes both a revoca-

tion token and IDt[i]’s private key. The revocation token
rtIDt[i]

is given the value of mtIDt[i]
, but rtIDt[i]

is not

sufficient to identify IDt[i]. IDt[i]’s private key has the

form (SIDt[i]
, EIDt[i]

, S̃IDt[i]
, ẼIDt[i]

, st+1, γIDt[i]
), where

the first four entries have the same properties as IDt’s
private key entries, and where the last entry must be used
by IDt[i] when she issues group signatures.

Signing. The signing algorithm is composed of three
steps. The first step consists of using the signer’s hidden
key mgtIDt[i]

in order to obtain a new version of SIDt[i]
,

EIDt[i]
, and S̃IDt[i]

(namely SIDt[i]
, EIDt[i]

, and S̃IDt[i]
).

These newly computed values are bound to mgtIDt[i]
.

The second step of the signature algorithm consists of
using γIDt

to set up a zero knowledge proof that IDt[i]
knows γIDt[i]

. This proof is randomized (using the vari-

able r) in such a way that third parties cannot determine
whether two group signatures are issued by the same user.
The third step of the signing algorithm mimics the Leader-
Key Generation procedure, but uses a one-way function
of the signed message in order to generate values which
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Table 2: Important symbols used in the HIBGS scheme
M Message Space mgt

IDt[i] IDt[i]’s membership generating token

S Signature Space mtIDt
IDt[i]’s membership token

Gi Scheme’s ith Abelian group rt
IDt[i] IDt[i]’s revocation token

Hi Scheme’s ith hash function dIDt
IDt’s secret key

P
(i)
0 Scheme’s ith generator of G1 d

IDt[i] IDt[i]’s secret key

s0 Root Leader’s secret key γIDt[i] IDt[i]’s membership checking key

L
(i)
t Scheme’s ith tth-level Public parameter SGL Set of all subgroups forming a large hierarchy

IDt Subgroup leader’s identifier RL
IDt

| Set of revocation tokens associated with IDt’s subgroup

IDt[i] Identifier of IDt’s ith subgroup member Im H4(m), where m is a message

J0 Tuple of the form (I0, I0, I0) Ji Tuple of the form (Ii, p(i,1), p(i,3)) if i ≥ 1

demonstrate that the signer has the required private key.
Signature Verification. The signature verification

algorithm proceeds in two steps. In the first step, the
verifiers computes the public key of the claimed signer

(i.e. At+1P
(1)
0 + Bt+1P

(2)
0 and Ct+1P

(1)
0 + Dt+1P

(2)
0 ),

and binds this public key with a one-way function of

the signed message (thereby obtaining ρ
(1)
t and ρ

(2)
t ).

Then, in the second step, the verifier determines whether
the signer used coherent values (by checking whether

ê(U1 + U2, P
(5)
0 + P

(6)
0 ) = ê(U5 + U6, P

(1)
0 + P

(2)
0 )

and ê(U ′
1 + U ′

2, P
(5)
0 + P

(6)
0 ) = ê(U ′

5 + U ′
6, P

(1)
0 +

P
(2)
0 )), had the right signing key (by checking whether

ê(L
(4)
t+2, ρ

(1)
t )ê(P

(3)
0 , Ṽ ) = ê(P

(4)
0 , V )ê(L

(3)
t+2, ρ

(2)
t )), had a

hidden key that matches with his private key (by check-

ing whether H2($||(W
H3(W1)
2 )θU1||χ

θU ′
2) = κ), and is

not revoked (by checking whether U ′
1 6= rtIDt[j]

U1 and

(β − γIDt[j]
)U ′

1 = rtIDt[j]
P

(1)
0 , where rtIDt[j]

is any revo-

cation token given to the verifier by IDt).
Opening. The opening algorithm essentially consists

of the very last part of the verification algorithm. Since
the opener is the subgroup leader of a given signer, this
leader is able to link a given revocation token with the
identity (index) of each member of her subgroup.

Arbitrating. The arbitrating procedure is executed
by a trusted third party (TTP). While the TTP does not
have to hold any secret piece of information, it is trusted
to follow to the following line of reasoning: since the pri-
vate key used to issue a group signature is bound with the
membership token of a signer, and since the revocation
token of a user is equal to the membership token of this
user, then the possession of a valid group signature which
matches with a given revocation token uniquely identi-
fies the corresponding user. Thus, the author of group
signature can be identified.

3.2 Scheme

• Instance Generator (k). This procedure, denoted
by IG, is a randomized algorithm which takes a secu-
rity parameter k > 0, runs in O(k) steps, and outputs
(G1,G2, ê, SG), where G1 and G2 are two Abelian
Gap-Diffie-Hellman groups of prime order q ≥ 2k,
ê : G1 × G1 → G2 is an admissible pairing with re-
spect to which the BDH problem is intractable, and

SG is a prime order cyclic subgroup of Z∗
q in which

the DL problem is intractable.

• Root Setup (k). Given a security parameter k > 0,
the root PKG:

1) runs IG with input k and obtains (G1, G2, ê,
SG).

2) picks, randomly and uniformly3, P
(1)
0 , P

(2)
0 ,

P
(3)
0 , P

(4)
0 , P

(5)
0 , P

(6)
0 ∈ G1;

3) picks g ∈R SG, and s0, I0 ∈R Z∗
q , and sets

dID0
= (s0);

4) computes n = poly1(k), ` = log(k), nτ =
poly2(k), and ngs = poly3(k), where polyi is a
polynomial over the positive integers, for i =
1, 2, 3;

5) chooses cryptographic hash functions: H1 :
{0, 1}∗ → (Z∗

q)
3`, H2 : {0, 1}∗ → Z∗

q , H3 :
{0, 1}nτ → Z∗

q , H4 : {0, 1}n → Z∗
q , H5 : Z∗

q →
Z
∗
q , where the image through H1 of a (t-long)

ID-tuple IDt = (ID1, · · · , IDt) is H1(IDt) =
(J1, · · · , Jt, J0, · · · , J0) ∈ (Z∗

q)
3`, where: J0 =

(I0, I0, I0); Ji = (Ii, p(i,1), p(i,3)) for 1 ≤ i ≤ t;
Ii = H6(IDi), p(i,1) = H7(Ii), p(i,3) = H7(p(i,1))
for 1 ≤ i ≤ t; H6 is any cryptographic hash
function from {0, 1}∗ to Z∗

q , and H7 is any cryp-
tographic hash function from Z∗

q to Z∗
q .

6) computes, (si = H5(si−1))
`−1
i=1 , L

(j)
1 = s0P0

(j)

for j = 3, 4, and (L
(j)
i = si−1L

(j)
i−1)

`
i=2 for

j = 3, 4.

The message space is M = {0, 1}n and the sig-
nature space is S = G6

1 × {0, 1}nτ × Z∗
q
5. The

system’s public parameters (which must be certi-

fied) are pubParams = (g, q, n, ê, I0, P
(1)
0 , P

(2)
0 , P

(3)
0 ,

P
(4)
0 , P

(5)
0 , P

(6)
0 ,H1,H2,H3,H4,H5, ((L

(j)
i )`

i=1)
4
j=3).

The root PKG keeps s0 secret, so that params =
(pubParams, s0).

• Sub-Leader-Key Generation (IDt+1, dIDt
): For

each child-leader IDt+1 = (ID1, · · · , IDt+1) of a
leader IDt, the following takes place:

3In the sequel, we shall use the notation x ∈R X to indicate that
the element x is chosen uniformly at random from the set X.
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1) IDt picks αIDt+1
, α̃IDt+1

∈R Z∗
q .

2) – If t = 0, then rLead computes J1 =
(I1, p(1,1), p(1,3)) (with ID1 and H1),

p(1,2) = H7(p(1,3)), p(1,4) =
p(1,2)p(1,3)

p(1,1)
,

I ′1 = −p(1,2), I
′′
1 = −

p(1,1)

p(1,2)
I ′1, Ĩ1 = I1 +

p(1,1), Ĩ
′
1 = I ′1 + p(1,2), Ĩ

′′
1 = I ′′1 + p(1,4),

RID1
= p(1,1)αID1

+ p(1,2)α̃ID1
, R̃ID1

=

p(1,3)αID1
+ p(1,4)α̃ID1

, s1 = H5(s0), and

the following:

S
ID1

= s0(I1P
(1)
0 + I

′

1P
(2)
0 + α

ID1
P

(3)
0 ),

E
ID1

= s0(
I1I

′′

1

I ′

1

P
(1)
0 + I

′′

1 P
(2)
0 + α̃

ID1
P

(3)
0 ),

S̃
ID1

= s0(αID1
P

(4)
0 + Ĩ1P

(5)
0 + Ĩ

′

1P
(6)
0 ),

Ẽ
ID1

= s0(α̃ID1
P

(4)
0 +

Ĩ1Ĩ
′′

1

Ĩ ′

1

P
(5)
0 + Ĩ

′′

1 P
(6)
0 );

– Otherwise (i.e. if t ≥ 1), IDt com-
putes: Jt = (It, p(t,1), p(t,3)) and Jt+1 =
(It+1, p(t+1,1), p(t+1,3)) (with IDt, IDt+1

and H1); and

I ′t+1 = −p(t,2),

I ′′t+1 = −
p(t,2)p(t,3)

p(t,1)
,

Ĩt+1 = It+1 + p(t,1),

Ĩ ′t+1 = I ′t+1 + p(t,2),

Ĩ ′′t+1 = I ′′t+1 + p(t,4);

p(t+1,2) = −
p(t,1)

p(t,3)
p(t+1,1),

p(t+1,4) =
p(t+1,2)p(t+1,3)

p(t+1,1)
,

αIDt+1
, α̃IDt+1

∈R Z∗
q , RIDt+1

=

p(t+1,1)αIDt+1
+ p(t+1,2)α̃IDt+1

, R̃IDt+1
=

p(t+1,3)αIDt+1
+ p(t+1,4)α̃IDt+1

; st+1 =

H5(st), and the following:

S
IDt+1

= st(It+1SIDt
+ I

′

t+1EIDt
) + α

IDt+1
L

(3)
t+1,

E
IDt+1

= st(
It+1I

′′

t+1

I ′

t+1

S
IDt

+ I
′′

t+1EIDt
+ α̃t+1L

(3)
t+1,

S̃
IDt+1

= st(Ĩt+1S̃IDt
+ Ĩ

′

t+1ẼIDt
) + (α

IDt+1

−R
IDt

)L
(4)
t+1, and

Ẽ
IDt+1

= st(
Ĩt+1Ĩ

′′

t+1

Ĩ ′

t+1

S̃
IDt

+ Ĩ
′′

t+1ẼIDt
+ (α̃t+1

−R̃
IDt

)L
(4)
t+1;

3) Then, IDt secretly gives dIDt+1
= (SIDt+1

,

EIDt+1
, S̃IDt+1

, RIDt+1
, R̃IDt+1

, st+1) to

IDt+1.

• User-Key Generation (mtIDt
): For each member

IDt[i] of the group leader identified by IDt (where
1 ≤ i ≤ ngs), the following takes place:

1) IDt[i] picks mgtIDt[i]
, λ ∈R Z∗

q , computes

mtIDt[i]
= (gH3(T ))mgtIDt[i] ∈ SG, κ =

H2(||(g
H3(T ))λ||), and θ = λ−κ ·mgtIDt[i]

, and

secretly sends (mtIDt[i]
, T, κ, θ) to IDt, where

T ∈ {0, 1}τ is the validity period of mtIDt[i]
,

and the symbol || denotes the string ”||”.

2) Upon reception of (mtIDt[i]
, T, κ, θ), IDt checks

whether H2(||(g
H3(T ))θmtκ

IDt[i]
||) = κ. If this

condition is not satisfied, IDt sends “Invalid”,
and interrupts the key generation process. Oth-
erwise:

3) IDt picks αIDt[i]
, α̃IDt[i]

∈R Z∗
q , sets rtIDt[i]

=

mtIDt[i]
, and stores (IDt[i], rtIDt[i]

).

4) – If t = 0, the root leader computes I ′0 =

H7(I0), I
′′
0 = H7(I

′
0), Ĩ0 = H7(I

′′
0 ), Ĩ ′0 =

H7(Ĩ0), Ĩ
′′
0 = H7(Ĩ

′
0), s1 = H5(s0), and the

following:

S
ID0[i] = s0(I0P

(1)
0 + I

′

0mt
ID0[i]P

(2)
0

+α
ID0[i]P

(3)
0 ),

E
ID1

= s0(
I0I

′′

0

I ′

0

P
(1)
0 + I

′′

0 mt
ID0[i]P

(2)
0

+α̃
ID0[i]P

(3)
0 ),

S̃
ID0[i] = s0(αID0[i]P

(4)
0 + Ĩ0P

(5)
0

+Ĩ
′

0mt
ID0[i]P

(6)
0 ),

Ẽ
ID0[i] = s0(α̃ID0[i]P

(4)
0 +

Ĩ0Ĩ
′′

0

Ĩ ′

0

P
(5)
0

+Ĩ
′′

0 mt
ID0[i]P

(6)
0 );

– Otherwise (i.e. if t ≥ 1):

a. IDt sends mtIDt[i]
to its parent IDt−1;

b. IDt−1 computes I ′0 = H7(I0),

I ′′0 = H7(I
′
0), Ĩ0 = H7(I

′′
0 ),

Ĩ ′0 = H7(Ĩ0), Ĩ ′′0 =
I′′

0 Ĩ′

0

I′

0
, R′

IDt
=

(Ĩ0 − I0)αIDt
+ mtIDt[i]

(Ĩ ′0 − I ′0)α̃IDt
,

R̃′
IDt

= (
Ĩ0 Ĩ′′

0 I′

0−I0I′′

0 I′

0

Ĩ′

0I′

0

)αIDt
+

mtIDt[i]
(Ĩ ′′0 − I ′′0 )α̃IDt

(where αIDt

and α̃IDt
were used to compute IDt

private key components), and returns

(R′
IDt

, R̃′
IDt

) to IDt;

c. IDt picks computes I ′0 = H7(I0), I
′′
0 =

H7(K
′
0), Ĩ0 = H7(I

′′
0 ), Ĩ ′0 = H7(Ĩ0),

Ĩ ′′0 =
I′′

0 Ĩ′

0

I′

0
, st+1 = H5(st), and the fol-

lowing:

S
IDt+1

= st(I0SIDt
+ I

′

0mt
IDt[i]

E
IDt

)

+α
IDt[i]

L
(3)
t+1,

E
IDt+1

= st(
I0I

′′

0

I ′

0

S
IDt

+ I
′′

0 mt
IDt[i]
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E
IDt

) + α̃
IDt[i]

L
(3)
t+1,

S̃
IDt+1

= st(Ĩ0S̃IDt
+ Ĩ

′

0mt
IDt[i]

Ẽ
IDt

)

+(α
IDt[i]

− R
′

IDt
)L

(4)
t+1, and

Ẽ
IDt+1

= st(
Ĩ0Ĩ

′′

0

Ĩ ′

0

S̃
IDt

+ Ĩ
′′

0 mt
IDt[i]

Ẽ
IDt

) + (α
IDt[i]

− R̃
′

IDt
)L

(4)
t+1;

5) IDt picks γIDt[i]
∈R Z

∗
q . (This value is used by

IDt to verify IDt[i]’s signatures.)

6) IDt secretly gives (SIDt[i]
, EIDt[i]

, S̃IDt[i]
,

ẼIDt[i]
, st+1, γIDt[i]

) to IDt[i].

7) Then, IDt[i] sets her private key dIDt[i]
=

(mgtIDt[i]
, SIDt[i]

, EIDt[i]
, S̃IDt[i]

, ẼIDt[i]
,

st+1, γIDt[i]
). Note that, for robust-

ness purposes, IDt[i] can, via the Signing
and Verifying algorithms, make sure that
(SIDt[i]

, EIDt[i]
, S̃IDt[i]

, ẼIDt[i]
, st+1) matches

mtIDt[i]
.

8) Finally, IDt[i] and IDt co-generate a random
authentication key to be used (e.g. via a mes-
sage authentication code) for the authentication
of IDt in subsequent communications.

• Signing (m, dIDt
[i]): Given a message m ∈ M, the

membership generating token mgtIDt
[i] of a signer

IDt[i], and the system’s public parameters, this al-
gorithm:

1) picks r, λ ∈R Z
∗
q , computes βr =

(rH3(T ))mgt
IDt[i] , and derives the following:

SIDt[i]
= βrSIDt[i]

, S̃IDt[i]
= βrS̃IDt[i]

,

U1 = βrP
(1)
0 , EIDt[i]

= βrEIDt[i]
,

ẼIDt[i]
= βrẼIDt[i]

, U ′
1 = βrmtIDt[i]

P
(1)
0 ,

U2 = βrP
(2)
0 , U ′

2 = βrmtIDt[i]
P

(2)
0 ,

U5 = βrP
(5)
0 , U ′

5 = βrmtIDt[i]
P

(5)
0 ,

U6 = βrP
(6)
0 , U ′

6 = βrmtIDt[i]
P

(6)
0 ,

θ = λ−mgtIDt[i]
, β = β−1

r + γIDt[i]
,

χ = (r · g)H3(T ), W1 = T ,
W2 = r, $ = H2(mgtIDt[i]

),

κ = H2($||(rH3(T ))λP
(1)
0 ||χλP

(2)
0 );

2) picks αm ∈R Z∗
q , and computes:

Im = H4(m), I ′m = H7(Im),

V = st+1(ImSIDt[i]
+ I ′mEIDt[i]

) + αmL
(3)
t+2,

Ṽ = st+1(ImS̃ID[i] + I ′mẼIDt[i]
) + αmL

(4)
t+2;

3) outputs σ = (U1, U1, U2, U
′
2, U5, U

′
5, U6, U

′
6, V ,

Ṽ , W1, W2, β, κ, θ,$).

• Verifying (RLIDt
, m, σ): Given a messagem, a sig-

nature σ = (U1, U1, U2, U
′
2, U5, U

′
5, U6, U

′
6, V , Ṽ , W1,

W2, β, κ, θ,$), and the system’s public parameters,
this algorithm:

1) computes (J1, · · · , Jt, J0, · · · , J0) = H1(IDt) ∈

(Z∗
q)

3`, Im = H4(m), I ′m = H7(Im), ρ
(1)
t =

At+2P
(1)
0 + Bt+2P

(2)
0 , and ρ

(2)
t = Ct+2P

(5)
0 +

Dt+2P
(6)
0 where:

– If t = 0, then
I ′0 = H7(I0), I

′′
0 = H7(I

′
0),

Ĩ0 = H7(I
′′
0 ), Ĩ ′0 = H7(Ĩ0),

Ĩ ′′0 = H7(Ĩ
′
0),

A2P
(1)
0 = (ImI0 + I ′m

I0I′′

0

I′

0
)U1,

B2P
(2)
0 = (ImI

′
0 + I ′mI

′′
0 )U ′

2,

C2P
(5)
0 = (ImĨ0 + I ′m

Ĩ0 Ĩ′′

0

Ĩ′

0

)U5,

D2P
(6)
0 = (ImĨ

′
0 + I ′mĨ

′′
0 )U ′

6,

– Otherwise:
p(1,2) = H7(p(1,3)),
p(1,4) =

p(1,2)p(1,3)

p(1,1)
,

I ′1 = −p(1,2), I ′′1 = −
p(1,1)

p(1,2)
I ′1,

Ĩ1 = I1 + p(1,1), Ĩ ′1 = I ′1 + p(1,2),

Ĩ ′′1 = I ′′1 + p(1,4).

A1 = I1, B1 = I ′1, C1 = Ĩ1,

D1 = Ĩ ′1, Ã1 =
I1I′′

1

I′

1
, B̃1 = I ′′1 ,

C̃1 =
Ĩ1 Ĩ′′

1

Ĩ′

1

, D̃1 = Ĩ ′′1 ,

and, for 1 ≤ i < t,
I ′i+1 = −p(i,2), I

′′
i+1 = −

p(i,2)p(i,3)

p(i,1)
,

Ĩi+1 = Ii+1 + p(i,1),

Ĩ ′i+1 = I ′i+1 + p(i,2),

Ĩ ′′i+1 = I ′′i+1 + p(i,4);
p(i+1,2) = −

p(i,1)

p(i,3)
p(i+1,1),

p(i+1,4) =
p(i+1,2)p(i+1,3)

p(i+1,1)
,

Ai+1 = Ii+1Ai + I ′i+1Ãi, and

Ãi+1 =
Ii+1I′′

i+1

I′

i+1
Ai + I ′′i+1Ãi,

Bi+1 = Ii+1Bi + I ′i+1B̃i, and

B̃i+1 =
Ii+1I′′

i+1

I′

i+1
Bi + I ′′i+1B̃i,

Ci+1 = Ĩi+1Ci + Ĩ ′i+1C̃i, and

C̃i+1 =
Ĩi+1 Ĩ′′

i+1

Ĩ′

i+1

Ci + Ĩ ′′i+1C̃i,

Di+1 = Ĩi+1Di + Ĩ ′i+1D̃i, and

D̃i+1 =
Ĩi+1Ĩ′′

i+1

Ĩ′

i+1

Di + Ĩ ′′i+1D̃i.

Then,

I ′0 = H7(I0), I
′′
0 = H7(I

′
0),

Ĩ0 = H7(I
′′
0 ), Ĩ ′0 = H7(Ĩ0),

Ĩ ′′0 =
I′′

0 Ĩ′

0

I′

0
,

At+1P
(1)
0 = I0AtU1 + I ′0ÃtU

′
1,

Ãt+1P
(1)
0 =

I0I′′

0

I′

0
AtU1 + I ′′0 ÃtU

′
1,

Bt+1P
(2)
0 = I0BtU2 + I ′0B̃tU

′
2,

B̃t+1P
(2)
0 =

I0I′′

0

I′

0
BtU2 + I ′′0 B̃tU

′
2,

Ct+1P
(5)
0 = Ĩ0CtU5 + Ĩ ′0C̃tU

′
5,

C̃t+1P
(5)
0 =

Ĩ0 Ĩ′′

0

Ĩ′

0

CtU5 + Ĩ ′′0 C̃tU
′
5,

Dt+1P
(6)
0 = Ĩ0DtU6 + Ĩ ′0D̃tU

′
6,

D̃t+1P
(6)
0 =

Ĩ0 Ĩ′′

0

Ĩ′

0

DtU6 + Ĩ ′′0 D̃tU
′
6,
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At+2P
(1)
0 = ImAt+1P

(1)
0 + I ′mÃt+1P

(1)
0 ,

Bt+2P
(2)
0 = ImBt+1P

(2)
0 + I ′mB̃t+1P

(2)
0 ,

Ct+2P
(5)
0 = ImCt+1P

(5)
0 + I ′mC̃t+1P

(5)
0 ,

Dt+2P
(6)
0 = ImDt+1P

(6)
0 + I ′mD̃t+1P

(6)
0 .

2) – outputs “valid” if the following conditions
are satisfied:

∗ ê(U1 + U2, P
(5)
0 + P

(6)
0 ) = ê(P

(1)
0 +

P
(2)
0 , U5 + U6) and ê(U ′

1 + U ′
2, P

(5)
0 +

P
(6)
0 ) = ê(P

(1)
0 + P

(2)
0 , U ′

5 + U ′
6);

∗ ê(L
(4)
t+2, ρ

(1)
t ) ê(P

(3)
0 , Ṽ ) = ê(P

(4)
0 , V )

ê(L
(3)
t+2, ρ

(2)
t );

∗ H2($||(W
H3(W1)
2 )θU1||χ

θU ′
2) = κ,

where χ = (W2 · g)
H3(W1);

∗ U ′
1 6= rtIDt[i]

U1, for each revocation to-
ken rtIDt[i]

included in RLIDt
.

∗ (β − γIDt[i]
)U ′

1 = rtIDt[i]
P

(1)
0 for some

unrevoked member IDt[i] of a IDt’s
group, whenever the Verifying algo-
rithm is run by IDt.

– outputs “invalid” otherwise.

Note that the identifier IDt[i] may be kept secret
from the verifier, by including, in RLIDt

, only the

revocation tokens of IDt’s revoked group members.
Note also that the fourth condition of acceptance is
a zero-knowledge proof that the signer used (in the
computation of βr) the same discrete logarithm that
was used to generate the key sent by IDt to IDt[i],
where i is unknown to the verifier.

• Opening (RLIDt
, m, σ): Given a signature σ =

(U1, U1, U2, U
′
2, U5, U

′
5, U6, U

′
6, V, Ṽ ,W1,W2, β, κ, θ,$)

of m which is valid with respect to both IDt and
RLIDt

, this algorithm:

1) looks for the user identifier IDt[i] (1 ≤ i ≤ ngs)
such that U ′

1 = rtIDt[i]
U1.

2) If no identifier IDt[i] can be found such that
the equality holds, the algorithm returns “Fail”.
Otherwise, IDt outputs IDt[i] as the claimed
issuer of σ.

• Arbitrating (RLIDt
, m, σ): Given a signature

σ = (U1, U2, U3, U4, V, Ṽ ,W1,W2, β, κ, θ, $) of m
such that σ is valid with respect to both IDt and
RLIDt

, and such that a valid group member IDt[i]

refutes IDt’s claim that IDt[i] issued σ, the algo-
rithm proceeds as follows:

1) A trusted third party (TTP) requests rtIDt[i]

from IDt.

2) – If U ′
1 = rtIDt[j]

U1, then the TTP outputs

“IDt[i] issued σ”.

– Otherwise, TTP outputs “IDt[i] did not is-
sue σ”.

Note that IDt[i] needs not reveal mgtIDt[i]
to the

TTP.

4 Efficiency

Table 3 compares the computational4 requirements of our
HIBGS scheme with Chen et al.’s ID-based group signa-
ture scheme (CZK-IDGS [16]), and Boneh and Shacham’s
group signature scheme with Verifier-Local Revocation
(BS-GS with VLR [9].) t denotes both the hierarchical
level of a signer and the hierarchical level of a subgroup
leader or subgroup member whose key is to be generated.
It is assumed that all hash functions of the compared
schemes have the same computational cost, denoted by
H . MX and AX respectively denote computational costs
of scalar multiplication and addition in the Abelian group
X . RX denotes the computational cost of uniformly se-
lecting a random element in the set X . The computa-
tional cost of exponentiation in the group X is denoted
by ExX , P denotes the computational cost of a bilinear
pairing operation, InvX denotes the computational cost
of inversion in X , and ψ denotes the computational cost
of an efficiently computable function (cf. [9]). In order to
provide a realistic computational cost average for the Ver-
ifying algorithm, it is assumed in Table 3 that the verifier
is any party, except the signature issuer’s subgroup leader.
When the verifier is the issuer’s subgroup leader, the com-
putational cost of verification is at most (2MG1 +AZ∗

q
)ngs

higher, and the information learned by the verifier (i.e.
the fact that γIDt[i]

was used to generate the signature)
is only used to formally prove the traceability of signa-
tures by the appropriate subgroup leaders (cf. the proof
of Theorem 2). Since all verifiers except the appropri-
ate subgroup leaders should not be able to identify the
issuers of subgroup signatures, the assumption of Table 3
seems reasonable to us. We note that all algorithms have
constant storage requirements, apart from the following
two exceptions: (1) the Verifying procedures of both our
HIBGS scheme and Boneh and Shacham’s scheme have
storage requirements which grow linearly with respect to
the size of the revocation list; (2) the Root Setup method
of our HIBGS scheme has space requirements which grow
linearly with the depth of the underlying hierarchy; (3)
the storage requirements of Chen et al.’s User-Key Gen-
eration algorithm grow linearly with the number of issued
signatures.

By the (UNABLE) entries of its second row, Table 3
notes that, among the three analyzed schemes, ours is
the only one that (efficiently5) handles hierarchical set-

4The storage requirements of the compared schemes linearly de-
pend on the computational requirements of these schemes. More-
over, a space unit of 256 kb can be assumed [21].

5Note that the two other schemes could be used in hierarchal
settings by having a central entity manage the key generation and
secure key distribution/update of each subgroup leader. However,
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Table 3: Efficiency comparison of our HIBGS, with related schemes
Our HIBGS IDGS [16] GS with VLR [9]

Root Setup (`− 1)H + 2`MG1
MG1

+RZ∗

q
ψ +MG1

+RG1
+ RZ∗

q

+ 6RG1
+ 3RZ∗

q

Sub-Leader AG1
+ 7AZ∗

q
+ 6H + 3InvZ∗

q
(UNABLE) (UNABLE)

Key Generation + 12MG1
+ 22MZ∗

q
+ 2RZ∗

q

User 8AG1
+ 5AZ∗

q
+ 4ExZq

|SIG|(2H + 3MG1
InvZ∗

q
+MG1

+ RZ∗

q

Key Generation + 11H + 4InvZ∗

q
+ 12MG1

+ 2P + RZ∗

q
)

+ 35MZ∗

q
+ 5RZ∗

q
+ H +MG1

+RZ∗

q

Signing 4AG1
+AZ∗

q
+ 2ExZ∗

q
AG1

+ AZ∗

q
+ 3H 2AG1

+ 3AZ∗

q
+ 2H

+ 5H + InvZ∗

q
+ 19MG1

+ 3MG1
+RZ∗

q
+ 3ExG2

+ InvG1
+ InvG2

+ 8MZ∗

q
+ 3RZ∗

q
+ 5MG1

+ 2MG2
+ 4MZ∗

q

+ 3P + 5RZ∗

q
+ 2ψ

Verifying 16AG1
+ (11t − 7)AZ∗

q
2AG1

+ 3H +MG1
+ 4P (2 + |RL|)AG1

+ 4ExG2
+ 2H

+ (2t+ 11)H + (5t − 1)InvZ∗

q
+ InvG1

+ InvG2
+ 4MG1

+ 2ExZ∗

q
+ (28 + |RL|)MG1

+ 4MG2
+ 2|RL|P + 2ψ

+ 2MG2
+ (26t + 4)MZ∗

q
+ 8P

Opening |RL|MG1
H + 4P |RL|AG1

+ 2|RL|P

Arbitrating MG1
H + 4P (UNABLE)

tings. Moreover, the last row’s (UNABLE) entry show
that, unlike our scheme, Boneh and Shacham’s scheme
allows key generating entities to impersonate subgroup
members, which removes the possibility for trusted third
parties to deny any subgroup member’s claim that she
has been the victim of an impersonation.

Table 3 also reveals that, while being executable in
constant time, the User-Key Generation algorithm of
our proposed scheme is more computationally demand-
ing than Boneh and Shacham’s, yet significantly more ef-
ficient than Chen et al.’s (which requires one signature
certificate to be issued for each signature). The Sign-
ing procedure of Chen et al.’s scheme is the most efficient
among the three compared ones. However, due to the very
high storage and computational requirements of Chen et
al.’s User-Key Generation procedure, our Signing proce-
dure improves on Boneh and Shacham’s due to the fact
that it requires no pairing computation. The greatest
advantage of our scheme concerns the verification of sig-
natures. Our scheme requires only 8 pairings, compared
to 2|RL| in the case of Boneh and Schacham’s scheme.
Hence, our scheme is advantageous when |RL| > 8 (using
the computational costs presented [21]). Moreover, this
improvement is significant when revocation lists are either
large or growing. The Opening procedure of our scheme
is similarly more efficient than Boneh et Shacham’s. Note
that Chen et al.’s scheme did not present a mechanism to
check the revocation status of signers at signature verifi-
cation time. Such a mechanism could however be added,
and would require |RL| additional pairings. For Chen et
al.’s Opening algorithm, a revocation bit could be associ-

such an approach is not computationally scalable to large hierar-
chies. Moreover, such an approach would allow attackers to easily
target the key distribution entity, and launch efficient denial of ser-

vice attacks.

ated with each signature certificate entry in the leader’s
member list. This would allow Opening procedures to
be executed in constant time, but would not remove the
O(|SIG|) storage requirement, where |SIG| is the num-
ber of signatures to be issued by all users of the system.
Another interesting comparison can be made between our
HIBGS scheme and Boneh and Franklin’s anonymous au-
thentication scheme with subset queries [7]. Compared
to this scheme, our scheme has constant computational
requirements for Signing (compared to O(|GM |), where
|GM | is the number of subgroup leaders in the whole
hierarchy.) Furthermore, the computational cost of our
scheme’s Verifying procedure grows only logarithmically
with respect to the number of subgroup leaders in the
underlying hierarchy. This stands in contrast with Boneh
and Franklin’s analogous algorithm, which grows linearly
with respect to |GM |.

5 Security

This section presents the security guarantees of our pro-
posed HIBGS scheme. We first present the threat model,
and then state three security theorems. Due to space limi-
tations, proofs of these theorems are only presented in the
extended version of this paper.

5.1 Threat Model

We propose a threat model for HGS schemes with PSI, us-
ing Bellare et al.’s framework [3]. The model is presented
in terms of three fundamental properties which this class
of HGS schemes may be expected to have.

The first property (correctness) ensures that the sign-
ing and verifying procedures of the HGS scheme are com-
plementary (i.e. that each group signature is valid if
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and only if it was properly issued). The second property
(full traceability) ensures that no coalition of subgroup
members and subgroup leaders can generate a group sig-
nature which cannot be opened or traced back to some
member of the coalition. The third property (full selfless
anonymity) avoids the possibility that valid group signa-
tures leak information about their signers. Following the
approach of Boneh and Shacham [9], we consider full self-
less anonymity (as opposed to full anonymity) in order
to underline the fact that signers are assumed to be able
to recognize (open) their own signatures. In other words,
signatures are not assumed to be anonymous to their own
issuers. The second and the third properties are described
via two games in which an attacker attempts to break the
desired property.

Note that, unlike Boneh and Shacham’s threat model
[9], our model assumes that key issuers can be compro-
mised without subgroup members running the risk of be-
ing impersonated by key issuers. We believe that this
subtle difference is significant, because, in practice, sub-
group leaders (by whom key issuers are typically instanti-
ated) cannot be assumed never to attempt to maliciously
impersonate their subgroup members. Each of the three
security requirements is formally presented below.

Correctness:

A HGS scheme is said to satisfy the correctness property
if:

∀ m ∈ M, ∀ i ∈ {1, 2, · · · , nIDt
}

Verifying(RL, m, Signing(m, dIDt[i]
) = valid ⇐⇒

rtIDt[i]
/∈ RL

Full Traceability:

Let Ψ be a HIBGS scheme. The following game, between
a challenger Ch and an attacker A, is considered:

Setup: Given a security parameter k, Ch uses Ψ’s
Root Setup algorithm to generate the cryptosystem’s
public and private parameters – keeping the private
parameters secret while giving the public ones to A.
For each subgroup leader IDt, Ch also provides A
with IDt’s revocation token vector RL(i,IDt)

and sets
UIDt

to be the empty set, where UIDt
is the set of

IDt’s subgroup members who collude against Ch.

Queries: A makes a polynomially bounded number
of queries of the following type:

– Public Key: Given a subgroup leader’s ID-
tuple ID(i,ti) = (ID(i,1), · · · , ID(i,ti)), Ch must

return the public key associated with ID(i,ti).

– Signing: Given a signer’s identifier ID(i,ti)[j]
(where 1 ≤ j ≤ nID(i,ti)

) and an arbitrary mes-

sage m, Ch computes and returns to A the sig-
nature σ = Signing(m, dIDt[j]

) of m.

– Compromise:

∗ Leader Compromise: Given a subgroup
leader’s ID-tuple ID(i,ti), Ch responds
with (dID(i,ti)

, skID(i,ti)
, RLID(i,ti)

), where

dID(i,ti)
is ID(i,ti)’s private key, skID(i,ti)

is ID(i,ti)’s user secret key vector, and

RLID(i,ti)
is ID(i,ti)’s user revocation token

vector.

∗ User Compromise: Given a signer’s identi-
fier ID(i,ti)[j] (where 1 ≤ j ≤ nID(i,ti)

), Ch

appends j to UID(i,ti)
(the known coalition,

from ID(i,ti)’s subgroup, that is attempt-
ing to forge a signature) and responds with
dID(i,ti)

[j] = (mgtID(i,ti)[j]
, skID(i,ti)

[j]),

where mgtID(i,ti)
[j] is ID(i,ti)[j]’s member-

ship generating token and skID(i,ti)[j]
is

ID(i,ti)[j]’s secret key.

Forgery: A chooses a subgroup leader’s ID-tuple
ID

∗

t , and sends to Ch the following: a message m∗,
and a signature σ∗.

The attacker A wins the Traceability game if either one
of the following conditions is satisfied: (A) A proves that
Ch issued incoherent answers during the game; or (B) the
following are true: (B.1) σ∗ is accepted by the verifica-
tion algorithm as a valid signature on m∗, with respect
to ID

∗

t ; (B.2) either σ∗ traces to some user outside of the
coalition UID

∗

t
\RL∗

ID
∗

t

6 (using the Opening procedure),

or the Opening algorithm fails; and (B.3) σ∗ is nontrivial,
i.e., A did not obtain σ∗ by making a signing query for
m∗ with any of ID

∗

t ’s signers.
The following definition is predicated on the assump-

tion that the security of HGS schemes is to be proved in
the random oracle model.

Definition: A forger A (τ, ncomp, nsig, npk, ε)-breaks
traceability in a HGS scheme if: (1) A runs in time at
most τ ; (2) A makes at most ncomp Compromise queries,
at most nsig Signing queries, and at most npk Public Key
queries; and (3) the probability that A wins the game is
at least ε, where the probability is taken over the coin
tosses of A and the randomized key generation and sign-
ing algorithms.

Selfless Full Anonymity:

For selfless full anonymity, the following game, between
a challenger Ch and an attacker A, is considered:

Setup: Given a security parameter k, Ch uses Ψ’s
Root Setup algorithm to generate the cryptosystem’s
public and private parameters - keeping the private
parameters secret while giving the public ones to A.

Queries: A makes a polynomially bounded number
of queries of the following type:

6Note that, without loss of generality, the revocation list RL
ID

∗

t

of ID
∗

t ’s subgroup could be set to the empty set.
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– Public Key: Given a subgroup leader’s ID-
tuple ID(i,ti) = (ID(i,1), · · · , ID(i,ti)), Ch must

return the public key associated with ID(i,ti).

– Signing: Given a signer’s identifier ID(i,ti)[j]
(where 1 ≤ j ≤ nID(i,ti)

) and an arbitrary mes-

sage m, Ch computes and returns to A the sig-
nature σ = Signing(m, dIDt[j]

) of m.

– Compromise:

∗ Leader Compromise: Given a subgroup
leader’s ID-tuple ID(i,ti), Ch responds
with (dID(i,ti)

, skID(i,ti)
, rtID(i,ti)

), where

dID(i,ti)
is ID(i,ti)’s private key, skID(i,ti)

is ID(i,ti)’s user secret key vector, and

rtID(i,ti)
is ID(i,ti)’s user revocation token

vector.

∗ User Compromise: Given a signer’s identi-
fier ID(i,ti)[j] (where 1 ≤ j ≤ nID(i,ti)

), Ch

appends j to UID(i,ti)
(the known coalition

from ID(i,ti)’s subgroup) and responds with
dID(i,ti)[j]

= (mgtID(i,ti)
[j], skID(i,ti)[j]

),

where mgtID(i,ti)
[j] is ID(i,ti)[j]’s member-

ship generating token, and skID(i,ti)
[j] is

ID(i,ti)[j]’s secret key.

– Revocation: Given a signer’s identifier
ID(i,ti)[j] (where 1 ≤ j ≤ nID(i,ti)

), Ch

responds with ID(i,ti)[j]’s revocation token
rtID(i,ti)[j]

.

– Opening: Given the ID-tuple IDt of a claimed
subgroup leader, and a signature σ ∈ S which
is valid with respect to IDt, Ch returns either
“Fail” or the identifier IDt[i] of σ’s signer.

Challenge: A outputs a target subgroup leader’s
ID-tuple ID

∗

t , a message m∗, and two indices i0 and

i1 (where 1 ≤ i0, i1 ≤ nID
∗

t
). With respect to ID

∗

t , A
must have made no Leader Compromise, User Com-
promise, or User Revocation queries for either in-
dex. Moreover, no Leader Compromise query should
have been issued on ID

∗

t ’s parent. The challenger Ch
chooses a bit b ∈ {0, 1} uniformly at random, com-
putes a signature σ∗ = Signing(m∗, dID

∗

t [ib]
) on m∗

by user ID
∗

t [ib], and provides A with σ∗.

Restricted Queries: After obtaining the challenge,
algorithm A can make additional queries of the chal-
lenger, restricted as follows:

– Public Key: A issues Public Key queries as
before.

– Signing: A issues Signing queries as before.

– Compromise: As before, but A cannot make
Leader Compromise queries with ID

∗

t , or User

Compromise queries for i0 or i1, with ID
∗

t .

– Revocation: As before, but A cannot make
Revocation queries for i0 and i1, with ID

∗

t .

– Opening: As before, but A cannot make Open-
ing queries for i0 and i1, with ID

∗

t .

Output: A outputs a bit b′, its guess of b.

A wins the Anonymity game if either one of the follow-
ing conditions is satisfied: (A) A proves that Ch issued
incoherent answers during the game; or (B) b′ = b.

Definition: An exposer A (τ, ncomp, nsig, npk, ε)-breaks
selfless full anonymity if: (1) A runs in time at most τ ;
(2) A makes at most ncomp Compromise queries, at most
nsig Signing queries, and at most npk Public Key queries;
and (3) the advantage |Pr[b = b′]− 1

2 | is at least ε, where
the probabilities are taken over the coin tosses of A, of
the randomized key generation and signing algorithms,
and the choice of b.

Definition: A hierarchical group signature scheme
is (τ, ncomp, nsig, npk, ε)-secure if it is correct, if no
polynomially-bounded adversary (τ, ncomp, nsig , npk, ε)-
breaks full traceability, and if no polynomially-
bounded adversary (τ, ncomp, nsig, npk, ε)-breaks selfless
anonymity.

5.2 Impersonation Threats

Since there are many different classes of impersonation
attacks, we specify in this section the assumptions made
in our threat model regarding impersonation.

Consider the following question: what happens if a ma-
licious party creates a new subgroup ? This could be
done either to maliciously study the behavior of joining
subgroup members, or to control the security privileges
of joining members. Our threat model does not address
such a possibility, and our proposed scheme is therefore
not intended to be protect against attacks of this nature.
A related concern is the following: what happens if a
malicious party impersonates a valid subgroup leader, in
such a way that a legitimate user joins the impersonated
leader’s subgroup ? Once again, our threat model does
not take into consideration such a possibility, and our HI-
BGS is therefore not designed to protect against this class
of impersonation attacks.

The strength of our scheme, however, is to provide a
mechanism which detects the impersonation of subgroup
leaders in their relationship with existing subgroup mem-
bers. Indeed, we require each joining subgroup member
to co-generate, with her subgroup leader, an authenti-
cation key which does not solely depend on the leader’s
HIBGS-based private key. This authentication key should
be unique to the pair formed by the joining subgroup
member and the subgroup leader. The authentication
key is then used, in subsequent communications, to au-
thenticate the subgroup leader. This avoids the risk of
impersonation of subgroup leaders which have not been
compromised.
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5.3 Security Theorems

Theorem 1. Our proposed HIBGS scheme satisfies the
correctness property.

Theorem 2. Let T be a tree-shaped hierarchy in which
any proportion of ID-tuples (ID1, · · · , IDt) having a com-
mon root branch ID1 is a non-negligible quantity with
respect to a security parameter k. Assume that, in our
proposed HIBGS scheme, all hash functions are random
oracles. Suppose also that there exists an attacker A,
which (τ, ncomp, nsig, npk, ε(k))-breaks traceability in our
scheme. Then, there exists an algorithm B which solves
the BDH problem, in time O(τ), with non-negligible ad-
vantage at least

ε(k)
nrb − 1

nrb

(1 − δ)ncomp+nsig
1

pol(k)
,

where nrb is the number of root branches in T, δ is
the largest proportion of ID-tuples having a common root
branch, and pol is a polynomial such that 1

p(k) is a lower

bound of all proportions of ID-tuples having a common
root branch.

Theorem 3. Let k be a security parameter. Assume
that the hash functions of our proposed HIBGS scheme
are random oracles. Suppose also that there exists an
attacker A, which (τ, ncomp, nsig , npk, ε(k))-breaks selfless
full anonymity in our scheme. Then, there exists an al-
gorithm B which solves the DDL problem, in time O(τ),
with non-negligible advantage at least ε(k).

6 Conclusion

The aim of this paper was to propose a cryptographic
scheme suitable for hierarchical anonymous authentica-
tion (HAA). HAA enables routing and filtering, in large
and hierarchically-structured partially-hidden networks.
Moreover, HAA supports privacy-enhanced access con-
trol in settings in which the hierarchical subgroup struc-
ture of a large group is public, and one seeks to determine
whether a user belongs to a given subgroup without com-
promising the anonymity of this user.

We devised a threat model for a class of hierarchical
group signature schemes that are suitable for HAA, and
we described a hierarchical ID-based group signature (HI-
BGS) scheme which is provably secure, in the random
oracle model, under the proposed threat model. Impor-
tant features of the proposed scheme include its efficiency
and its security. In terms of computational efficiency: the
scheme exempts signature verifiers from the need to ob-
tain certified copies of subgroup public keys; moreover,
the proposed scheme requires the least number of pairing
computations, for signing and verifying procedures (com-
pared with other pairing-based group signature schemes);
furthermore, the scheme’s signing and verifying costs grow
only logarithmically with respect to the number of sub-
groups in the hierarchy. In terms of security: the scheme

provides a mechanism for signature verifiers to locally as-
sess the revocation status of signers (and thereby the va-
lidity of group signatures); moreover, the scheme offers
the guarantee that non-compromised subgroup members
cannot be impersonated by their subgroup leaders.

One limitation of the proposed scheme is the fact that
the computational cost of signature verification grows lin-
early with respect to the size of revocation lists. This is
therefore an area of future research. Extensions of our
scheme include the design of threshold and forward-secure
ID-based group signature/signcryption schemes.
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