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Abstract

The joint sparse form (JSF) for the non-adjacent form
(NAF) representation of two large integers a and b, was
proposed by Solinas. Then Ciet extended it to the φ-JSF
for the φ-NAF representations of a and b using the endo-
morphism φ when computing aP+bQ , where P and Q are
two points on the elliptic curve, in elliptic curve cryptog-
raphy (ECC). It can be observed that τ -JSF is a special
case of φ-JSF. In this paper, we will extend the τ -JSF
idea to window 3 (RTNAF3), referred to as window three
τ - joint sparse form (WTT-JSF). Mathematical analysis
shows that a number of additions can be eliminated with
this representation. Moreover, a detail derivation of the
length and density of this form is given. The density is
11/27 which is lower than 7/16 when RTNAF3 is applied
directly.
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1 Introduction

Elliptic curve cryptosystem (ECC) was first proposed by
Koblitz [5] and Miller [7] independently in 1985, and has
been widely studied in recent years due to its higher se-
curity strength per key bit over existing public key cryp-
tographic algorithms such as RSA [8]. The best known
algorithm for solving the underlying mathematical prob-
lem of ECC, referred to as the elliptic curve discrete log-
arithm problem, takes full exponential time [11]. On the
contrary, sub-exponential-time algorithms are known for
tackling the integer factorization and the discrete loga-
rithm problems that RSA and DSA are relied on [3, 4].
This implies that the algorithms for solving the elliptic
curve discrete logarithm problem become infeasible much

more rapidly as the problem size increases than those al-
gorithms for the integer factorization and the discrete log-
arithm problems. For this reason, ECC offers a security
level equivalent to RSA and DSA while using a far smaller
key size [11].

In ECC applications such as signature verification in
Elliptic Curve Digital Signature Algorithm (ECDSA) [1],
there is frequently a need to compute the aP + bQ op-
eration, where a are b are large integers, P and Q are
two points on the elliptic curve. In order to perform this
computation efficiently, the joint sparse form (JSF) was
proposed [10]. It is based on the non-adjacent form (NAF)
representation of a and b, with a little change. Further-
more, the φ-JSF was given by Ciet in [2] after defined the
endomorphism φ. To obtain the φ-JSF, the integers a and
b are first decomposed to φ-NAF, with a little modifica-
tion. In [9], the RTNAF representation of k is utilized
to speed up the computation of kP in Koblitz curve with
base of endomorphism τ , where τ is a special case of φ.
Thus, the τ -JSF can be obtained by applying τ to φ in
φ-JSF. The window technique can be applied to RTNAF
representation [9] and the corresponding representation
is denoted as RTNAFw where w is the window size. In
this paper, we will give a JSF of RTNAF3, in which a
and b are represented by RTNAF3 with a little modifica-
tion to obtain as many double zero positions as possible.
We call this form the window three τ - joint sparse form
(WTT-JSF).

The rest of the paper is organized as follows. In Section
2, the JSF is briefly introduced while the RTNAFw is
described in Section 3. In Section 4, the algorithm for
obtaining the proposed WTT-JSF is given, together with
a detail analysis of the length and the density. Finally, a
conclusion is drawn in Section 5.
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2 JSF Representation

In order to speedup the computation of aP + bQ, Al-
gorithm 1 is given to obtain the JSF of a given pair of
integers a and b. The notation c = a mods b means that
c ≡ a mod b and −b/2 ≤ c < b/2.

Algorithm 1 (JSF)
Input Nonnegative integers a and b

Output JSF of a and b in the form of (u0,m−1,
u0,m−2, · · · , u0,1, u0,0) and (u1,m−1, u1,m−2, · · · , u1,1, u1,0)

Process

1 Set j = 0, k0 = a and k1 = b
2 While k0 > 0 or k1 > 0 do
3 For i = 0 to 1 do
4 If ki is even
5 then u = 0
6 else
7 u = ki mods 4
8 If ki ≡ ±3(mod8) and k1−i ≡ 2(mod4)
9 then u = −u
10 Set ui,j = u
11 Next i
12 For i = 0 to 1 do
13 ki = (ki − ui,j)/2
14 Next i
15 j = j + 1
16 End while

The JSF possesses the following two properties,
namely, JSF-1 and JSF-2, as proved in [10].

(JSF-1) Of any three consecutive positions, at least one
is a double zero. In other words, for any positions i and
j, we have ui,j+k = u1−i,j+k = 0 for k = 0 and ±1.

(JSF-2) The probability of occurrence of double zero,
which satisfies ui,j = u1−i,j = 0 for any position j, is 1/2.

After obtained the JSF of a and b, we have

aP + bQ = 2(· · · (2(2(u0,m−1P + u1,m−1Q) +

(u0,m−2P + u1,m−2Q)) + (u0,m−3P +

u1,m−3Q)) + · · ·) + (u0,0P + u1,0Q).

(1)

If P±Q are precomputed and stored, (m−1) doublings
and (m − 1)/2 additions are required in Equation (1). If
aP and bQ are calculated separately, 2(m − 1) doublings
and 2(m−1)/3 additions are required. On the other hand,
(m− 1) doublings and (m− 1)5/9 additions are needed if
the NAF representations of a and b are applied to Equa-
tion (1). From the above analyzes, it can be observed that
JSF leads to a reduction in the computational complexity
of aP + bQ.

3 Window RTNAF

Koblitz curve was first suggested in [6]. Its equation is

Ea : y2 + xy = x3 + ax2 + 1.

It is defined over the finite field GF (2m), with a = 0
or 1. There is an endomorphism τ defined on the elliptic
curve group Ea(GF (2m)). For a given point P = (x, y)
belonging to Ea(GF (2m)), we have

τ(x, y) = (x2, y2).

As (τ2 + 2)P = µτP , where µ = (−1)(1−a), τ can be
regarded as a complex number satisfying (τ2 + 2) = µτ

and so we have τ = µ+
√

−7
2 . The ring Z(τ) is a set

of a + bτ for all a, b ∈ Z. In order to compute kP ,
the value of γ = x0 + x1τ = k mod δ is first calcu-
lated by the partial reduction modulo δ method [9], where
δ = (τm − 1)/(τ − 1). Then it is decomposed into a poly-
nomial of τ with coefficient 0 or ±1. This polynomial is
denoted as RTNAF(k). Finally, kP can be obtained by
using RTNAF(k).

The window technique can be applied to RTNAF(k)
and the corresponding representation is denoted as
RTNAFw(k). It is described as follows.

Let tw = 2Uw−1U
−1
w mod 2w, where {Uk} is the Lucas

sequence defined by U0 = 0, U1 = 1, Uk+1 = µUk − 2Uk−1

for k ≥ 1. Define αi ≡ i mod τw for i ∈ {1, 3, . . . , (2w−1−
1)}. The RTNAFw method works as follows. Firstly,
the partial reduction modulo method is used to ob-
tain θ = x0 + x1τ = k mod δ, then RTNAFw(k) =

TNAFw(θ) =
∑l−1

i=0 uiτ
i is obtained by Algorithm 2,

where ui ∈ {0,±α1,±α2, . . . ,±α2w−1
−1}.

Algorithm 2 (TNAFw)
Input θ = x0 + x1τ, w, tw , αi = βi + γiτ for all i ∈
{1, 3, . . . , (2w−1 − 1)}

Output TNAFw(θ)

Process

1 Set i = 0;
2 While x0 6= 0 or x1 6= 0 do
3 If x0 is odd
4 then u = x0 + x1tw mods 2w

5 If u > 0
6 then s = 1
7 else s = −1, u = −u
8 x0 = x0 − sβu, x1 = x1 − sγu, ui = sαu

9 else ui = 0
10 t = x0, x0 = x1 + µx0/2, x1 = −t/2, i = i + 1
11 End while

4 WTT-JSF

As the JSF is for the NAF representation of integers, it is
natural to extend it to the RTNAF representation. How-
ever, Ciet has presented a φ-JSF form in [2], to which
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RTNAF-JSF is a special case. Here we extend the JSF
idea to RTNAFw . We will study the case of w = 3, which
is called window three τ - joint sparse form (WTT-JSF).
The algorithm for generating this form will be described
and the length and density of this form will be analyzed.

For a given element α ∈ Z(τ), let (TNAF3(α))5 denote
the five least significant bits of TNAF3(α). Let × denote
the nonzero bit of (TNAF3(α))5. In the computation of
aP + bQ, we first obtain the WTT-JSF of a and b by
Algorithm 3. Then we compute

aP + bQ = τ(· · · (τ(τ(u0,l−1P + u1,l−1Q)

+(u0,l−2P + u1,l−2Q)) + (u0,l−3P

+u1,l−3Q)) + · · ·) + (u0,0P + u1,0Q).

where the WTT-JSF of a and b is (u0,l−1, u0,l−2, . . .,
u0,1, u0,0) and (u1,l−1, u1,l−2, . . ., u1,1, u1,0), respectively.

Algorithm 3 (WTT-JSF)
Input Integer a and b, t3, αi = βi + γiτ = i mod τ3 for
i ∈ {1, 3}

Output WTT-JSF of a and b

Process

1 Compute β = x0 + y0τ = a mod δ
and γ = x1 + y1τ = b mod δ
l0 = β = x0 + y0τ , l1 = γ = x1 + y1τ , j=0

2 While l0 6= 0 or l1 6= 0 do
3 For i = 0 to 1 do
4 If xi is odd
5 then ui,j = 0
6 else u = xi + yit3 mods 8
7 If(TNAF3(li))5 = (×, 0, 0,×, 0) and

(TNAF3(l1−i))5 = (0,×, 0, 0,×)
8 then u = (u-2) mods 8
9 else
10 If u > 0
11 then s = 1
12 else s = −1 and u = −u
13 ui,j = sαu, xi = xi − sβu, yi = yi − sγu

14 Next i
15 For i = 0 to 1 do
16 t = xi, xi = yi + µxi/2, yi = −t/2
17 li = xi + yiτ
18 Next i
19 j = j + 1
20 End while

The WTT-JSF possesses the following three proper-
ties, namely, WTT-JSF-1, WTT-JSF-2 and WTT-JSF-3.

(WTT-JSF-1) Of any 5 consecutive positions, at least two
of them contain double zero.
Proof:
For any element li, the possible value set of (TNAF3(li))5
is S = {(0, 0, 0, 0, 0), (×, 0, 0, 0, 0), (0,×, 0, 0, 0),
(0, 0,×, 0, 0), (0, 0, 0,×, 0), (0, 0, 0, 0,×), (×, 0, 0,×, 0),

Table 1: The states A, B, and C

Sj u0,j = u1,j = 0 Sj+1

A Yes A, B, C
B No A
C No B

(×, 0, 0, 0,×), (0,×, 0, 0,×)}. Thus, the number of possi-
ble cases of ((TNAF3(l0))5, (TNAF3(l1))5) are 81.

If ((TNAF3(l0))5, (TNAF3(l1))5) is ((×, 0, 0,×, 0),
(0,×, 0, 0,×)) or ((0,×, 0, 0,×), (×, 0, 0,×, 0)), they
will be changed to ((×,×, 0, 0, ∗), (0,×, 0, 0,×)) or
((0,×, 0, 0,×), (×,×, 0, 0, ∗)) by Algorithm 3, where *
stands for zero or nonzero bit. For the second and third
rightmost positions, they are both double zero.

For the other cases, the algorithm will not modify
them. However, it can be checked one by one that there
are at least two double zero positions at a consecutive of
five positions. Q.E.D.

(WTT-JSF-2) The length of WTT-JSF is at most m + 4.
Proof:
The WTT-JSF length is the longer one of the WTT-JSF
of the two integers. Moreover, the representation is based
on RTNAF3 with length at most m + 1. The possible
modification occurs when the TNAF3 is (×, 0, 0,×, 0).
By checking one by one on the selection of u = ±1 and
whether “×” is ±α1 or ±α3, it can be found that the
change made by Algorithm 3 will only affect three bits
after (×, 0, 0,×, 0). Thus, this property is held. Q.E.D.

As the length is limited and the algorithm is determin-
istic, the WTT-JSF of an integer pair a and b exists and
only exists in one form.

For the third property, WTT-JSF-3, the definition and
lemmas listed below are needed. In the course of running
Algorithm 3, every loop has a state Sj = ((TNAF3(l0))5,
(TNAF3(l1))5) and an output (u0,j, u1,j). For every iter-
ation j, it can be regarded as generating (u0,j , u1,j) with
input Sj and changing the state to Sj+1. For all the
81 possible cases, they can be classified as three differ-
ent states, denoted by A, B and C. Their relations and
outputs are listed in Table 1.

State A indicates that it will output double zero. For
state B, it will not output any double zero in this iteration,
but will do so in the next iteration. In other words, state
Sj+1 will generate double zero. However, state C will not
give any double zero output in the first two loops, but will
do so after two iterations. This means that the output of
states Sj and Sj+1 is not double zero, but that of Sj+2 is.

Lemma 1 P (ui,j+1 = 0 | ui,j = 0) = 5/8 and
P (ui,j+1 = × | ui,j = 0) = 3/8 for all j.

Proof:

P (ui,j+1 = 0 | ui,j = 0)
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= P (ui,j−1 = ×)P ((ui,j+1 = 0 | ui,j = 0 | ui,j−1 = ×) +

P (ui,j−1 = 0)P ((ui,j+1 = 0 | ui,j = 0) | ui,j−1 = 0)

= P (ui,j−1 = ×)P (ui,j+1 = 0 | ui,j = 0, ui,j−1 = ×) +

P (ui,j−1 = 0)P (ui,j+1 = 0 | ui,j = 0, ui,j−1 = 0)

= 1/4 + (3/4)/2 = 5/8.

Using the same method, it can be proved that
P (ui,j+1 = × | ui,j = 0) = 3/8. Q.E.D.

Lemma 2 P (Sj+1 = A | Sj = A) = 25/64, P (Sj+1 =
B | Sj = A) = 24/64, P (Sj+1 = C|Sj = A) = 15/64 for
all j.

Proof:

P (Sj+1 = A | Sj = A)

= P (u0,j+1 = 0 | u0,j = 0)P (u1,j+1 = 0 | u1,j = 0)

= 25/64.

P (Sj+1 = B | Sj = A)

= P (u0,j+2 = 0, u0,j+1 = 0 | u0,j = 0)

P (u1,j+2 = 0, u1,j+1 = × | u1,j = 0) +

P (u1,j+2 = 0, u1,j+1 = 0 | u1,j = 0)

P (u0,j+2 = 0, u0,j+1 = × | u0,j = 0) +

P (u1,j+2 = 0, u1,j+1 = × | u1,j = 0)

P (u0,j+2 = 0, u0,j+1 = × | u0,j = 0)

= 24/64

P (Sj+1 = C | Sj = A)

= 1 − P (Sj+1 = A | Sj = A) − P (Sj+1 = B | Sj = A)

= 15/64.

Q.E.D.

After the preparation of state definition, Lemmas 1 and
2, we have the third property.

(WTT-JSF-3) The density of WTT-JSF is 11/27.
Proof:
Let

P (Sj = A) = P (Sj+1 = A) = P (A),

P (Sj = B) = P (Sj+1 = B) = P (B), and

P (Sj = C) = P (Sj+1 = C) = P (C).

Then

P (A) = P (B)P (A|B) + P (A)P (A|A)

= P (B) + P (A)(25/64).

P (B) = P (C)P (B|C) + P (A)P (B|A)

= P (C) + P (A)(24/64).

P (C) = P (A)P (C|A) = P (A)(15/64).

P (A) + P (B) + P (C) = 1.

From above equations, it can be obtained that

P (A) = 16/27 and

P (u0,j = u1,j = 0) = P (A)

= 16/27.

Hence WTT-JSF-3 holds. Q.E.D.

5 Conclusion

Combining the ideas of Solinas and Ciet, a new represen-
tation form, WTT-JSF, is proposed in this paper. Math-
ematical analysis shows that the length of WTT-JSF is
approximately the same as that of RTNAF3 and its den-
sity is 11/27. In the computation of aP + bQ in elliptic
curve cryptography, if aP and bQ are calculated sepa-
rately, about 2m times of τ operations and m/2 addi-
tions are needed. If the same position of RTNAF3(a) and
RTNAF3(b) is regarded as one column, then m times of
τ operations and 7m/16 additions are required, together
with 4 extra storages. However, with the same number of
storages and approximately the same number of τ opera-
tions, there are only 11m/27 additions involved when our
method is used. This shows that the WTT-JSF repre-
sentation leads to a reduction in the computational com-
plexity over other forms. One can also extend WTT-JSF
from window 3 to any window size. However, it is not
beneficial as 2w−1 extra storages are required but only a
very limited number of additions are saved.
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