
International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 105

Active Trial-and-error Attack on SASC Protocols

Heeyoul Kim, Younho Lee, Seong-Min Hong, and Hyunsoo Yoon

(Corresponding author: Seong-Min Hong)

Department of EECS, Korea Advanced Institute of Science and Technology

373-1 Guseng-dong, Yuseong-gu, Daejeon 305-701, Rep. of Korea

(Email: {hykim, yhlee, smhong, hyoon}@camars.kaist.ac.kr)

(Received July 1, 2005; revised and accepted Aug. 2, 2005)

Abstract

SASC (Server-Aided Secret Computation) protocols en-
able a client (a smart card) to borrow computing power
from a server (e.g., an untrustworthy auxiliary device like
an ATM) without revealing its secret information. In this
paper, we propose a new active attack on server-aided
secret computation protocols. We describe our attack
by using Beguin and Quisquater’s protocol. (We modify
the protocol in order to immunize it against Nguyen and
Stern’s lattice reduction attack.) The proposed attack re-
duces the search space P to 1

p
+ pP , where 0 < p < 1. It

is 2
√
P for optimal p. Practically, it effectively threatens

SASC protocols because an attacker can choose an appro-
priate value p according to the situation. Therefore, the
security parameters in the existing SASC protocols must
be reconsidered.

Keywords: Active attack, SASC protocol, smart card

1 Introduction

Management of secret information is one of the most im-
portant problems that needs to be solved in cryptosys-
tems. It is especially necessary to use a device that can
carry secret information in public-key cryptosystems such
as RSA [14] because of their large key sizes. Smart cards
(plastic cards to which IC chips are attached) are very use-
ful for this purpose due to their portability and security.
Additionally they have computability, and are widely used
as electronic wallets in electronic commerce, ID cards, and
so on.

However, RSA signature generation requires such a
heavy computation that devices with poor computing
power such as smart cards cannot perform it efficiently.
To answer this weakness, there have been many studies on
how to enable a smart card to borrow computing power
from a server. (As it is generally used in cooperation
with auxiliary devices including ATMs, it is natural to
put more computing power into few large servers than

into portable smart cards.)

SASC (Server-Aided Secret Computation) protocols
enable a smart card (a client) to perform secret com-
putations faster with the aid of a server (an untrusted
auxiliary device like an ATM). Matsumoto, Kato, and
Imai proposed the first SASC protocol for the RSA sig-
nature generation [11], and it significantly accelerated the
computation. Afterwards, a lot of effective attacks that
can threaten SASC protocols have been designed and the
corresponding countermeasures also have been proposed
[1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17]. The previous
studies related to this topic are reviewed in [3, 8] in de-
tail.

Attacks on SASC protocols are divided into two
groups: passive attacks and active ones. A passive at-
tack does not disturb the protocol and uses the only in-
formation that can be obtained by observing it. Rep-
resentative passive attacks are Pfitzmann and Waidner’s
birthday-like attack [13] and Nguyen and Stern’s orthog-
onal lattice reduction attack [12]. On the other hand,
in an active attack, an attacker participates in the pro-
tocol as a malicious server and obtains additional infor-
mation by returning wrong results to the client. There
are some representative active attacks: Anderson’s one-
round attack which uses prime numbers [1], Shimbo and
Kawamura’s factorization attack [15] and Lim and Lee’s
generalized version of it [8], and Pfitzmann and Waidner’s
multi-round attack which uses the Jacobi symbol [13].

The one-round active attacks that can break the sys-
tem in one step are prevented by checking at the client
whether the resulting signature is correct [1, 8, 15]. How-
ever, the final signature checking cannot be the counter-
measure of the multi-round attack that reveals some infor-
mation by observing whether the client gives the correct
signature [13].

There are three protocols that were designed to be se-
cure against the Pfitzmann and Waidner’s multiround ac-
tive attack. Beguin and Quisquater proposed a server-
aided RSA computation protocol that is secure against
all known passive and active attacks including the multi-



International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 106

round attack [3]. Lim and Lee immunized Matsumoto,
Imai, Laih, and Yen’s two-phase protocols to all known
active attacks [8, 10]. Hong, Shin, Lee, and Yoon pro-
posed a new approach (blinding-based technique) which
adds and multiplies a series of random numbers with the
secret information to hide it [5].

Their common approach to the countermeasure of the
multi-round active attack is to newly decompose (or to
blind) the client’s secret with random values on each ex-
ecution of the protocol. In this paper, we show that a
risk is still present though the client re-decomposes its
secret every time. We propose a new attack that threat-
ens all the existing SASC protocols including Beguin and
Quisquater’s scheme, Lim and Lee’s scheme, and Hong
et al.’s blinding scheme. The proposed attack allows an
attacker (a malicious server) to guess the vector that is
used to decompose the secret information. (If the guess
is correct, the client gives the signature.) Although our
attack seems to be similar to Pfitzmann and Waidner’s
multi-round active attack, the proposed attack can be ap-
plied even if the SASC protocols newly select the random
numbers each time.

Our attack reduces the search space P(e.g., 264) to
1
p

+ pP , where p is the probability that the client gives
the correct signature. Theoretically, the search space can
be reduced to 2

√
P(e.g, 233). We also present several vari-

ants of the proposed attack to enable the attacker to select
p as he wants with finer granularity. The proposed attack
threatens all of the SASC protocols in the real world,
because an attacker can select an appropriate p accord-
ing to the available computing power and the number of
chances that he can participate in the protocol as a mali-
cious server. Practical threatening of the proposed attack
will be discussed in Section 4.2 in detail.

This paper is organized as follows. In Section 2, we
describe server-aided RSA computation protocols. We
explain our attack in Section 3. In Section 4, the search
space reduction by the proposed attack is computed, and
it’s practical meaning is discussed. In Section 5, we pro-
pose several variants of the proposed attack. Lastly, we
conclude in Section 6.

2 Server-Aided RSA Computa-

tion

In RSA, a signer computes two large primes p,q and their
product n and then chooses a random integer ν which
is reciprocal to φ(n)(= (p−1)(q−1)) and finds s which
satisfies sν ≡ 1 mod φ(n). In this setting, the signature
S for a message M is M s modn, and it can be verified by
examining whether Sν modn is M .

The objective of SASC protocols is to enable the
client to efficiently compute M s modn with the aid of
the server. The first SASC protocol used decomposi-
tion of secret s into several pieces (xi and ai, where

s =
∑m−1

i=0 xiai mod φ(n)), and reveals some of them(xi)
and conceals the others(ai) [11]. The more advanced

ones which have been designed since use a similar
basic decomposition with more refined techniques. The
proposed attack can be applied to all protocols that use
the basic decomposition.

Beguin and Quisquater’s Protocol

Although the proposed attack can be applied to all SASC
protocols, we use the Beguin and Quisquater’s protocol
in the detailed description of the proposed attack because
of the space limit. Now we describe the modified BQ
scheme. In the following description, wp = q(q−1 modp)
and wq =p(p−1 modq).

Client Server

choose randomly ~x and ~a :
~a = a0, a1, . . . , am−1 s.t. ai ∈ 0, . . . , h,

~x = x0, . . . , xm−1 s.t. 0 ≤ xi ≤ φ(n).

M, n, and ~x

−→ compute ~z :
~z = z0, z1, . . . , zm−1

s.t. zi = Mxi mod n.

~z

←−

compute zp and zq :
zp = Πm−1

i=0
z

ai
i mod p and zq = Πm−1

i=0
z

ai
i mod q.

compute s2 = s− s1 mod φ(n), where s1 =
∑m−1

i=0
aixi.

compute σp and σq :
σp = s2 mod (p− 1) + %p(p− 1),
σq = s2 mod (q − 1) + %q(q − 1),
where %p ∈R {0, . . . , q − 2}, and %q ∈R {0, . . . , p− 2}.

σp, σq

−→ compute yp and yq :
yp = Mσp mod n

yq = Mσq mod n

yp, yq

←−

compute S = wpSp + wqSq mod n, where
Sp = ypzp mod p and Sq = yqzq mod q.

If Sν mod n = M , then transmit S.

In the above protocol, if the attacker knows s1 then he can
factor public modulus n, because gcd(n, S−ypM

s1 mod
n) = p. This means that the secret information s is re-
vealed to the attacker. If the attacker succeeds in guessing
~a, then he can compute s1 =

∑m−1
i=0 aixi. Therefore, the

search space P is 1
2 (h+1)m. h and m are security parame-

ters, and they should be selected so as to make the search
space larger than 264 and also to minimize the amount of
computation.



International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 107

In [3], the authors state that their scheme is secure
against Pfitzmann and Waidner’s multi-round active at-
tack, because the client newly chooses decomposition vec-
tors ~x and ~a on each execution in their scheme. While the
multi-round active attack reveals a bit of information per
a trial (a round), the revealed information is useless to the
newly selected decomposition vectors. However, we show
that a risk is still present though the client re-decomposes
its secret every time. (Recently, their protocol was broken
by Nguyen and Stern’s lattice reduction attack. However,
the attack is a passive attack and out of scope of this let-
ter. Moreover, the attack is applicable to only Beguin and
Quisquater’s scheme whereas our active attack threatens
all the previous SASC protocols.)

3 Probabilistic Active Attack

In an active attack on SASC protocols, an attacker par-
ticipates in the protocol as a server and returns wrong
results to the client. In Beguin and Quisquater’s proto-
col, a malicious server can return ~z ′,y′

p, and/or y′
q instead

of ~z,yp and/or yq, respectively. By doing that, if he can
obtain useful information about the client’s secret s, it is
a successful active attack.

Beguin and Quisquater’s scheme newly chooses two
vectors ~x and ~a on each execution of the protocol to re-
sist against the multi-round active attack. (Lim and Lee’s
immunization technique also involves re-decomposing the
client’s secret every time.) However, it cannot remove the
possibility of active attacks.

If a malicious server guesses some parts of ~a with a
probability p and the client gives the answer whether or
not the guessing is correct, 1

p
trials are sufficient for the

attacker to guess it correctly on the average and the num-
ber of possible candidates for ~a is reduced directly pro-
portional to p.

The basic idea of the proposed attack is to enable the
malicious server to guess the ratios among ais, i.e., the
elements of ~a. If he succeeds in guessing, the client gives
the correct signature and this results in the reduction of
the search space for ais.

3.1 The Two-Term Attack

As described in Section 2, the knowledge of ais reveals
the secret s in Beguin and Quisquater’s protocol. In this
section, we explain the two-term attack to show the prin-
ciple of guessing the ratios among ais. The objective of
the two-term attack is to reduce the search space by guess-
ing r1,0, which is the ratio of a1 to a0. From now on, we
denote ai

aj
as ri,j .

Firstly, the malicious server computes l =
lcm(1, 2, . . . , h), and then returns z′0 and z′1 instead
of z0 and z1:

z′0 = M
(1+l

a′

1

a′

0

)x0

mod n, and

z′1 = Mx1−lx0 mod n. (1)

In Equation (1), a′
0 and a′

1 indicates the values that the
malicious server supposes as a0 and a1, respectively. Be-

cause a′
0 divides l, the exponent of z′0, that is (1+ l

a′

1

a′

0

)x0,

is always an integer. The malicious server returns correct
zis for 2 ≤ i ≤ m − 1, and conforms to the succeeding
steps as stated in the protocol.

If
a′

1

a′

0

is equal to r1,0 = a1

a0
, the following equation is

satisfied:

(z′0)
a0 × (z′1)

a1 ≡ Ma0x0+la1x0 × Ma1x1−la1x0 mod n

≡ Ma0x0 × Ma1x1 mod n

≡ (z0)
a0 × (z1)

a1 .

Therefore, the correct signature is generated and the
final signature checking is passed.

(z′0)
a0 × (z′1)

a1 ×
m−1∏

i=2

zai

i ≡ M s1 mod n. (2)

That is, if the card gives the correct signature, the server

can infer that
a′

1

a′

0

is equal to r1,0
1.

As the successful malicious server knows r1,0, he does
not need search a1(=a0×r1,0) separately. Also, because
a0×r1,0 should be less than or equal to h and a0 is an
integer, the range of a0 is limited according to r1,0. For
example, if r1,0 = 2, then a0 should be an integer less than
h
2 , which is half the original range. (If r1,0 is less than
one, the attacker should swap a0 and a1. For example,
if r1,0 = 1

2 , the attacker should search a1 instead of a0.
Then, the range of possible values of a1 is half the original
one.)

The probability of the success of the attack is that of
a′

1

a′

0

=r1,0. If we let the probability be p0, the search space

for ais, P , is reduced to p0×P . p0 will be computed in
Section 4.

3.2 Multi-Term Attack

The two-term attack can be generalized to be applied to
t terms. The malicious server returns z′is instead of zis,
where 0 ≤ i ≤ t − 1. t is even and z′is are as follows:

z′2k = M
(1+l

a′

2k+1

a′

2k

)x2k

mod n, and (3)

z′2k+1 = Mx2k+1−lx2k mod n, where 0 ≤ k ≤ t
2 − 1.

For i > t, the correct zis are computed and returned to
the client. And, the succeeding procedures are executed
as designated in the original protocol.

In Equation (3), if every
a′

2k+1

a′

2k

is equal to r2k+1,2k,

the correct signature is generated and the final signature
check is passed.

1In Equation (1), a0 cannot be zero. If the malicious server
guesses a0 as zero, he should swap the equations of z

′

0
and z

′

1
. And,

if a0 and a1 are all zeros, the correct signature is always generated
for any z

′

0
and z

′

1
. Therefore, the success of the attack means that

a
′

0
+ a

′

1
may be zero.



International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 108

If we let the probability of
a′

2k+1

a′

2k

= r2k+1,2k be pk,

the probability of a successful active attack is
∏ t

2
−1

k=0 pk.

Therefore,
∏ t

2
−1

k=0
1
pk

trials are sufficient to succeed with a

probability larger than 1− 1
e
.

As the successful malicious server knows r2k+1,2k,
where 0 ≤ k ≤ t

2 − 1, he does not need to search
a1, a3, . . . , at−1 separately, because a2k+1 =a2k×r2k+1,2k.
Also, the range of a2k is limited according to r2k+1,2k. As

a result, the search space P is reduced to
∏ t

2
−1

k=0 pk×P .

4 Risk Analysis

In this section, we compute the lower bound of the search
space and discuss the practical threat of our attack. Our
attack means the multi-term attack.

4.1 Minimum Search Space

If we let p be the probability that the attacker can success-
fully guess the secret, the attacker who performs a passive
attack 1

p
times can find secret s with a probability of one.

On the other hand, the attacker who performs an active
attack 1

p
times can find the secret with a probability of

1−(1−p)
1
p (=pa). The range of pa can be represented as

follows:

pa = 1 − (1 − p)
1
p > 1 − 1

e
≈ 0.63.

We adopt a new definition of search space to compute
the one reduced by the proposed active attack2.

Definition 1. In a server-aided secret computation
protocol, a search space is the minimum number of
trials that is required for the attacker to find the client’s
secret with a probability larger than 1 − 1

e
.

If we let P be the search space for a passive attack
against Beguin and Quisquater’s protocol, the one for our
attack, A, is as follows:

A = (

t
2
−1∏

k=0

1

pk

) + (

t
2
−1∏

k=0

pk) × P . (4)

We compute pk. Let d0 and d1 be integers between
zero and h, and let d1,0 be the ratio of d1 to d0. Then,
the number of (d0, d1) pairs which have the same d1,0 is

2We let p be the probability that the proposed attack succeeds.
If the attacker tries 5 ×

1

p
times, he can succeed with a very high

probability, larger than 0.99(≈ 1− 1

e5 ). Generally, c×
1

p
trials ensure

the success with a probability larger than 1−
1

ec . However, as each
trial is a Bernoulli trial, it conforms to a binomial distribution, and
the expected value of c ×

1

p
trials is c. That is, if the attacker tries

c ×
1

p
times, he succeeds in c values on the average. Therefore, we

choose the criterion value as 1 −
1

e
such that the expected value is

one.

bh×gcd(d0,d1)
max{d0,d1}

c. As pk is the probability of
a′

2k+1

a′

2k

=r2k+1,2k,

pk is as follows:

1

(h + 1)2
≤ pk =

bh×gcd(a2k,a2k+1)
max{a2k,a2k+1}

c + 1

(h + 1)2
≤ 1

h + 1
(5)

Every ai has a value between zero and h with same
probability. Therefore, the attacker chooses (a′

2k, a′
2k+1)

in the proportion of the number of (d0, d1)s which have
the same d1,0. Average value of pks, p̃k, is as follows:

p̃k =

h∑

i=0

(
i + 1

(h + 1)2
)2 =

(h + 2)(2h + 3)

6(h + 1)3
.

The average search space for the proposed attack is as
follows:

A = (p̃k)−
t
2 + (p̃k)

t
2 × P . (6)

When the two terms in Equation (6), (p̃k)−
t
2 and

(p̃k)
t
2 ×P , are the same, A has a minimum value. Such

optimal t is topt =− 1
2×logp̃k

P . As 0<
topt

m
<1, topt always

exists in the appropriate range. The search space for the
multi-term attack using topt terms is as follows:

A = (p̃k)−
topt

2 + (p̃k)
topt

2 × P
= 2 × (p̃k)−

topt

2

= 2
√
P .

Consequently, if we assume that active attacks can be
performed with no restriction, the search space P is re-
duced to 2

√
P . In [3], the authors selected security pa-

rameters h and m so that the search space would be 264.
However, the proposed attack reduces it to 233 for that
parameters, which can be easily searched thoroughly.

4.2 Practical Threatening

In the previous section, to compute the theoretical lower
bound of the search space, we assumed that active attacks
could be performed with no restriction. However, in the
real world, having more failures than expected in the final
signature check may cause alarm, and the card readers or
vendors will be suspected. Therefore, it is hard to assume
that active attacks can be tried unlimitedly.

However, it is sometimes possible to perform active
attacks with no restriction. For example, a lost card or
one whose owner is under menace is vulnerable to active
attacks with little restriction. In addition, as stated in
[13], it is not easy to inform a card’s owner if an active
attack has been performed, because a smart card does not
have a monitor or other auxiliary devices.

In any case, we should assume that active attacks
are possible. The attacker can choose an appropriate
t according to his computing power and the number of
chances in which he can participate as a malicious server.

For example, in [3], the authors selected < h = 10, m =
19 > as one of the security parameter pairs that are se-
cure and efficient. It makes search space 264 and mini-
mizes the amount of computation. In a system with this



International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 109

setting, we assume an attacker with the computing power
of 250-trials/day. He would have to search for 214 days,
that is, for more than ten years. However, if he performs
the proposed attack with t = 4, he can find s in a day
after 16,000 transactions. If he performs the attack with
t = 2, he can succeed in a month after a hundred trans-
actions. This means that a smart card that is contacted
by a malicious server a hundred times can be broken. It
also means that one card per hundred which have ever
had transactions with the server could be broken after a
month.

If the proposed attack succeeds, the client does not
even know that there has been an attack. Therefore, the
attacker can try passive attacks to find the left ais for a
long time. Furthermore, if a given server has performed
a proposed attack, all smart cards that have ever been
in contact with the server has the possibility that their
secrets were or will be revealed. This can cause disorder
or chaos in a credit-based society.

5 Attacks with a Finer Grain p

In the proposed attack, the probability that the attacker
will succeed in guessing, p, can be selected as he wants.
However, p can be only multiples of (h+1)2. In this sec-
tion, we propose several variants of the proposed attack to
enable the attacker to select the probability p with finer
granularity.

Two-Phase Attack

The proposed multi-term attack can be applied to all
SASC protocols which use the basic decomposition. In
this paragraph, we propose an attack that can be ap-
plied only to two-phase protocols such as Beguin and
Quisquater’s. The proposed attack in this section en-
ables an attacker to be able to select p, the probability
of successful attack, with finer granularity. It allows the
attacker to guess ais independently, instead of guessing
the relation of ais.

1) (In The First Phase) A malicious server returns z′i =

Mxi−(h+1)i

modn instead of zi to the client, where
0≤ i≤ t−1, and returns correct zi for i ≥ t.

2) (In The Second Phase) The server returns y′
p and y′

q

instead of yp and yq: y′
p = Mσp+

∑ t−1

i=0
a′

i(h+1)i

modn

and y′
q = Mσq+

∑ t−1

i=0
a′

i(h+1)i

modn. Each a′
i is the

value that the attacker supposes to be ai.

If all a′
is are same as ais, respectively, the correct signa-

ture is generated as z′py
′
p mod p + z′qy

′
q mod q ≡ Smod n.

The success probability p is (h + 1)−t, and the successful
attack reduces the search space P to pP(= P

(h+1)t ). The

average search space, A, is (h+1)t + 1
(h+1)t ×P , and the

lower bound of it is 2
√
P.

Guessing Partial Sums of ais

The malicious server can also guess partial sums of ais.
For example, if the server wants to verify whether a0+a1

is h, he can try a variant of the previous two-phase attack.
In the first phase, he returns wrong values z′0=Mx0−1 mod
n and z′1=Mx1−1 modn instead of z0 and z1, respectively.
In the second phase, he sends back y′

p =Mσp+h modn and

y′
q = Mσq+h modn instead of yp and yq, respectively. If

a0+a1 is h, the correct signature is generated. This can
be generalized easily.

If the server wants to attack only using the first phase,
he can guess the ratio of the sum of several ais to one
of them. As it deviates from the protocol only in the
first phase (which is the basic decomposition phase that
is commonly used in the previous SASC protocols), it can
be also used for attacking the previous one-phase SASC
protocols like the proposed multi-term attack.

6 Conclusion

In this paper, we proposed several active attacks on SASC
protocols. The proposed attacks can be applied to all
of the existing SASC protocols. First, we modified the
Beguin and Quisquater’s server-aided RSA computation
protocol in order to immunize it against Nguyen and
Stern’s attack. And we described the proposed attack
using Beguin and Quisquater’s scheme. The proposed at-
tacks reduce the search space P to 2

√
P . Although it

is the theoretical lower bound, it is sometimes possible in
the real world. In addition, the proposed attacks threaten
SASC protocols as the attacker can select an appropriate
method according to his computing power and the num-
ber of chances to participate in the protocol as a malicious
server. Therefore, the security parameters of the existing
SASC protocols must be reconsidered (as much as twice)
so that the protocols can be secure against our attack.

Acknowledgements

This work was supported by the KOSEF (Korea Sci-
ence and Engineering Foundation) through the AITrc
(Advanced Information Technology Research Center)
and the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the
IITA(Institute of Information Technology Assessment)

References

[1] R. J. Anderson, “Attack on server assisted authenti-
cation protocols,” Electronics Letters, vol. 28, no. 15,
pp. 1473, 1992.

[2] P. Beguin and J. J. Quisquater, “Secure accelera-
tion of DSS signatures using insecure server,” in Asi-
acrypt’94, pp. 249–259, 1994.



International Journal of Network Security, Vol.2, No.2, PP.105–110, Mar. 2006 (http://isrc.nchu.edu.tw/ijns/) 110

[3] P. Beguin and J. J. Quisquater, “Fast server-aided
RSA signatures secure against active attacks,” in
Crypto’95, pp. 57–69, 1995.

[4] J. Burns and C. J. Mitchell, “Parameter selection
for server-aided RSA computation schemes,” IEEE
Transactions on Computers, vol. 43, no. 2, pp. 163–
174, 1994.

[5] S. M. Hong, J. B. Shin, H. Lee-Kwnag, and H. Yoon,
“A new approach to server-aided secret compu-
tation,” in International Conference on Informa-
tion Secuirty and Cryptology (ICISC’98), pp. 33–45,
1998.

[6] S. Kawamura and A. Shimbo, “Fast server-aided se-
cret computation protocols for modular exponentia-
tion,” IEEE Journal on Selected Areas in Communi-
cations, vol. 11, no. 5, pp. 778–784, 1993.

[7] S. Lee, S. M. Hong, H. Yoon, and Y. Cho, “Acceler-
ating key establisment protocol in mobile communi-
cation,” in Information Security and Privacy, LNCS
1587, pp. 51–63, Springer Verlag, 1999.

[8] C. H. Lim and P. J. Lee, “Security and perfor-
mance of server-aided RSA computation protocols,”
in Crypto’95, pp. 70–83, 1995.

[9] C. H. Lim and P. J. Lee, “Server(prover/signer)-
aided verification of identity proofs and signature,”
in Eurocrypt’95, pp. 64–78, 1995.

[10] T. Matsumoto, H. Imai, C. S. Laih, and S. M. Yen,
“On verifiable implicit asking protocols for RSA com-
putation,” in Auscrypt’92, pp. 296–307, 1993.

[11] T. Matsumoto, K. Kato, and H. Imai, “Speeding up
secret computations with insecure auxiliary devices,”
in Crypto’88, pp. 497–506, 1988.

[12] P. Nguyen and J. Stern, “The beguin-quisquater
server-aided RSA protocol from crypto’95 is not se-
cure,” in Advances in Cryptology - Asiacrypt’98,
LNCS 1514, pp. 372–379, Springer Verlag, 1998.

[13] B. Pfitzmann and M. Waidner, “Attacks on protocols
for server-aided RSA computation,” in Eurocrypt’92,
pp. 153–162, 1992.

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and pub-
lic key cryptosystems,” Communications of ACM,
vol. 21, pp. 120–126, 1978.

[15] A. Shimbo and S. Kawamura, “Factorization attack
on certain server-aided secret computation protocols
for the RSA secret transformation,” Electronics Let-
ters, vol. 26, no. 17, pp. 1387–1388, 1990.

[16] S. M. Yen, “Cryptanalysis of secure addition chain
for SASC applications,” Electronics Letters, vol. 31,
no. 3, pp. 175–176, 1995.

[17] S. M. Yen and C. S. Laih, “More about the active
attak on the server-aided secret computation proto-
col,” Electronics Letters, vol. 28, no. 24, pp. 2250,
1992.

Heeyoul Kim received the B.E. de-
gree in computer science from Ko-
rea Advance Institute of Science and
Technology (KAIST), South Korea, in
2000, the M.S. degree in computer sci-
ence from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Younho Lee received the B.E. degree
in computer science from Korea Ad-
vance Institute of Science and Technol-
ogy (KAIST), South Korea, in 2000,
the M.S. degree in computer science
from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Seong-Min Hong received the B.E.
degree in computer science from
KAIST, South Korea, in 1994. He also
received the M.S. degree and Ph.D
degree in computer engineering from
KAIST in 1996 and 2000, respectively.
He is currently an research professor
in the division of Computer Science at

KAIST.

Hyunsoo Yoon received the B.E. de-
gree in electronics engineering from
SNU, South Korea, in 1979, the
M.S. degree in computer science from
KAIST, in 1981, and the Ph.D. de-
gree in computer and information sci-
ence from the Ohio State University,
Columbus, Ohio, in 1988. From 1988

to 1989, with the AT & T Bell Labs. as a Member of
Technical Staff. Since 1989 he has been a faculty member
of Division of Computer Science at KAIST.


