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Abstract

In this paper we analyze the security of Koyama scheme
based on the singular cubic curve for some well known
attacks. We provide an efficient algorithm for linearly re-
lated plaintext attack and identify isomorphic attack on
Koyama scheme. Some other attacks are also discussed
in this paper.
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1 Introduction

As variant of standard RSA [27] public key cryptosys-
tem different type of cubic curve, three public key cryp-
tosystem [13, 14, 17] were introduced. Those are called
Koyama scheme. In these schemes, two plaintexts mx,my

are used to form a pointM = (mx,my) on the singular cu-
bic curve over Zn, and the ciphertext is a point C = e×M
on the same curve. There security was based on factoring
problem. Later, Seng et al. [31] have shown that all three
schemes are equivalent to each other by an isomorphism
mapping and become insecure if a linear relation is known
between two plaintexts. For this attack, attacker has to
compute the greatest common divisor (GCD) of two poly-
nomials both of degree e, where e is the encryption expo-
nent. This attack was found less efficient because of its
slow speed.

The object of this paper is to propose a new algorithm
for linearly related plaintext attack on Koyama schemes
[13, 14, 17]. Our algorithm is different and more effi-
cient than Seng et al. [31] algorithm. In our proposed
algorithm, the attacker has to compute the GCD of two
polynomials of degree six and of degree e. Next, in this
article, we identify isomorphic attack. From this, an at-
tacker can forge signature of receiver B without knowing
B’s secret key. For this attack, a singular cubic curve
is needed, isomorphic to the curve corresponding to the
plaintext. Historically it was searched by Koyama for the
KOMV [15] scheme which was based on nonsingular el-
liptic curve. Finally, we extend some other attacks on the
RSA scheme to the Koyama schemes.

2 Singulaer Cubic Curve

First we discuss some basic facts about singular cubic
curve over the finite field Fp and the ring Zn where n is
the product of two distinct odd primes greater then 3.

Consider the congruence equation

y2 + axy = x3 + bx2 mod p (a, b ∈ Zp) (1)

The set of all solutions (x, y) ∈ Zp×Zp to Equation (1)
denoted by Cp(a, b) is called singular cubic curve.

Let Fp be a finite field with p elements and Fp
∗ be

the multiplicative group of Fp. Clearly the order of Fp
∗

denoted by ]Fp
∗ = p− 1.

A nonsingular part of singularcubic curve denoted by
Cp(a, b) is defined as the set of solutions (x.y) ∈ Fp ×
Fp to Equation (1) excluding a singular point (0, 0), but
including the point at infinity, denoted by ©.

It is well known that the same addition laws defined
by the chord and tangent method in the case of elliptic
curve still holds in the singular cubic curve [19, 28]. For
any point P ∈ Cp(a, b). For the sum P+©, by definition,
is equal to P , which is also equal to © + P . For P =
(x0, y0), we define −P the additive inverse of P as the
point (x0,−y0− ax0). The sum of P +(−P ) is defined to
be ©. For P1 = (x1, y1) and P2 = (x2, y2) with P1 6= P2

the sum P1 + P2 = (x3, y3) is calculated as follows:

x3 = γ2 + aγ − b− x1 − x2

y3 = γ(x1 − x3) − y1,

where

γ =







y2−y1

x2−x1
, if (x1, y1) 6= (x2, y2),

3x2

1
+2bx1−ay1

2y1+ax1

if(x1, y1) = (x2, y2).

The existence of such addition law makes Cp(a, b) a fi-
nite abelian group. In fact, the group structure of Cp(a, b)
is well known [7, 19]. For any k ∈ Fp the multiplication
operation ′′×′′ is defined as bellow :

k × (x, y) =
︷ ︸︸ ︷

(x, y) + (x, y) + (x, y) + .....+ (x, y)

k times over Cp(a, b)
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An isomorphism between Cp(a, b) and Fp
∗ is defined

in [10, 14] for the curve (y − αx)(y − βx) = x3 over Fp
∗,

where α, β ∈ Fp
∗, which is equivalent to Equation (1)

with a = −α− βmod p and b = −αβmod p. When b = 0
we can put α = 0 and β = −a(6= 0).

An isomorphism mapping from Cp(a, 0) to Fp
∗ and in-

verse of that are given in the following theorems.

Theorem 1 [19] The mapping ω : Cp(a, 0) → Fp
∗ de-

fined by ω : © → 1 and (x, y) → 1 + ax
y

= x3

y2 is a group
isomorphism.

The group isomorphism mapping ω−1 : Fp
∗ → Cp(a, 0)

is defined by

ω−1 : 1 → © and v → (
a2v

(v − 1)2
,

a3v

(v − 1)3
)

Hence, with this isomorphism, the order of Cp(a, 0) is
denoted by #Cp(a, 0) = p− 1.

Let n be the product of two large primes p and q (> 3).
Let Zn = (1, 2, 3, ...., n− 1) and Zn

∗ be a multiplicative
group of Zn and consider the congruence equation

y2 + axy = x3 + bx2 over Zn where a, b ∈ Zn. (2)

The nonsingular part of a singular cubic curve over
Zn denoted by Cn(a, b), is defined, as the set of solutions
(x, y) ∈ Zn × Zn to Equation (2) excluding a singular
points which are either congruent to (0, 0)modulo p or
congruent to (0, 0)modulo q, but including a point at in-
finity ©. By Chinese Remainder Theorem, Cn(a, b) is
isomorphic as a group to Cp(a, b) × Cq(a, b).

Although the addition is not always defined, the prob-
ability of such a case is negligible small for large p and
q. Since we are taking p and q very large, there fore the
addition operation on Cn(a, b) can be defined.

By using Theorem 1 and Chinese Remainder Theorem,
the following theorem holds:

Theorem 2 [7] For (x1, y1) and (xi, yi) satisfy-
ing (xi, yi) =i × (x1, y1) over En(a, 0), we have
1 + axi

yi
= (1 + ax1

y1

)i(mod n), i.e. xi

yi
= (x1

y1

)i(mod n).

2.1 Division Polynomial in Singular Cu-
bic Curve

The notion of division polynomial allows us to compute
multiple of a point in terms of the first coordinate. The
division polynomials on the singular cubic curve Cn(o, b)
is given as follows.

Definition 1 The division polynomials Ψm(x, y) for the
singular cubic curve Cn(o, b) are defined inductively by,

Ψ1 = 1,

Ψ2 = 2y,

Ψ3 = 3x4 + 4bx3,

Ψ4 = 4y(x6 − 2bx5),

Ψ2m−1 = Ψm−2Ψ
3
m − Ψm−1Ψ

3
m+1, if m ≥ 2

2yΨ2m = Ψm(Ψm+2ψ
2
m−1 − Ψm−2Ψ

2
m−1) if m ≥ 3

Theorem 3 [31] Let Cn(0, b) be a singular cubic curve
defined over the ring Z/nZ. If P = (x, y) ∈ Cn(0, b),
then the first coordinate of m× P is given by

x(m× P ) =
xm3

Ψm(x, y)2
=

xm

φm(x, y)
,

where Ψm(x, y) is the mth division polynomial for Cn(0, b)
and φm(x, y) is the polynomial defined by

φm(x, y) =
Ψm(x, y)2

xm2−m
.

3 RSA Type Schemes Based on

Singular Cubic Curves

Three RSA type schemes based on singular cubic curve
over Zn are proposed in the following subsections.

3.1 Scheme I [14]

This cryptosystem is based on the singular cubic curve of
the form

Cn(0, b) := y2 ≡ x3 + bx2(mod n) (3)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e,N) = 1 where
N = lcm(p− 1, p + 1, q − 1, q + 1).The decryption key d
is chosen such that ed ≡ 1mod N . The public key is the
pair (n, e) and the private keys are d, p and q. To encrypt
a plaintext pair M = (mx,my), the sender first computes

b =
m2

y−m3

x

m2
x

(mod n) and then the ciphertext is computed

as C = e ×M on the singular cubic curve Cn(0, b). The
complete ciphertext is (C, b). The Receiver, who knows
the decryption key d can get the plaintext (mx,my) by
computing d× (cx, cy) = (mx,my) over the singular cubic
curve Cn(0, b).

3.2 Scheme II [17]

This cryptosystem is based on the singular cubic curve of
the form

Cn(a, 0) := y2 + axy ≡ x3(mod n)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e,N) = 1 where
N = lcm(p − 1, q − 1). The decryption key d is cho-
sen such that ed ≡ 1mod N . The public key is the pair
(n, e) and the private keys are d, p and q. To encrypt a
plaintext pair M = (mx,my), the sender first computes

a =
m3

x−m2

y

mxmy
(mod n) and then the ciphertext is computed

as C = e ×M on the singular cubic curve Cn(a, 0).The
complete ciphertext is (C, a). The Receiver, who knows
the decryption key d can get the plaintext (mx,my) by
computing d× (cx, cy) = (mx,my) over the singular cubic
curve Cn(a, 0).
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3.3 Scheme III [13]

This cryptosystem is based on the singular cubic curve of
the form

Cn(a, b) := (y − αx)(y − βx) ≡ x3(mod n)

where n = pq is the product of two large primes. The
encryption key e is chosen such that (e,N) = 1 where
N = lcm(p − 1, q − 1). The decryption key d is cho-
sen such that ed ≡ 1mod N . The public key is the pair
(n, e) and the private keys are d, p and q. To encrypt a
plaintext pair M = (mx,my), sender first chooses a ran-
domly and computes . Then the ciphertext is computed
as C = e ×M on the singular cubic curve Cn(α, β).The
complete ciphertext is (C,α, β). The Receiver, who knows
the decryption key d can get the plaintext (mx,my) by
computing d× (cx, cy) = (mx,my) over the singular cubic
curve Cn(α, β).

Seng et al. [31] have given following two equivalence
relations between Schemes I, II and III.

1) Reduction of Scheme II to Scheme I: The transfor-
mation (x, y) → (x, y + a

2x) will transform the curve
Cn(a, 0) to the curve Cn(0, b) with b = a24. Us-
ing this transformation one can reduce scheme II to
Scheme I.

2) Reduction of Scheme III to Scheme I: The trans-
formation (x, y) → (x, y − α−β

2 x)will transform the

curve Cn(α, β) to the curve Cn(0, b) with b = (α−β

2 )2.
Using this transformation, one can reduce Scheme III
to the Scheme I.

4 An Efficient Algorithm for Lin-

early Related Plaintext Attack

Let us discuss the situation when two linearly related
messages are both encrypted with the same public key.
In 1995, Franklin and Reiter [6] identified such type of
attack against RSA with public exponent 3. Later, it was
extended for the exponent up to ≈ 32 bits by Patarin
[21]. Further, it was generalized by Joye and Quisquater
[10] to the other RSA type cryptosystems, like elliptic
curve RSA. This attack was also generalized for any
known polynomial relation between two messages and
to any number of messages [3]. In an important paper
Seng et al. [31] analyzed linearly related plaintext attack
for the Koyama schemes [13, 14, 17]. For this attack,
attacker has to compute greatest common divisor of
two polynomials corresponding to those two plaintexts.
Incidentally, the computation of greatest common divisor
of two polynomials becomes less efficient when the
encryption exponent e is considered quite large. We
therefore reexamined linearly related plaintext attack on
Koyama schemes and propose a different algorithm to
deal with this situation. Our algorithm is more efficient
with comparison to Seng et al. [31]. During our discus-
sion we however confine to scheme-I, because scheme-II

and scheme-III are reducible to the scheme-I.Let us we
first recall the Seng et al. attack [31].

Seng et al. Attack [31].

Let M1 = (mx1
,my1

), and M2 = (mx1
+ ∇,my1

+ ∇)
be two linearly related plaintexts, and C1 = e ×M1 =
(cx1

, cy1
), C2 = e × M2 = (cx2

, cy2
) be the ciphertexts

corresponding to plaintextsM1 andM2 respectively. Here
∇ is a known constant. By Theorem 3, we have

me
x − c1.xφe(mx, .) ≡ 0 mod n, and

(mx + ∇)e − c2.xφ
′

e(mx + ∇, .) ≡ 0 mod n,

where φm is defined by

φm(x, y) =
Ψm(x, y)2

xm2−m
,

for the curve Cn(0, b) on which M1 and C1 lie. The func-
tion φ′ is defined analogously for the curve on which M2

and C2 lie. Using the above relation the Seng et al. attack
works as follows.

1) Let F (x) and G(x) be the polynomials over the ring
Z/nZ, defined by

F (x) = xe − c1,xφe,(x, .),

G(x) = (x+ ∇)e − c2,xφe,(x+ ∇, .).

2) We compute H(x) = gcd(F (x), G(x)), the gcd of
F (x) and G(x) over the ring Z/nZ, which is with
a very high probability, a polynomial of degree 1.
Solving the polynomial H(x) in x will give the value
of mx.

Proposed Algorithm For Linearly Related Plain-
text Attack.

Now we propose our algorithm as follow. Let M =
(mx,my) and M ′ = (m′

x,m
′

y) be two plaintexts linearly
related by the known relations

m′

x ≡ αmx + γ

m′

y ≡ βmx + δ,

where α, γ, β and δ are integers in Zn
∗. Assume that the

encryption of the plaintexts (mx,my) and (m′

x,m
′

y) are
given by

(cx, cy) ≡ e× (mx,my)(modn)

(c′x, c
′

y) ≡ e× (m′

x,m
′

y)(modn).

From the above ciphertext we can derive the curves
Cn(0, b) and Cn(0, b′) upon which the plaintexts must lie.
Thus we have

m3
x + bm2

x −m2
y ≡ 0(modn)

(αmx + γ)3 + b′(αmx + γ)2 − (βmy + δ)2 ≡ 0(modn).
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By above two equations we can write my as a polyno-
mial w in mx with

w(x) =
(αx + γ)3 + b′(αx + γ)2 − β2(x3 + bx2) − δ2

2βδ
.

By Equation (3) it is clear that w(mx) ≡ my(mod n).
Now let f(x) ≡ x3 + bx2 − w(x)2(modn), which is a
polynomial of degree 6. From Equation (3) we see that
f(mx) ≡ 0(mod n) on Z[x]/(n, f(x)). Next we compute
e × (x,w(x)) ≡ (h(x), j(x))(mod n) over Z[x]/(n, f(x))
using the division polynomial. Then we have the follow-
ing equations

h(mx) ≡ cx(mod n)

j(mx) ≡ cy(mod n).

Further, we compute gcd(h(x) − cx, f(x)) which is a
linear polynomial of the form k(x − mx). This gives us
the plaintext mx. Knowing this half of the plaintext
(mx,my) = M , we can compute the other half my by
w(mx) = my. Finally, because of the linear relation be-
tween M and M ′ we can compute the plaintext M ′.

4.1 Comparison between Seng et al. Al-
gorithm (SA) and Proposed Algo-
rithm (PA)

SA- Let two linearly related messages are (x, y) and (x+
∆, y + ∆).

1) In SA, attacker has to compute first coordinate of
e× (x, y) and e× (x+∆, y+∆) by using the division
polynomial. Let it be c1x and c2x.

2) In SA, the attacker has to compute the gcd of two
polynomials F (x) and G(x) both of degree e, where
F (x) = xe − c1xφx, .)modn, and H(x) = (x+ ∆)e −
c2xφe(x+ ∆, .)modn.

3) SA depends up on e, hence, for higher values of e
attack is less applicable.

PA- Let two linearly related messages are M = (mx,my)
and M ′ = (m′

x,m
′

y), where m′

x = αmx + γ and m′

y =
βmx + δ.

1) In PA, attacker has to compute first coordinates of
e× (x,w(x)) where

w(x) =
(αx + γ)3 + b′(αx+ γ)2 − β2(x3 + bx2) − δ2

2βδ
.

Let e × (x,w(x)) = (h(x), J(x)) and f(x) ≡ x3 +
bx2 − w(x)2(mod n).

2) In PA, attacker has to compute the gcd of two poly-
nomials F (x) = h(x) − cx and f(x). Here, F (x) is a
polynomial of degree e and f(x) is a polynomial of
degree at most 6 (in particular if α = β = 1 then
f(x) is a polynomial of degree 4).

3) PA does not depend upon the encryption exponent;
hence, it is applicable for each value of e.

4) In PA, since one polynomial is of degree at most 6 so
we may assume that the computational efficiency is
faster than SA.

We compare both attacks by the following example.

Example 1 Suppose we set,

Keys: p = 1237, q = 5683, e = 11,
Plaintext: M1 = (54321, 67890), M2 = (54411, 67980),

i.e. γ = δ = ∆ = 90. α = β = 1

Ciphertext: C1 = (2687388, 3712394),
C2 = (2387261, 3231021).

Clearly, b = 1793115 and b′ = 4717526

In Seng et al. attack,
F (x) = x11 + 5229989x10 + 3440216x9 + 1918724x8

+ 33716x7 + 4214133x6 + 528492x5 + 65705x4

+ 5018141x3 + 2203074x2 + 3786039x+ 3314999
G(x) = x11 + 6396991x10 + 4606503x9 + 679657x8

+ 6778159x7 + 6520626x6 + 6319754x5+
806279x4 + 3985603x3 + 4360013x2 + 435444x+
1937673.

Then gcd(F (x), G(x)) = 6975550 + x. Solving this, we
gate x = 54321.

In our proposed attack,

F (x) = x11 + 5229989x10 + 3440216x9 + 1918724x8

+ 33716x7 + 4214133x6 + 528492x5 + 65705x4+
5018141x3 + 2203074x2 + 3786039x+ 3314999

G(x) = 5688501x4 + 243866x3 + 2935716x2 + 1708749x+
1353731

Then gcd(F (x), G(x)) = 6975550 + x. Solving this, we
gate x = 54321.

The attack proposed by Seng et al. [31] is similar to
that proposed in [10], but in [10] F (x) and G(x) are poly-
nomials of degree e2, where as in Seng et al. attack [31]
involves only polynomial of degree e and is there fore more
efficient than [10]. In our algorithm , h(x) − cx is same
as F (x) in the Seng et al. attack (by the assumption of
w(mx) = my), but we replace G(x) by a polynomial of
degree at most 6. So we conclude that our proposed al-
gorithm is more efficient than Seng et al. [31] attack for
higher values of e (i.e. for e ≥ 5). In addition, our pro-
posed attack does not depend up on e so it is applicable
for any value of e.

5 Isomorphic Attack

The idea behind the isomorphic attack is based on the
isomorphic property of two singular cubic curves. Such
type of attack was first time identified by Koyama for
the KMOV scheme [15]. We first give definition and the
isomorphic property as follows.
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Definition 2 Let n = pq (p, q are primes), and Cn(0, b1)
and Cn(0, b2) be singular cubic curves such that

Cn(0, b1) : y2 = x3 + b1x
2(mod n),

Cn(0, b2) : y2 = x3 + b2x
2(mod n).

Cn(0, b1) and Cn(0, b2) are isomorphic if there exist
up ∈ Z∗

p and uq ∈ Z∗

q such that

b2 ≡ u2
pb1(mod p), and b2 ≡ u2

qb1(mod q).

By using the property of singular elliptic curve over
field and Chinese Remainder Theorem, the following iso-
morphic property of singular cubic curve over ring is
shown [28] as bellow:

Let Cn(0, b1) : y2 = x3 + b1x
2(mod n) and Cn(0, b2) :

y2 = x3 + b2x
2(mod n) be two singular cubic curves. Let

M1 = (m1x,m1y), C1 = (c1x, c1y) ∈ Cn(0, b1) and M2 =
(m2x,m2y), C2 = (c2x, c2y) ∈ Cn(0, b2), where C1 = e ×
M1 over Cn(0, b1) and C2 = e×M2 over Cn(0, b2). Then
the following statements are equivalent,

1) Cn(0, b1) and Cn(0, b2) are isomorphic

2) b2 ≡ u2b1(mod n) for some u ∈ Z∗

n

3) c2x ≡ u2c1x(mod n), c2y ≡ u3c1y(mod n) for some
u ∈ Z∗

n

4) m2x ≡ u2m1x(mod n), m2y ≡ u3m1y(mod n) for
some u ∈ Z∗

n

If C1, C2 andM1 satisfying the above Item 3) are given,
then M2 can be easily obtained by computing Item 4). It
is not difficult to check whether or not Item 3) holds.

Suppose, an attacker A wants to victimize B by forge
signature on a plaintext M = (mx,my) without B’s con-
sent. For this, A generates another message M ′ with B’s
public key nB and random integer u:

M ′ = (u2mx(modnB), u3my(mod nB)).

And sends M ′ to B. B makes a signature S′ = (s′x, s
′

y)
for M ′ with his secret key dB :

S′ = dB ×M ′ over CnB
(0, b′B).

Then, A computes the signature S = (sx, sy) =
(u−2s′x(mod nB), u−3s′y(modnB)). Which is B’s signa-
ture for the message M.

Note that the curve CnB
(0, bB) contains points (M,S)

and the curve CnB
(0, b′B) contains points (M ′, S′).

Using this technique A can forge B’s signatures without
B’s secret key.

6 Homomorphic Attack

Originated from homomorphic property (i.e. k×[P+Q] =
k × [P ] + k × [Q]), the known homomorphic attacks such
as common modulus attack [30], chosen message attack
[32], garbage man-in-the -middle attack [9, 11] etc. are

also found admissible to Koyama schemes [13, 14, 17].
We name Carol to the attacker, Alice to the receiver (or
message signer) and Bob to the sender to discuss these
attacks as follows.

6.1 Common Modulo Attack

In 1983, Simmons [30] pointed out that the use of common
modules in the RSA cryptosystem is dangerous. Indeed,
if a message M is sent to two users who have coprime
public encryption keys (e1 and e2 say), then the mes-
sage M can be recovered. Suppose the ciphertext corre-
sponding to the plaintext M are C1 = M e1

1 mod n and
C2 = M e2

2 mod n , then by extended Euclidean algorithm
[16], Carol can compute u and v such that ue1 + ve2 = 1,
and he can easily get the indented plaintext M by com-
puting Cu

1C
v
2mod n = M e1u+e2vmod n = M . This at-

tack is called common modulus attack. Joye et al. [11]
have shown that common modulus attack is applicable
to KMOV [15] scheme. Also, Demytko scheme [5] is vul-
nerable to said attack [2]. Below, we show this attack is
applicable to Koyama scheme.

[Input] Two ciphertexts C1 = (cx1
, cy1

), C2 = (cx2
, cy2

),
common modulus n, and encryption keys e1, e2.

[Step 2] By using extended Euclidean algorithm Carol
computes u and v such that eu+ kv = 1.

[Step 3] Carol computes

u× (cx1
, cy1

) + v × (cx2
, cy2

)

= (u× e1 + v × e2) × (mx,my)

= (mx,my).

[Output] The intended plaintext pair (mx,my).

6.2 Chosen Message Attack

In a paper, Simmons and Norris [32] have shown that the
RSA cryptosystem is not secure against chosen message
attack. Using the chosen message attack, Carol can get
the signature of Alice on any chosen message M. Also,
the chosen message attack is applicable to all RSA type
cryptosystem [11] based on elliptic curve and Lucas se-
quence that possesses homomorphic property. Below, we
show that this attack is applicable to the Koyama schemes
[13, 14, 17].

Suppose an attacker Carol wants to get the signature
of a person Alice on the message pair (mx,my). Then he
proceeds as follows.

[Input] A message pair (mx,my) and the key n, e of
plaintext.

[Step 1] First Carol chooses k relatively prime to e and
compute u and v such that eu+ kv = 1.

[Step 2] Carol computes M ′ = k×(mx,my) = (m′

x,m
′

y).
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[Step 3] Next, she ask Alice to sign on the document
M ′ = (m′

x,m
′

y) and gets the signature S′ = d ×
(m′

x,m
′

y) = (s′x, s
′

y).

[Step 4] Consequently Carol can compute the signature
S of M by

S = u× (s′x, s
′

y) + v × (mx,my)

= u× d× k × (mx,my) + v × (mx,my)

= d× (u× k + e× v) × (mx,my)

= (sx, sy).

[Output] The signature S of M.

6.3 Garbage Man-in-the-middle Attack

If an attacker wants to get the intended plaintext M from
a given ciphertext C = (cx, cy) in the Koyama scheme,
then by using the Garbage man-in-middle attack [9] he
can get the intended plaintext as follows.

[Input] A message pair (cx, cy), n, e.

[Step 1] First Carol inspects C = e×(mx,my) = (cx, cy).

[Step 2] C′ = (c′x, c
′

y) = k × (cx, cy) = k × e× (mx,my)
for any chosen k relatively prime to e.

[Step 3] By Extended Euclidean Algorithm, Carol can
computes u, v ∈ Zn such that k × u+ e× v = 1.

[Step 4] She ask Alice to sign on (c′x, c
′

y) and get

S′ = (s′x, s
′

y)

= d× (c′x, c
′

y)

= d× k × e× (mx,my)

= k × (mx,my)

[Step 5] Now, Carol can compute the original Message
as

u× (s′x, s
′

y) + v × (cx, cy)

= u× k × (mx,my) + e× v × (m− x,my)

= (mx,my)

[Output] The intended plaintext.

7 Factoring Attack

Some other Attacks direct related to the factoring are also
admissible to the Koyama schemes. If the secret primes
factor p and q of RSA-modulus are improper chosen, then
by factoring attacks [22, 34] one can recover the secret
keys. Note that p and q must be generated [24] carefully
to prevent the scheme form some well known factoring
attacks. Some other factoring attacks were proposed by
Silverman and Rivest [26, 29]. Furthermore, if a portion
of bits of p or q is known, then the RSA moduli can be
factorized [4, 25] all such type of attacks are automatically
applicable to any cryptosystem based on factoring.

8 Partially Known Plaintext At-

tack

In his paper Koyama [17] conjectured that if an attacker
knows one ordinate on the plaintext pair (mx,my) corre-
sponding to the ciphertext (cx, cy) then there is no prob-
lem to the security point of view in other words partially
known plaintext attack is not applicable. In a paper [20]
it has shown that the conjecture made by Koyama regard-
ing the said attack is failed. Following theorem proved the
partially known plaintext attack on Koyama schemes.

Theorem 4 [20] For any (x1, y1) in the singular cubic
curve Cn(0, b). Let x1 is known. Then for any k in Zn,
k× (x1, y1) ≡ (uk, vky1) over Z[y]/(y2 − x3

1 − bx2
1, where,

uk, and vk are two positive integers given by: u1 = x1,
v1 = 1, and

uk =







(3u2

k
2

+2bu k
2

)2

4(u3

k
2

+bu2

k
2

)
− b− 2u k

2

, if k is even

(u3

1
+bu2

1
)(1−vk−1)

2

(u1−uk−1)2 − b− u1 − uk−1, if k is odd

and

vk =







v k
2

{
3u2

k
2

+2bu k
2

2(u3

k
2

+bu2

k
2

)
(u k

2

− uk) − 1} or

(3u2

k
2

+2bu k
2

)

2(u3

1
+bu2

1
)v k

2

(u k
2

− uk) − v k
2

, if k is even

1−vk−1

u1−uk−1

(u1 − uk) − 1, if k is odd

9 Some Other Attacks

9.1 Wiener’s Attack

Wiener [33] has shown that if the secret key d is chosen
too small, then it can be recovered. In his paper, Wiener
proved the following theorem.

Theorem 5 [33] Let n = p.q, with q < p < 2q, Let

d < 1
3n

1

4 . Given (n, e) with ed ≡ 1mod φ(n). One can
efficiently recover d.

Since, the prove of the above theorem does not depend
on the encryption procedure, so it is also applicable to the
Koyama schemes, as in the Koyama schemes [13, 14, 17]
we have ed ≡ 1mod (lcm(p−1, q−1)). So, Wiener attack
is also applicable to Koyama schemes [13, 14, 17].

9.2 Lenstra Attack

In the year 1996 Boneh et al. identified a new attack
against RSA when performed with Chinese remaindering
[23]. Thereafter and independently, Lenstra [18] wrote
a short memo on such type of attack which we call as
Lenstra attack. In case of computational error, Boneh et
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al. [1] showed how to recover the secret factors p and
q of the public modulus n from two signatures of the
same messages; a correct one and a faulty one. However,
Lenstra [18] showed that faulty signature is required only.
The attack proposed by Lenstra is as follows,

Let p and q be two primes and let n = pq. To sign
upon any message m by using the Chinese remaindering,
the signer proceeds as follows;

Signer first computes sp ≡ m
dp

p mod p, sq ≡ m
dq

q mod q,
where mp ≡ m(mod p), mq ≡ m(mod q), dp ≡ d(mod p−
1) and dq ≡ d(mod q − 1).

Suppose an error is occurring at the time of the com-
putation of sp (let the faulty value of sp is ŝp) and not
during the computation of sq. Now applying the Chinese
Remaindering Theorem on ŝp and sq , let ŝ be the faulty
signature of m. Then gives the secret parameter q, where
e is the public key.

Joye et al. [8] showed that the Lenstra attack is of
very general nature and applies on all Chinese remain-
dering based cryptosystems. Joye et al. [8] generalized
the Lenstra in a preposition as follows

Proposition 1 [8] Let primes p and q whose product is
n. Suppose that s = S(m) is the signature of a message m
and that is the faulty signature. S : m → S(m) is a RSA
type signature function. If ŝ 6= s mod p but ŝ = s mod q,
then gcd((S−1(ŝ)−m)mod n, n) will give the secret factor
q.

Using the above preposition, Joye et al. [8] applied
Lenstra attack to KMOV scheme [15] and Demytko [5].

Lenstra attack on Koyama scheme.
The said above preposition is applicable to Koyama
scheme [17] as follows.

Suppose (mx,my) = M be the intended message to be
signed. Let, s = (sx, sy) = d × (mx,my) be the Koyama
signature of messageM . Suppose that the computation of
the x-coordinate of s = (sx, sy) is faulty. More precisely,
if ŝx 6= sx(mod p) and = ŝx = s(mod q), then apply-
ing the same argument as in the case of KMOV scheme
given by Joye et al. [8], q can be recovered by comput-

ing gcd(
ŝe2

x

Ψe(ŝx,sy)2 − m mod n), n(first term is computed

by using the division polynomial for singular cubic curve
[31]).
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