
International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 43

A Time-Stamping Proxy Signature Scheme Using
Time-Stamping Service

Eric Jui-Lin Lu1 and Cheng-Jian Huang2

(Corresponding author: Eric Jui-Lin Lu)

Department of Management Information Systems, National Chung Hsing University1

250 Kuo Kuang Road, Taichung, Taiwan 402, R.O.C. (Email: jllu@nchu.edu.tw)

Department of Information Management, Chaoyang University of Technology2

168 Gifeng E. Rd., Wufeng, Taichung County, Taiwan 413, R.O.C.

(Received May 28, 2005; revised and accepted July 6, 2005)

Abstract

In current proxy signature schemes, an original signer del-
egates her signing capability to a proxy signer, and then
the proxy signer can sign messages on behalf of the orig-
inal signer. Although these schemes have succeeded in
proxy delegations, they share a common problem. That
is, a verifier cannot ascertain that a proxy signature was
signed by the proxy signer during the valid delegation
period. Additionally, these schemes do not support revo-
cations. In this paper, we proposed a new time-stamping
proxy signature scheme using time-stamping service to re-
solve the above problems. The security and performance
of the proposed scheme are also analyzed.

Keywords: Proxy signature, time-stamp, time-stamping
service

1 Introduction

A digital signature is like a ”hand-written” signature in
an electronic form that can be used to authenticate the
identity of the signer of a document. In general, the signer
uses her secret key to sign messages by using a signature
scheme such as ElGamal or Schnorr signature scheme [6,
16, 17]. However, in many situations, the signer cannot
sign messages by herself. For instance, the signer is on a
business trip or on vacation. Therefore, the signer needs
a proxy signer to sign messages on behalf of her.

Currently, there are three types of delegation, namely,
full delegation, partial delegation, and delegation by war-
rant. In the full delegation, the proxy signer is given
the same private key that the original signer has. How-
ever, this approach does not satisfy the security require-
ments of proxy signatures. In partial proxy signature
schemes [12, 13], the original signer delegates her signing
capability to a proxy signer by giving the proxy signer
a proxy key. With the proxy key, the proxy signer can

sign messages on behalf of the original signer. In cases
where the proxy signer abuses her delegated rights, the
original signer needs to revoke the proxy signer’s sign-
ing capability. Currently, the proxy revocation protocols
can be classified into two approaches. One approach is
to change the public key of the original signer. This ap-
proach is impractical because, once the public key of the
original signer is changed, all signatures generated earlier
by the original signer cannot longer be verified. Even
if we can come up with some public key management
scheme so that the verification is possible, the tasks to
verify all versions of signatures will be extremely complex
if the original signer has to revoke delegations from time
to time. The other approach is to put rA (i.e. a part of
the proxy key generated by the original signer) on a pub-
lic revocation list. Any verifier must ensure that rA is not
on the list before verifications. However, these approach
has two serious drawbacks. One is, once rA is posted,
all valid proxy signatures generated earlier cannot longer
be verified. This also results in difficulties in verifying
the validness of proxy signatures generated by the proxy
signer even after the proxy key is revoked because the
proxy signer can argue that these proxy signatures were
generated before the proxy key is revoked. The other
drawback is that the size of the revocation list will grow
unlimitedly as long as it is required to verify all proxy
signatures at all times.

Delegation by warrant is another type of proxy signa-
ture schemes [8, 14, 18, 19]. In the delegation by warrant
schemes, a proxy warrant is given to the proxy signer to
generate proxy signatures. The proxy warrant usually
contains the identity of the proxy signer, the valid period
of delegation, and some other restrictions on the signing
capability delegated to the proxy signer. Therefore, the
proxy signer can sign messages on behalf of the original
signer only in the valid delegation period. However, dele-
gation by warrant has two major limitations. One limita-

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 44

r
1

r
2
 r
3
 r
4
 r
5
 r
6
 r
7
 r
8
 r
9

. . .

L

...

round

L

n-1

L

n

L

n+1

L

n

=H(n, X

n

, L

n-1

, L

f(n)

)

r

m

=m-round

Figure 1: The time-stamp linking scheme

tion is that the declaration of a valid delegation period in
the warrant is of no use because no verifier can ensure the
exact time when a proxy signature was created. Although
Sun [18] claimed that this problem can be resolved in a
time-stamped proxy signature scheme he proposed, it had
been shown that Sun’s scheme is insecure [10]. The other
limitation is that, with the warrant, the delegation will be
terminated after the delegation period has expired. How-
ever, sometimes the original signer must put an end to her
delegation earlier than what was planned. Unfortunately,
there is no known protocol which allows early termination
of delegations.

To resolve all problems stated above, Lu et al. [11]
proposed a time-stamping proxy signature scheme with
revocation. In their scheme, a trusted third party, called
authentication server, is utilized. Their scheme ensure
that any verifier can check the validness of any proxy
signature and, when the verification is successful, it is
certain that the proxy signature was issued during the
valid delegation period. Also, delegations can be revoked
whenever the original signer needs. An important fea-
ture is that the size of the revocation list will not grow
unlimitedly. Although Lu’s scheme resolved the claimed
problems, the scheme requires a trusted third party at
all times. This security requirement is too high when
considering more than 70% of enterprises’ servers in US
had been attacked [7]. If the authentication server were
hacked, verifiers can not longer ascertain the validness
of any issued and valid proxy signature. To alleviate the
trust level, a time-stamping proxy signature scheme using
both time-stamping service (TSS) and Pedersen’s thresh-
old cryptosystem [15] is proposed in the paper. By using
TSS, it is only required to unconditionally trust a third
party (ie. the TSS) during the round when a time-stamp

was requested. The validness of all issued and valid proxy
signatures will not be affected. The security and perfor-
mance of the proposed scheme are also analyzed in the
paper.

The rest of the paper is structured as follows. In
Section 2, the time-stamping service (TSS) proposed by
Buldas et al. [3, 4] is first illustrated. In addition, the
threshold cryptosystem without a trusted third party
proposed by Pedersen [15] are presented. The details
of the proposed scheme is discussed in Section 3. To
alleviate the unconditional trust on the authentication
server, both TSS and the threshold cryptosystem pro-
posed by Pedersen are employed in the new proxy signa-
ture scheme. Also, the security and performance of the
proposed scheme are analyzed. Finally, we conclude the
paper and present possible future research in the Section
4.

2 Related Works

2.1 Time-Stamping Service (TSS)

It is believed that absolute time does not exist. There-
fore, it is hard to prove that a proxy signature is cre-
ated during the valid delegation period. However, as
shown in [1, 2, 3, 4, 5], time-stamping in the relative tem-
poral authentication (RTA) can be performed based on
the complexity-theoretic assumption on the existence of
collision-resistant one-way hash function. In other words,
given any two time-stamped documents, RTA enables any
verifier to verify the creation order of the two documents.

The concept of the TSS is quite simple. As shown
in Figure 1, Ln−1, Ln, and Ln+1 are all time-stamps is-
sued by the TSS. Ln is generated by applying a one-way

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 45

hash function H to the concatenation comprising Ln−1

and a suitably chosen Lf(n). As a result, any verifier can
validate that Ln−1 was created earlier than Ln and Ln

was created earlier than Ln+1. It is generally denoted as
Ln−1 < Ln < Ln+1.

Traditionally, the verification of any two time-stamps
requires O(N) where N is the number of time-stamps
issued between these two time-stamps. To improve the
performance, Buldas et al. [3, 4] proposed a binary linking
scheme such that the time complexity of the verification
is reduced to O(log N).

To be able to verify signed documents in a long period
of time, the TSS providers must be trustable. However,
as we know, TSS may be damaged or hacked. This re-
sults in that all issued time-stamps become invalid. To
resolve the problem, after issuing an amount of time-
stamps which is called a round, all issued time-stamps
in one round are publicized. This special feature makes
it possible that TSS does not have to be unconditionally
trusted all the times because all publicized time-stamps
cannot be forged. Therefore, we only have to trust TSS
during the round that a time-stamp was requested.

2.2 Review of Pedersen’s Threshold
Cryptosystem without a Trusted
Party Scheme

In 1991, Pedersen [15] proposed a (t, n) threshold cryp-
tosystem scheme which does not require a trusted third
party who selects and distributes the secret key. The Ped-
ersen’s threshold cryptosystem is illustrated as follows.

2.2.1 Notations

p: a large prime with 2511 < p < 2512.

q: a large prime with q|p − 1.

g: an order q generator in Z∗

p .

h(): a collision resistant hash function.

U0: the original signer.

Ui: n members of a group (U1, ..., Un).

xi, yi: the secret/public key pair for user i where xi ∈ Zq

and yi = gxi mod p.

m: a message.

2.2.2 Selecting and Distributing the Keys

1) Ui (i = 1, 2, · · · , n) chooses at random a polynomial
fi(x) of degree at most t − 1 such that fi(0) = xi.
Let

fi(x) = ai,0 + ai,1x
1 + · · · + ai,t−1x

t−1 mod q.

2) Ui sends fi(j) secretly to Uj .

3) Ui computes and broadcasts a check vector
CVi = [gai,0 mod p, gai,1 mod p, · · · , gai,t−1 mod p].

4) Ui verifies that the share fj(i) received from Uj :

gfj(i) = gaj,0 · [gaj,1]i · [gaj,2]i
2

· · · ·

·[gaj,t−1]i
t−1

mod p.

If this fails, Ui broadcasts that an error has been
found, and then stops.

5) If all receiving fj(i) (1 ≤ j ≤ n and j 6= i) are correct,
then Ui computes his share as the sum of all shares
received in step 2.

si =

n∑

j=1

fj(i) mod q.

6) Ui checks the validity of si by verifying whether or
not the following equation holds.

gsi = [

n∏

j=1

gaj,0] · [

n∏

j=1

gaj,1]i · · · ·

·[

n∏

j=1

gaj,t−1]i
t−1

mod p.

After finishing all steps stated above, all of the mem-
bers can get her own share si. The group can then obtain
a polynomial f(x) of degree at most t − 1 in a form such
that:

f(x)

=
n∑

j=1

aj,0 + (
n∑

j=1

aj,1)x + · · · + (
n∑

j=1

aj,t−1)x
t−1

mod q,

= a0 + a1x + · · · + at−1x
t−1

mod q,

and si = f(i).

2.2.3 Rebuild the Secret

Any t members can obtain the secret
∑n

j=1 aj,0 by La-
grange interpolating polynomial and check the validity
by the following equation.

g
∑n

j=1
aj,0 =

n∏

j=1

gaj,0 mod p.

3 A Time-Stamping Proxy Signa-
ture Using TSS

The proposed proxy signature scheme is based on the dis-
crete logarithm problem. There are five major steps in
the proposed scheme which are pictured in Figure 2.

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 46

1 Proxy Generation

m

L
B
L
B

L
E
L
E

L
n

Proxy Signer
TSS
Original Signer

m
w

Sign
(
t,n
)
(
)
L
B

2
The Begin of Delegation

m
w

Sign
(
t,n
)
(
)
L
E

4
 Proxy Signatures Generation

5
The End of Delegation

3
 Proxy Keys Generation

The Designated Group

Figure 2: Five steps in the proposed scheme

Proxy Generation: The original signer creates a war-
rant mw which contains related information such as
the identification of the proxy signer, the delegation
period, etc. Also, the original signer generates a sig-
nature for mw and transmits both the signature and
mw to the proxy signer.

The Begin of Delegation: As the delegation becomes ef-
fective, the original signer will use mw to get a time-
stamp denoted as LB from a TSS. Additionally, LB

needs to be signed by any t members of a designated
group of size n using Pedersen’s threshold cryptosys-
tem. The members of the group can be the supervi-
sors of the original signers or other managers in an
organization. Both LB and its signature will be pub-
lished. The design of using the TSS and Pedersen’s
threshold cryptosystem has several advantages:

1) By using the TSS, it is not required to uncon-
ditionally trust a third party at all times. One
only has to unconditionally trust TSS during
the rounds that she requests for time-stamps.
Therefore, the trust level can be reduced signif-
icantly.

2) Since Pedersen’s threshold cryptosystem is
used, there is no need for an extra trusted third
party. It is noted that, although Pedersen’s
cryptosystem is used in the proposed scheme,
it can be replaced by any (t, n) threshold cryp-
tosystem without a trusted third party.

3) The original signer cannot maliciously create
another LB′ and later claim that LB′ repre-
sents the begin of delegation. This is because
LB has to be verified and signed by the desig-
nated group.

Proxy Keys Generation: After the proxy signer received
the warrant and its signature from the original signer,
she will first verify the signature. If the verification is
successful, the proxy signer will use them to generate
the proxy keys.

Proxy Signatures Generation: After LB and its signature
are published, the proxy signer can start generating
proxy signatures for documents. Before generating a
proxy signature for a document m, the proxy signer
sends m to the TSS and the TSS issues a time-stamp
Ln for m. After receiving Ln, the proxy signer will
sign on m and Ln.

The End of Delegation: After the delegation has ex-
pired or been revoked, the original signer uses mw

to get a time-stamp LE from the TSS and requests
any t members of the designated group to sign on
LE . This is to prevent the original signer from ma-
liciously creating a time-stamp LE′ which can be ei-
ther LE′ < LE or LE < LE′ . In either cases, any
valid document signed between LE′ and LE may be-
come invalid.

3.1 Notations

In the proposed proxy signature scheme, we shall use the
following notations.

xA: the private key of the original signer.

yA: the public key of the original signer.

xB : the private key of the proxy signer.

yB: the public key of the proxy signer.

p: a large prime with 2511 < p < 2512.

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 47

q: a large prime with q|p − 1.

g: an order q generator in Z∗

p .

H(): a collision resistant hash function.

3.2 Basic Protocol

The details of the proposed proxy signature scheme are
described as follows:

1) (Proxy generation) The original signer generates a
random number kA ∈R Zp−1 and computes the fol-
lowings:

rA = gkA mod p, and

σA = kA + xAH(mw, ra) mod q.

2) (Proxy delivery) The original signer sends
(mw, rA, σA) to the proxy signer through a se-
cure channel.

3) (Proxy Verification) The proxy signer checks the va-
lidity of (mw, rA, σA) by verifying whether or not the
following equation holds.

gσA ≡ rAy
H(mw,rA)
A mod p.

4) (Alteration of the proxy) If the verification is success-
ful, the proxy signer then computes an alternative
proxy private key σp and public key y′

p such that

σp = σA + xBH(mw, rA) mod q, and

y′

p = gσp = rA(yAyB)H(mw ,rA) mod p.

5) (The begin of delegation) The original signer sends
mw to a TSS and requests for a time-stamp. The
TSS generates the time-stamp LB such that

LB = H(n, mw, LB−1, Lf(B)).

And the TSS sends LB to the original signer. Any
t members of a group of size n can construct dig-
ital signatures on behalf of the group. The group
signature on the message LB is Sign(t,n)(LB). The
original signer makes the (mw, LB) to the public.

6) (Proxy signature generation) The proxy signer uses
σp to perform an ordinary signing operation.

7) (Time-stamp request) The proxy signer sends a mes-
sage m to the TSS and requests a time-stamp.

8) (Time-stamp generation and delivery) The TSS gen-
erates a time-stamp Ln such that

Ln = H(n, m, Ln−1, Lf(n)).

And the TSS sends Ln to the proxy signer.
Finally, the valid proxy signature for the message m

is
(m, mw, rA, Signσp

(m, Ln), Ln).

9) (The end of delegation) When the delegation is ex-
pired or revoked by the original signer, the original
signer sends the warrant mw to the TSS and requests
a time-stamp. The TSS generates a time-stamp LE

such that

LE = H(n, mw, LE−1, Lf(E)).

And the TSS sends LE to the original signer.
Any t members of the group can again construct a
digital signature for LE. The group signature on
LE is Sign(t,n)(LE). The original signer makes the
(mw, LB, LE) to the public.

10) (Proxy signature verification) Any verifier can use
the same verification procedures of the original sign-
ing scheme to check the validness of Signσp

(m, Ln).
Furthermore, the verifier has to check whether or not
the following equations hold.

y′

p = gσp = rA(yAyB)H(mw ,rA) mod p.

11) (Time-stamp Verification) The time-stamp of the
proxy signature also needs to check to make sure
LB < Ln < LE . If the verification is successful, it
is ensured than the proxy signature is created during
the valid delegation period as shown in Figure 3.

3.3 Security Analysis

In this section, we shall analyze that the proposed proxy
signature scheme not only satisfies all the security require-
ments of proxy signatures stated in [9, 12], but also re-
solves the time-stamping issues without having to uncon-
ditionally trust a third party at all times.

• Verifiability: Any verifier can be convinced of the
agreement of the original signer on the signed mes-
sage from its corresponding proxy signature. In the
proposed scheme, the proxy signature consists of (m,
mw, rA, Signσp

(m, Ln)). From the warrant mw and
rA generated by the original signer, any verifier can
be convinced of the original signer’s agreement on the
signed message. Additionally, any verifier can ascer-
tain that the proxy signature was created during the
valid delegation period by checking LB < Ln < LE .

• Strong Unforgeability: Strong unforgeability requires
that only the proxy signer can create a valid proxy
signature. Even the original signer cannot create a
valid proxy signature. Because the generation of a
proxy signature requires the private key xB of the
proxy signer in the proposed scheme, no one can forge
a valid proxy signature.

• Strong Identifiability: Anyone can determine the
identity of the proxy signer from the proxy signa-
tures created by her. In the proposed scheme, anyone
can identify the identity of the proxy signer from the
warrant mw.

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 48

Delegation period

L

n

L

E
L

B

<
L

n

<
L

E

L

B

. . .

L

...

. . .

L

B

=H
(
n, m

w

, L

B-1

, L

f
(
B
)

)

L

n

=H
(
n, m,
L

n-1

, L

f
(
n
)

)

L

E

=H
(
n, m

w

,
L

E
-1

, L

f
(
E
)

)

Figure 3: The verification of time-stamps

• Strong Undeniability: This requirement states that
the proxy signer cannot repudiate the valid proxy
signatures created by her. This is also called ”non-
repudiation” in some literatures. Since a proxy sig-
nature is created by using the proxy signer’s private
key xB, the proxy signer cannot disavow the proxy
signature she created.

• The Validation of Time-Stamped Proxy Signatures:
In traditional proxy signature schemes, it is not pos-
sible to verify whether or not a proxy signature was
issued during the valid delegation period. In the pro-
posed scheme, for a specific delegation defined in a
warrant mw, since both LB and LE are verified and
signed by a designated group, and since any verifier
can validate LB < Ln < LE where Ln is the time-
stamp for a signed document m, it is ensured that
the proxy signature for m was issued during the valid
delegation period.

• Prevention of Misuse: It should be confident that the
proxy key pair cannot be used for other purposes. In
the case of misuse, the responsibility of the proxy
signer should be determined explicitly. Because the
delegation rights are clearly stated in the warrant and
the warrant is signed by the original signer, the proxy
signer is only allowed to do whatever were delegated.
Also, since the time-stamp Ln for a proxy signature
must be generated between LB and LE , there is no
way for the proxy signer to sign on a document when
the delegation has expired.

It is also likely that the original signer is malicious.

She may wish to create invalid time-stamps LB2
, LE1

,
and LE2

such that LB < LB2
or LE1

< LE < LE2
;

and publish either one of them instead of the valid
time-stamps LB and LE . In the case that LB2

were
published, all valid proxy signatures issued between
LB and LB2

become invalid. Similarly, in the cases
that either LE1

or LE2
were published, all valid proxy

signatures issued either between LE1
and LE or be-

tween LE and LE2
become invalid; respectively. In

the proposed scheme, since both LB and LE have
to be verified and signed by a designated group,
the original signer cannot arbitrarily publish time-
stamps such as LB2

, LE1
, and LE2

.

3.4 Performance Analysis

In this section, we show the communication overhead and
computational complexity of the proposed scheme. To
analyze the computation complexity and communication
overhead, we fist define the following notations. The re-
sults of the performance analysis are summarized in Ta-
ble 1 and Table 2.

Texp: The time for computing modular exponentiation.

Tmpy: The time for computing modular multiplication.

Th: The time for computing one way hash function.

|x|: The length of a message x. For example, x can be a
warrant or a time-stamp.

TSign(m): The time for generating a proxy signature for
the message m.

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 49

Table 1: The summary of computational complexities

Steps Original Signer Proxy Signer TSS Group Verifier

Proxy generation Texp+Tmpy+Th

Proxy delivery
Proxy verification Tmpy + 2Texp

Alternation of the proxy Th +4Tmpy +2Texp

The begin of delegation Th TPTN

Proxy signature generation TSign(m, Ln)
Time-stamp generation Th

The end of delegation Th TPTN

Proxy signature verification 2Texp +
3Tmpy + Th +
TV erify(m, Ln)

Time-stamp verification TTSV

Total Texp+Tmpy+Th 5Tmpy + 4Texp +
Th + TSign(m, Ln)

3Th 2TPTN 2Texp + Th +
3Tmpy + TTSV +
TV erify(m, Ln)

TV erify(m): The time for verifying a proxy signature of
the message m.

TPTN : The time for using Pedersen’s (t, n) threshold
cryptosystem to sign a message.

|PTN |: The communication overhead of using Peder-
sen’s (t, n) threshold cryptosystem to sign a message.

TTSV : The time for verifying a time-stamp.

|TSV |: The communication overhead verifying a time-
stamp.

The communication overhead and computational com-
plexity of the proposed scheme are analyzed in detail as
follows:

1) (Proxy generation): The original signer needs to
compute the followings:

rA = gkA mod p, and

σA = kA + xAH(mw, ra) mod q.

The computational complexity is Texp + Tmpy + Th.

2) (Proxy delivery): The original signer sends
(mw, rA, σA) to the proxy signer. The communica-
tion overhead is |mw| + |rA| + |σA|.

3) (Proxy verification): The proxy signer needs to check
the validity of (mw, rA, σA) by verifying whether or
not the following equation holds.

gσA ≡ rAy
H(mw,rA)
A mod p.

The computational complexity is Tmpy + 2Texp.

4) (Alteration of the proxy): The proxy signer needs to
compute an alternative proxy private/public key pair
such as

σp = σA + xBH(mw, rA) mod q, and

y′

p = gσp = rA(yAyB)H(mw ,rA) mod p.

As a result, the computational complexity is Th +
4Tmpy + 2Texp.

5) (The begin of delegation): The original signer sends
the mw to a TSS and requests a time-stamp. The
TSS generates a time-stamp LB such that

LB = H(n, mw, LB−1, Lf(B)).

Then the TSS sends LB to the original signer. Since
LB also has to be verified and signed by any t

members of the designated group, the computational
complexity is Th + TPTN and the communication is
|mw| + |LB| + |PTN |.

6) (Proxy signature generation): The proxy signer uses
σp to execute an ordinary signing operation. The
computational complexity is TSign(m, Ln).

7) (Time-stamp request): The proxy signer sends a mes-
sage m to the TSS and requests a time-stamp. The
communication overhead is |m|.

8) (Time-stamp generation and delivery): The TSS gen-
erates a time-stamp Ln for the message m such that

Ln = H(n, m, Ln−1, Lf(n)).

And the TSS sends the Ln to proxy signer. There-
fore, the computational complexity is Th and the
communication overhead is |Ln|.

9) (The end of delegation): When the delegation is ex-
pired and revoked by the original signer, the original
signer sends the warrant mw to the TSS and requests
a time-stamp. The TSS generates a time-stamp LE

such that

LE = H(n, mw, LE−1, Lf(E)).

Then the TSS sends LE to the original signer. Be-
cause LE also has to be verified and signed by any

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 50

Table 2: The summary of communication overhead

Steps Communication Overhead

Proxy generation
Proxy delivery |mw| + |rA| + |σA|

Proxy verification
Alternation of the proxy
The begin of delegation |mw| + |LB| + |PTN |

Proxy signature generation
Time-stamp request |m|

Time-stamp generation and delivery |Ln|
The end of delegation |mw| + |LE | + |PTN |

Proxy signature verification
Time-stamp verification |TSV |

Total 3|mw| + |m| + |rA| + |σA| + |LB| + |Ln| + |LE | + 2|PTN |+ |TSV |

t members of the designated group, the computa-
tional complexity is Th + TPTN and the communica-
tion overhead is |mw| + |LE | + |PTN |.

10) (Proxy signature verification): Any verifier can verify
the proxy signature with the following equation:

y′

p = gσp = rA(yAyB)H(mw ,rA) mod p.

Thus, the computational complexity is 2Texp +
3Tmpy + Th + TV erify(m, Ln).

11) (Time-stamp verification): Any verifier can verify
a time-stamp Ln to ensure that LB < Ln < LE

holds. The communication overhead and computa-
tional complexity are |TSV | and TTSV , respectively.

4 Conclusions and Future Works

It is known that it is not possible to verify whether or
not a proxy signature was generated during the valid del-
egation period for all traditional proxy signature schemes.
Although Sun attempted to resolve this problem, it had
been shown that the proxy signature scheme proposed by
Sun is not secure. In this paper, we proposed a time-
stamping proxy signature scheme using TSS. By utiliz-
ing both TSS and Pedersen’s threshold cryptosystem, the
proposed scheme not only support revocation, but also
resolve the timing issue existed in almost all traditional
proxy signatures schemes. Additionally, it is not required
to unconditionally trust a third party at all times. How-
ever, there is at least one issue that may worth further
investigation. In the proposed scheme, a proxy signer has
to request a time stamp for every message she signs. This
is costly. It will improve the performance significantly if
the number of times to request time-stamps can be re-
duced.

Acknowledgments

This research was partially supported by the National
Science Council, Taiwan, R.O.C., under contract no.:

NSC93-2213-E-005-035.

References

[1] D. Bayer, S. Haber, and W. Scott Stornetta, “Im-
proving the efficiency and reliability of digital time-
stamping,” in Sequences’91: Methods in Communi-
cation, Security, and Computer Science, pp. 329–
334, 1992.

[2] J. Benaloh and M. de Mare, Efficient Broadcast
Time-stamping, Technical Report 1, Clarkson Uni-
versity Department of Mathematics and Computer
Science, 1991.

[3] A. Buldas and P. Laud, “New linking schemes for
digital time-stamping,” in Proceedings of the 1st In-
ternational Conference on Information Security and
Cryptology, pp. 3–14, 1998.

[4] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson,
“Time-stamping with binary linking schemes,” in
CRYPTO’98, LNCS 1462, pp. 486–501, 1998.

[5] S. Haber and W. S. Stornetta, “Secure names for bit-
strings,” in Proceedings of the 4th ACM Conference
on Computer and Communications Security, pp. 28–
35, 1997.

[6] M. S. Hwang, I. C. Lin, and Eric J. L. Lu, “A se-
cure nonrepudiable threshold proxy signature scheme
with known signers,” International Journal of Infor-
matica, vol. 11, no. 2, pp. 1–8, 2000.

[7] Computer Security Institue, 2002 CSI/FBI Com-
puter Crime and Security Survey, Tech. Rep., Com-
puter Security Institue, 2002.

[8] S. Kim, S. Park, and D. Won, “Proxy signatures,
revisited,” in Proceedings of International Confer-
ence on Information and Communications Security,
LNCS 1334, pp. 223–232, 1997.

[9] B. Lee, H. Kim, and K. Kim, “Strong proxy signa-
ture and its applications,” in Proceedings of the 2001
Symposium on Cryptography and Information Secu-
rity (SCIS 2001), pp. 603–608, 2001.

International Journal of Network Security, Vol.2, No.1, PP.43–51, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 51

[10] Eric J. L. Lu and C. J. Huang, “Cryptanalysis
of a time-stamped proxy signature scheme,” Inter-
national Journal of Computational and Numerical
Analysis and Applications, vol. 5, no. 2, pp. 106–115,
2004.

[11] Eric J. L. Lu, M. S. Hwang, and C. J. Huang, “A
new proxy signature scheme with revocation,” Ap-
plied Mathematics and Computation, vol. 161, no. 3,
pp. 799–806, 2005.

[12] M. Mambo, K. Usuda, and E. Okamoto, “Proxy sig-
natures: Delegation of the power to sign messages,”
IEICE Transactions on Fundamentals, vol. E79-A,
pp. 1338–1354, Sep. 1996.

[13] M. Mambo, K. Usuda, and E. Okamoto, “Proxy sig-
natures for delegating signing operation,” in Proceed-
ings of 3rd ACM Conference on Computer and Com-
munications Security, pp. 48–57, 1996.

[14] B. C. Neuman, “Proxy-based authorization and ac-
counting for distributed systems,” in Proceedings
of the 13th International Conference on Distributed
Computing Systems, pp. 283–291, 1993.

[15] T. P. Pedersen, “A threshold cryptosystem with-
out a trusted party,” in Advances in Cryptology,
CRYPTO’91, pp. 522–526, 1991.

[16] B. Schneier, Applied Cryptography, New York: Wi-
ley, 1996.

[17] C. P. Schnorr, “Efficient signature generation by
smart cards,” Journal of Cryptology, vol. 4, pp. 161–
174, 1991.

[18] H. M. Sun, “Design of time-stamped proxy signa-
tures with traceable receivers,” IEE Proceedings of
Computers and Digital Techniques, vol. 147, no. 6,
pp. 462–466, 2000.

[19] V. Varadharajan, P. Allen, and S. Black, “An analy-
sis of the proxy problem in distributed systems,” in
Proceedings of 1991 IEEE Computer Society Sympo-
sium on Research in Security and Privacy, pp. 255–
275, 1991.

Eric Jui-Lin Lu received his B.S.
degree in Transportation Engineering
and Management from National Chiao
Tung University, Taiwan, ROC, in
1982; M.S. degree in Computer Infor-
mation Systems from San Francisco
State University, CA, USA, in 1990;
and Ph.D. degree in Computer Science

from University of Missouri-Rolla, MO, USA, in 1996.
During 1997-2004, he was a professor of the Department
of Information Management and had served as Director of
Computer Center and Head of Graduate Institute of Net-
working and Communication Engineering at Chaoyang
University of Technology, Taiwan, ROC. He is currently
a professor of the Department of Management Informa-
tion Systems at National Chung Hsing University, Tai-
wan, ROC. His current research interests include XML
technology, distributed processing, and security.

Cheng-Jian Huang is currently a
software engineer at Motech Taiwan
Automatic Corp. He received his
B.S.B. degree in Information Manage-
ment from National Taichung Insti-
tute Of Technology, Taiwan in 1994,
and M.S. degree in Information Man-
agement from Chaoyang University of

Technology, Taiwan in 2005. His research interests in-
clude Cryptograph and Information Security.

