
International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 34

Expansion of Sliding Window Method for
Finding Shorter Addition/Subtraction-Chains

Younho Lee, Heeyoul Kim, Seong-Min Hong, and Hyunsoo Yoon

(Corresponding author: Seong-Min Hong)

Division of Computer Science, Korea Advanced Institute of Science and Technology

373-1 Guseng-dong, Yuseong-gu, Daejeon 305-701, Rep. of Korea (Email: smhong@camars.kaist.ac.kr)

(Received July 3, 2005; revised and accepted Aug. 2, 2005)

Abstract

Finding a shorter addition/subtraction-chain for an in-
teger is an important problem for many cryptographic
systems based on number theory. Especially, execu-
tion time of multiplication on an elliptic curve cryp-
tosystem is directly proportional to the length of the
addition/subtraction-chain. In this paper, we propose an
algorithm to find an addition/subtraction-chain. The pro-
posed algorithm is based on the small-window method,
and reduces the number of windows by using subtrac-
tions. We show the proposed algorithm finds the shorter
addition/subtraction-chain than what can be found by
any other previous algorithm.

Keywords: Addition/subtraction-chain, elliptic curve
cryptosystem, public key cryptosystem

1 Introduction

Since Diffie and Hellman had proposed public-key cryp-
tography in 1976, many cryptosystems based on number
theory have been developed [3, 4]. They have to deal with
large numbers as 512-bit integers to gain acceptable secu-
rity. As it takes much time to deal with such large num-
bers on current computer systems, we need algorithms
which can execute cryptographic functions fast. Modular
exponentiation in RSA and multiplication on an elliptic
curve cryptosystem are ones of such operations [6, 9, 10].

A modular exponentiation is composed of many mod-
ular multiplications. An addition-chain is used to repre-
sent the computation sequence of modular multiplications
for a modular exponentiation. A shorter addition-chain
means faster execution of the corresponding modular ex-
ponentiation, because there is one-to-one relationship be-
tween an element of the addition-chain and a modular
multiplication in the process of the modular exponentia-
tion.

Also, an addition-chain is used to reduce the execution

time when we calculate the d multiple of a point P , that
is d · P , on an elliptic curve cryptosystem. Calculation
of d · P is composed of repetition of additions and com-
putation sequence of additions can be represented by an
addition-chain. On an elliptic curve cryptosystem, sub-
traction of a point from another point requires the same
time as the corresponding addition, because negation of a
point is very easy. Therefore, we can use subtractions
when we find the computation sequence of a multipli-
cation over elliptic curves. That computation sequence
can be represented as an addition/subtraction-chain. An
addition/subtraction-chain of length l for an integer n is a
sequence of integers a0, a1, ..., al satisfying a0 = 1, al = n,
and ai = ±aj ± ak, where 0 ≤ j ≤ k < i ≤ l.

Many researchers have studied about
addition(/subtraction)-chains for their cryptographic
importance [1, 2, 7, 9, 13, 14, 15]. In these researches
there are some remarkable investigations. Downey et
al. proved that finding the shortest addition-chain
containing a set of integers is an NP-complete problem in
[5]. Schonhage revealed the fact that the lower bound of
the shortest length of an addition-chain for an integer a
is log a + log ν(a)− 2.13 in [11] (ν(a) is the number of 1’s
in the binary representation of a). Together with these
studies, there are many proposals for addition-chain
algorithms. The intuitive binary method has been used
for a long time [8], and the modified binary method
using modulo inverse of a number was proposed in [7]
and [12]. Also, the simple and efficient small-window
method is presented in [8]. Bos and Coster proposed
the large-window method using some heuristics [1].
Yacobi proposed a modified m-ary algorithm which uses
similarities between data compression and operation that
deals with large numbers in [15]. Koyama and Tsuruoka
proposed a signed binary window method in [9]. There
is performance comparison of these various algorithms in
Table 1.

In this paper, we propose an algorithm to find an
addition/subtraction-chain. The proposed algorithm is

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 35

based on the small-window method, and reduces the num-
ber of windows by using subtractions. We show the pro-
posed algorithm finds the shorter addition/subtraction-
chain than what can be found by any other previous al-
gorithm.

Composition of this paper is as follows. In Section
2, we propose an addition/subtraction-chain algorithm.
In Section 3, we calculate the length of the chain which
is found by the proposed algorithm. In Section 4, we
compare the performance of the proposed algorithm with
those of previous addition/subtraction-chain algorithms.
Finally, we conclude in Section 5.

2 Algorithm

In this section, we propose an addition/subtraction-chain
algorithm. First, we explain the small-window method [8]
briefly, because our algorithm is based on it. And then,
we explain our algorithm.

2.1 Small-Window Method

With the small-window method, we write a number in the
binary scale, and split it in many small pieces(windows).
After that, we find the addition-chain by merging those
windows.

For example, we find the addition-chain for a small
integer “358496523510” with the small-window method.
The binary representation of “358496523510” is as follows:

11010101101011100011101001110011.

We can divide it into the following partition with windows
of which maximum size is 4.

1101 0 1011 0 1011 1 000 111 0 1001 11 00 11

First, all values that a window may have should
be included in the addition-chain. That is,
{1, 2, 3, 5, 7, ..., 13, 15} should be included. Note that 2
must be included in the set, since we are not able to
calculate 3,5,7,...,13,15 without it.

We start with the first(from the left) window “1101”.
First, we shift “1101” five times to the left. Then, it
becomes “1101 00000”. In this process, {13 × 2, 13 ×
22, 13× 23, 13× 24, 13× 25} is inserted into the addition-
chain. Second, we add the second(from the left) window
“1011” to “1101 00000”. Then, it becomes “1101 0 1011”,
which corresponds to the most significant 9-bit-string of
the number of which addition-chain we want to find. The
decimal number equivalent to it, 42710(= 13 × 25 + 11),
is inserted into the addition-chain.

We call the process explained in the above paragraph
window merge. Merging all eight nonzero windows, we
can get an addition-chain. This procedure of finding
an addition-chain with the small-window method is de-
scribed in C-like pseudo-code in Algorithm 2.1.

We calculate the length of the addition-chain found
above by counting the elements in the addition-chain.

First, 9(= 24−1 + 1) elements are inserted into the chain,
because a window of which maximum size is 4 may have
an odd integer smaller than 16(= 24) and 2 should be
included in the addition-chain to calculate these integers.
Second, 28(= 32−4) elements are inserted into the chain,
because the first window should be shifted 28 times to
the left and one shift means that one element should be
inserted into the chain. Third, 7(= 8−1) elements are in-
serted into the chain, because the number of windows is 8
and merging two windows means that one element should
be inserted into the chain. The number of all elements in
the addition-chain is 44(= 9 + 28 + 7), and the length of
chain is the number of elements in the chain minus one
[8]. Therefore, the length of the addition-chain found in
the example is 43.

Algorithm 2.1. Let a(= en−1en−2 · · · e1e0, ei =
0 or 1, 0 ≤ i < n) be the number of which addition-
chain we want to find, and let k be the window size. In
this algorithm, α is the addition-chain represented as a
set, wj means each window, ‘|’ concatenation.

1 Small Window(a,k)
2 {

3 α = {1, 2, 3, 5, 7, 9, ..., 2k − 1};
4 i = n − 1; p = 0;
5 while(i ≥ 0) {
6 wp = eiei−1ei−2 · · · ei−k+1;
7 i = i − k;
8 for(;ei == “0”; i −−) wp = wp|ei;
9 p + +;
10 }

/* Now, a = w0w1 · · ·wp−2wp−1, wi = ei,si−1ei,si−2

· · · ei,1ei,0, 0 ≤ i < p,k ≤ si */

11 while(w0 > 2k) w0 = w0 / 2;
12 if(w0 == even)
13 α = α∪{w0 − 1, w0, 2

1 × w0, 2
2 × w0,

· · · , 2s0−k × w0};
14 else

15 α = α∪{w0, 2
1 × w0, 2

2 × w0, ..., 2
s0−k × w0};

16 ac = 2s0−k × w0

17 for(i = 1; i < p; i + +) {
18 while(wi == even) wi = wi / 2;

19 α = α∪ {21 × ac, 22 × ac, ..., 2blog wic+1 × ac};

20 ac = 2blog wic+1 × ac + wi;
21 α = α∪ {ac, 21 × ac, 22 × ac,

· · · , 2si−blog wic−1 × ac};

22 ac = 2si−blog wic−1 × ac

23 }
24 }

2.2 Proposed Algorithm

In this section, we explain our addition/subtraction-chain
algorithm. It is based on the small-window method, and
reduces the number of windows.

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 36

2.2.1 Basic Idea

We show the basic idea of the proposed algorithm with a
very small example. Let the window size 3. To find an
addition-chain for an integer “138710”, we write it in the
binary scale and split it in many windows. The result is
“101 0 11 0 101 1”, and can be represented as follows:

((101 × 23 + 11) × 24 + 101) × 21 + 1.

8 shifts and 3 window merges are required to find the
chain, and the length of the resulting chain is 15(= 5 +
8 + 3 − 1). The resulting chain can be enumerated as
follows:

1, 2, 3, 5, 7, 10, 20, 40, 43, 86, 172, 344, 688, 693, 1386, 1387.

The underlined elements in the above chain are ones
which are prepared in advance, because the window may
have those values. Although some of them are needless
in this example, they must be included since we have to
deal with large numbers as 512-bit integers in real envi-
ronment.

If subtractions are permitted, we can obtain a shorter
chain(addition/subtraction-chain). “1011”(the least sig-
nificant 4 bits of the binary representation of “138710”)
equals to “10000 − 101”. Therefore, the window parti-
tion can be converted into “101 0 111 0 /101” (“/” means
that we must subtract the value of the succeeding window
of the slash from that of the preceding window when we
merge windows later). Note that the third window(from
the left) starts from the fourth bit from the leftmost bit
of the second window, and that the value of the second
window is incremented by one. Also, note that three bits
from the start bit of the third window are 2’s comple-
mented. It can be represented as follows:

(101 × 24 + 111) × 24 − 101.

The number of window merges required is reduced by one,
and the length of the resulting chain becomes 14(= 5+8+
2− 1). The resulting chain can be enumerated as follows:

1, 2, 3, 5, 7, 10, 20, 40, 80, 87, 174, 348, 696, 1392, 1387.

Now, we can formulate our idea, which is as follows:

If the (k + 1)-th bit from the leftmost bit of the
i-th window is 1, the (i+1)-th window can start
from the (k + 2)-th bit, where k is the window
size.

This observation can be generalized easily.

If all bits from the (k + 1)-th bit(from the left-
most bit of the i-th window) to the (k+j)-th bit
are 1, the (i + 1)-th window can start from the
(k + j + 1)-th bit, where k is the window size.

2.2.2 Small Example

We explain our algorithm with the example that we used
in Section 2.1 for comparison. Let the window size 4.
We split the binary representation of “358496523510” in
windows. The intermediate result is as follows:

1101 0 1011 0 1011 100011101001110011.

Here, the 5-th bit from the leftmost bit of the third win-
dow is 1. Therefore, the value of the third window is
incremented by one, and the fourth window starts from
the 6-th bit from the leftmost bit of the third window.
Four bits from the start bit are 2’s complemented. The
resulting partition is as follows:

1101 0 1011 0 11 000 /1111 1101001110011.

Again, the 5-th bit and 6-th bit from the leftmost bit
of the fourth window are all 1. Therefore, the value of
the fourth window(equals to −15) is incremented by one,
and the fifth window starts from the 7-th bit from the
leftmost bit of the fourth window. Bits from the 7-th to
the 10-th from the leftmost bit of the fourth window are
2’s complemented. The resulting partition is as follows:

1101 0 1011 0 11 000 /111 000 /11 001110011.

The same process makes the following result:

1101 0 1011 0 11 000 /111 000 /1011 000 /1101.

The method of obtaining an addition/subtraction-
chain from this window partition is much the same as
that of the small-window method. The only difference is
that when a slash appears in the process of window merge,
we subtract the value of the succeeding window instead of
adding it. The procedure explained until now is described
in Algorithm 2.2 in C-like pseudo-code.

We calculate the length of the addition/subtraction-
chain found above, and compare it with that of the
small-window method in Section 2.1. The number of ele-
ments prepared in advance and the total number of shifts
are the same as those of the small-window method, so
these are 9 and 28 respectively. The number of win-
dows is different. It is 6 which is smaller than that
of the small-window method by 2. Therefore, the total
length of the addition/subtraction-chain obtained above
is 41(=9+28+5-1). It is smaller than that of the small-
window method by the difference in the number of win-
dows.

2.2.3 Complexity

We briefly show the complexity of the proposed algo-
rithm. In Algorithm 2.2, our pseudocode scans the input
bit string a once(lines from 5 to 18), and then scans win-
dows once(lines from 25 to 33). The number of bits in a is
blog ac+ 1, and the number of windows is less than that.
Therefore, the complexity of the proposed algorithm is
O(log a), which is the same as that of Algorithm 2.1.

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 37

Algorithm 2.2. Let a(= en−1en−2 · · · e1e0, ei =
0 or 1, 0 ≤ i < n) be the number of which an
addition/subtraction-chain we want to find, and let k
be the window size. In this algorithm, α is the
addition/subtraction-chain represented as a set, wj means
each window, and ‘|’ concatenation.

1 Proposed(a,k)
2 {

3 α = {1, 2, 3, 5, 7, 9, ..., 2k − 1};
4 i = n − 1; p = 0;
5 while(i ≥ 0) {
6 wp = eiei−1ei−2 · · · ei−k+1;
7 i = i − k; sub[p]=FALSE;
8 if(ei == “1”) {
9 wp = wp + 1;
10 if(wp ≤ 2k−1)

{ wp = 2’s complement of wp;
sub[p] = TRUE; }

11 for(;ei == “1”; i −−) wp = wp|0;
12 }
13 else {

14 if(wp < 2k−1)
{ wp = 2’s complement of wp;
sub[p] = TRUE; }

15 for(;ei == “0”; i −−) wp = wp|ei;
16 }
17 p + +;
18 }

/*Now, a = w0w1 · · ·wp−2wp−1, wi = ei,si−1ei,si−2

· · · ei,1ei,0, 0 ≤ i < p,k ≤ si*/

19 while(w0 > 2k) w0 = w0 / 2;
20 if(w0 == even)
21 α = α∪{w0 − 1, w0, 2

1 × w0, 2
2 × w0,

· · · , 2s0−k × w0};
22 else

23 α = α∪{w0, 2
1 × w0, 2

2 × w0, ..., 2
s0−k × w0};

24 ac = 2s0−k × w0

25 for(i = 1; i < p; i + +) {
26 while(wi == even) wi = wi / 2;

27 α = α∪ {21 × ac, 22 × ac, ..., 2blog wic+1 × ac};

28 ac = 2blog wic+1 × ac

29 if(sub[i]==TRUE) ac = ac − wi;
30 else ac = ac + wi;

31 α = α∪{ac, 21 × ac, 22 × ac, ..., 2si−blog wic−1 × ac};

32 ac = 2si−blog wic−1 × ac

33 }
34 }

3 Performance Analysis

In this section, we calculate the length of the
addition/subtraction-chain which can be obtained with
the proposed algorithm for both average-case and worst-
case, where a, n, and k have the following meanings.

• a: an integer of which addition/subtraction-chain we
want to find.

• n: the number of bits required for binary representa-
tion of a, that is blog ac + 1

• k: the window size

3.1 Average-Case

Elements in the addition/subtraction-chain obtained with
the proposed algorithm are partitioned into the following
three classes.

1) A set of integers which are prepared in advance:
1, 2, 3, 5, 7, ..., 2k − 1.

2) A set of integers obtained by doubling elements in the
addition/subtraction-chain found already, and the in-
teger made by adding two elements in the first class.

3) A set of integers obtained by adding an element in
the second class and one in the first class, or by sub-
tracting an element in the first class from one in the
second class.

Clearly, the number of elements in the first class is 2k−1+
1. The number of elements in the second class is the same
as the number of shifts needed during finding the chain.
Therefore, we count the number of shifts. If the k-th
bit from the leftmost bit is 1, any extra addition is not
needed because the value of the leftmost window is an odd
integer larger than 2k−1 and it is included in the first class
already. So, shifts are needed n − k times during finding
the addition/subtraction-chain. However, if the bit is 0,
extra one addition is needed because the corresponding
value of the first k-bit-string is an even integer and it
can be obtained by adding one to an element of the first
class. So, shifts are needed n − k + 1 times. As both
probabilities that the k-th bit from the leftmost bit is 1
and 0 are 1

2
respectively, shifts are needed n−k+0.5 times

on the average. It is the average number of elements in
the second class.

We count the average number of windows, because the
number of elements in the third class equals to the number
of windows minus one. First, we consider the interval be-
tween the i-th window and the (i+1)-th window. Whether
the (k+1)-th bit from the leftmost bit of the i-th window
is 0 or 1, (i + 1)-th window can start from the (k + 2)-th
bit. Therefore, the probability that the interval between
the i-th window and the (i + 1)-th window is larger than
k + 1 is 1. It can be generalized. If bits from the (k + 1)-
th to the (k + j + 1)-th are all 1s or all 0s, the (i + 1)-th
window can start from the (k+ j +2)-th bit from the left-
most bit of the i-th window, where j ≥ 0. Therefore, the
probability that the interval between the i-th window and
the (i + 1)-th window is larger than k + j + 1 is 2−j . The
expected value of the interval between the i-th window
and the (i + 1)-th window is k + 2(= k + 1 +

∑
j=1 2−j).

This means that each window occupies (k+2) bits on the
average. Therefore, the average number of windows in the
partition made by the proposed method is n/(k + 2), and
the number of elements in the third class is n/(k +2)−1.

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 38

We have counted the number of elements in each class.
As those three classes are disjoint, we can calculate the
length of addition/subtraction-chain obtained with the
proposed algorithm by simply summing those three num-
bers. It is as follows:

2k−1 + n − k − 0.5 +
n

k + 2
.

3.2 Worst-Case

We consider the worst-case input when we find an
addition/subtraction-chain for it. The number of ele-
ments in the first among three classes that we classified
in Section 3.1 has no relation with the input integer. The
number of elements in the second class is determined by
only the size of the input integer. When the k-th bit from
the leftmost bit is 0, one additional element is required.

The number of elements in the third class is largely in-
fluenced by an input integer. The case that the bit string
of the input integer is divided into the largest number of
windows is the worst-case. As we explained in Section 3.1,
the interval between the i-th window and the (i + 1)-th
window is k+1 at least. Therefore, if every window occu-
pies k + 1 bits, there are the largest number of windows.
In this case, the average number of windows is n/(k + 1).

Now, we can compute the length of the
addition/subtraction-chain found with the proposed
algorithm in the worst-case. The number of elements
in the first class is 2k−1 + 1, and in the second class
is n − k + 1. Because the number of elements in the
third class equals to the number of windows minus
one, it is n/(k + 1) − 1. Therefore, the length of the
addition/subtraction-chain is as follows:

2k−1 + n − k +
n

k + 1
.

4 Comparison

We compare the length of the addition/subtraction-chain
found by the proposed algorithm with those that can be
obtained by existing several methods, where a, n, and k
in this section have the same meanings as those used in
Section 3.

First, we examine the performance of existing several
methods. The average length of the addition-chain ob-
tained with the binary method [8] is 3

2
n − 1.5, and it is

not longer than 2n−2 even in the worst-case. If we use the
small-window method [2], we can obtain an addition-chain
whose average length is 2k−1 +n−k−0.5+ n

k+1
, which is

not longer than 2k−1+n−k+n
k even in the worst-case. Bos

and Coster state that they can obtain the addition-chain
whose average length is 605 for a 512-bit integer with
their heuristic algorithm in [1]. But, it is difficult to ana-
lyze the performance of their algorithm systematically be-
cause it uses heuristics. The addition/subtraction-chain
obtained with the modified binary method [7, 12] guar-
antees that its length is not longer than 5

3
n, and has the

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 200 400 600 800 1000

L
en

gt
h

of
 C

ha
in

 -
 S

iz
e

of
 O

pe
ra

nd

Size of Operand(bits)

Proposed
Koyama

Small-Window
Modified Binary

Binary

Figure 1: Comparison of lengths of addition/subtraction-chains

average length of 4
3
n. If we use the algorithm that Yacobi

proposed in [15] we can obtain an addition-chain whose
average length is n−(log n−log log n)+1.5(n

log n+o(n
log n)).

The average length of the addition/subtraction-chain that
can be obtained by Koyama and Tsuruoka’s method [9]

is 2k−1 + n − k + 3
4

+ n+1/4

k+3/2

The length of the addition/subtraction-chain found
with the proposed algorithm and the lengths of
addition/subtraction-chains obtained with methods ex-
amined above are appeared in Figure 4. X-axis indicates
the size of an operand, n, and Y-axis indicates the length
of an addition/subtraction-chain.

Table 1: Lengths of addition/subtraction-chains, when
n = 512

Algorithm Length
binary [8] 766.5(1022)
modified binary [7, 12] 681.7(768)
Yacobi’s [15] [9] 635.1(−)
small-window(5) [8] 607.8(625.4)
large-window(11) [1] 605(−)
Koyama’s(5) [9] 602.6(629)
proposed (5) 595.6(608.3)

The concrete values for a 512-bit integer corresponding
to Figure 4 are appeared in Table 1. The number between
the parentheses on the algorithm column in Table 1 means
the size of windows used, and that on the length column
means the worst-case length. As we can see in Figure
4 and Table 1, the proposed algorithm finds the shorter
addition/subtraction-chain than what can be found by
any other existing method.

5 Conclusion

In this paper, we proposed an addition/subtraction-chain
algorithm. The proposed algorithm is based on the clas-

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 39

sical small-window method, and uses a new window split-
ting mechanism.

Let a be an integer of which addition/subtraction-chain
we want to find, and k be the window size. The aver-
age length of the addition/subtraction-chain which can
be found with the proposed algorithm is as follows:

2k−1 + blog ac − k + 0.5 +
blog ac + 1

k + 2
.

In the worst case, we guarantee the following length of
the addition/subtraction-chain with our algorithm.

2k−1 + blog ac − k + 1 +
blog ac + 1

k + 1

These are shorter average-case and worst-case lengths
than those of any other existing addition /subtraction-
chain algorithm.

Acknowledgements

This work was supported by the KOSEF (Korea Sci-
ence and Engineering Foundation) through the AITrc
(Advanced Information Technology Research Center)
and the MIC(Ministry of Information and Communica-
tion), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the
IITA(Institute of Information Technology Assessment)

References

[1] Jurjen Bos and Matthijs Coster, “Addition chain
heuristics,” in Crypto’89, pp. 400–407, 1989.

[2] M. J. Coster, Some algorithms on addition chains
and their complexity. CWI Report CS-R9024, 1990.

[3] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Computers,
vol. IT-22, pp. 644–654, June 1976.

[4] Whitfield Diffie, “The first ten years of public-
key cryptography,” in Proceeding of The IEEE,
vol. 76,NO.5, pp. 560–576, May 1988.

[5] Peter Downey, Benton Leong, and Rave Sethi, “Com-
puting sequences with addition chains,” SIAM J.
Comput., vol. 10, pp. 638–646, August 1981.

[6] T. ElGamal, “A public-key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. IT-31,
no. 4, pp. 469–472, 1985.

[7] J. Jedwab and C. J. Mitchell, “Minimum weight
modified signed-digit representations and fast expo-
nentiation,” Electronics Letters, vol. 25, pp. 1171–
1172, 1989.

[8] D. E. Knuth, The art of computer programming.
Addison-Wesley,Inc., 1981.

[9] Kenji Koyama and Yukio Tsuruoka, “A signed bi-
nary window method for fast computing over ellip-
tic curves,” IEICE Transactions on Fundamentals,
vol. E76-A, pp. 55–62, 1993.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A
method for obtaining digital signatures and pub-
lic key crytosystems,” Communications of ACM,
vol. 21, pp. 120–126, 1978.

[11] A. Schonhage, “A lower bound on the length of ad-
dition chains,” Theoretical Computer Science, vol. 1,
pp. 1–12, 1975.

[12] A. Selby and C. Mitchell, “Algorithms for software
implementations of RSA,” IEE Proceedings - Com-
puter & Digital Technology, vol. 136, pp. 166–170,
MAY 1989.

[13] Y. Tsai and Y. Chin, “A study of some addition chain
problems,” International Journal of Computer Math-
ematics, vol. 22, pp. 117–134, 1987.

[14] Hugo Volger, “Some results on addition/subtraction
chains,” Information Processing Letters, vol. 20,
pp. 155–160, 1985.

[15] Y. Yacobi, “Exponentiating faster with addition
chains,” in Eurocrypt’90, pp. 222–229, 1991.

Younho Lee received the B.E. degree
in computer science from Korea Ad-
vance Institute of Science and Technol-
ogy (KAIST), South Korea, in 2000,
the M.S. degree in computer science
from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Heeyoul Kim received the B.E. de-
gree in computer science from Ko-
rea Advance Institute of Science and
Technology (KAIST), South Korea, in
2000, the M.S. degree in computer sci-
ence from KAIST, in 2002. He is cur-
rently working toward the Ph.D. de-
gree at the Division of Computer Sci-

ence, KAIST.

Seong-Min Hong received the B.E.
degree in computer science from
KAIST, South Korea, in 1994. He also
received the M.S. degree and Ph.D
degree in computer engineering from
KAIST in 1996 and 2000, respectively.
He is currently an research professor
in the division of Computer Science at

KAIST.

International Journal of Network Security, Vol.2, No.1, PP.34–40, Jan. 2006 (http://isrc.nchu.edu.tw/ijns/) 40

Hyunsoo Yoon received the B.E. de-
gree in electronics engineering from
SNU, South Korea, in 1979, the
M.S. degree in computer science from
KAIST, in 1981, and the Ph.D. de-
gree in computer and information sci-
ence from the Ohio State University,
Columbus, Ohio, in 1988. From 1988

to 1989, with the AT & T Bell Labs. as a Member of
Technical Staff. Since 1989 he has been a faculty member
of Division of Computer Science at KAIST.

