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Abstract

The hybrid signcryption scheme based on certificateless
public key cryptography avoids the complexity of certifi-
cate management existing in the traditional public key
cryptography and the inherent key escrow problem ex-
isting in identity-based public key cryptography. The
certificateless hybrid signcryption scheme combined with
certificateless signcryption key encapsulation mechanism
and data encapsulation mechanism can dispose the mes-
sages with arbitrary length while conventional certificate-
less signcryption schemes cannot. Meanwhile, almost all
the proposed certificateless hybrid signcryption schemes
cannot survive against the known session-specific tempo-
rary information security (KSSTIS) attack. In this paper
we propose an efficient certificateless hybrid signcryption
scheme, and formally prove its security in random oracle
model under the assumption of Diffie-Hellman mathemat-
ical hard problems. Compared with the previous schemes,
our scheme has the advantage of lower computational cost
by reducing the amount of bilinear pairing computation.
Moreover, our scheme achieves KSSTIS attribute.

Keywords: Certificateless; Hybrid Signcryption; Random
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1 Introduction

Signcryption is a cryptographic primitive which performs
both the functions of signature and encryption in one log-
ical step. With lower computational and communication
cost, signcryption promotes the development of public
key cryptography. Traditional public key cryptography,
identity-based public key cryptography (IBC) and cer-
tificateless public key cryptography are three important
stages of public key cryptography. For a long period of
time, many signcryption schemes using conventional pub-
lic key infrastructure (PKI) have been proposed, which
binds user’s identity and public key with a certificate. But

the certificate management is a particularly prominent is-
sue. In order to solve this problem and reduce the burden
on traditional PKI, Identity-based public key cryptogra-
phy was proposed, and a number of related signcryption
schemes [7, 8] have been proposed in recent years. For
IBC, the public key is computed with the binary string
of users identity, thus IBC does not need the certificate
used in PKI. However, the private key of IBC is gener-
ated by a private key generator (PKG). In this situation,
private key escrow becomes an inherent problem in IBC.
The PKG can forge or decrypt any ciphertext.

The notion of certificateless public key cryptography
(CLC) was presented by Al-Ryiami and Paterson [2],
which solves the certificate management problem of the
traditional PKI and the inherent key escrow problem of
IBC. For CLC, the private key is divided into two parts,
one part is selected by users themselves and the other is
generated by a key generation center (KGC). In 2008,
Barbosa and Farshim [3] firstly proposed a certificate-
less signcryption scheme and its security notions. Re-
cently, many signcryption schemes [6,13] using certificate-
less cryptography have been proposed.

The notion of hybrid encryption was presented by Abe
et al. [1], and then Dent proposed the notion of hy-
brid signcryption [4]. Hybrid signcryption includes two
parts. One part is a key encapsulation mechanism (CLSC-
KEM) and the other part is a data encapsulation mech-
anism (DEM).In recent years, some hybrid signcryption
schemes have been proposed for various network applica-
tions [9, 11]. Li et al. [5] proposed the first certificateless
hybrid signcryption(CLHSC) scheme. The scheme con-
sists of a tag key encapsulation mechanism (tag-KEM)
and a data encapsulation mechanism (DEM), and their
scheme makes up for the lack of authentication security
in Dent’s scheme [4]. At the signcryption stage, a sym-
metric key is generated by the key encapsulation mech-
anism, and then outputs the signcryption data. At the
decryption stage, after obtaining the symmetric key by
decapsulating the signcryption data, the ciphertext will
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be decrypted. Later, Selvi et al. [10] pointed out that Li’s
scheme may be existentially forgeable and proposed an
improved scheme. Recently, Yin and Liang [12] pointed
out almost all certificateless signcryption schemes that
have been proposed in the literature cannot effectively
against the public-key-replacement attacks, and they pro-
posed an enhanced scheme to fill this security gaps.

However, we find these certificateless hybrid signcryp-
tion schemes above cannot survive against known session-
specific temporary information security (KSSTIS) attack.
To compensate for this security flaw, this paper proposes
a new hybrid signcryption scheme based on certificateless
cryptography and proves that the scheme meets the con-
fidentiality and unforgeability in random oracle model,
also our scheme can against the public-key-replacement
attacks. Compared with the schemes above, our scheme
achieves KSSTIS security attributes and has less bilinear
pairing computation.

2 Preliminaries

Let G1 and G2 be a cyclic additive and multiplicative
group respectively, whose prime order is a large prime
number q. P is a generator of the group G1. If a map
ê : G1 × G1 → G2 satisfies the following properties, we
call it bilinear pairing.

1) Bilinearity: for all a, b ∈ Z∗q , there is ê(aP, bP ) =

ê(P, P )ab.

2) Computability: for all P,N ∈ G1, there is an efficient
algorithm to compute ê(P,N).

3) Non-degeneracy: there exists P ∈ G1, such that
ê(P, P ) 6= 1G2.

We can construct bilinear pairing ê using the modified
Tate pairing and Weil pairing of elliptic curve over a finite
field. The security of our scheme relies on the following
hard problems.

Definition 1. Computational Diffie-Hellman(CDH)
problem: For two integers a, b ∈ Z∗q and a generator P of
G1, given the tuple (P, aP, bP ) to compute abP is hard.

Definition 2. Computational Bilinear Diffie-Hellman
(CBDH) problem: For three integers a, b, c ∈ Z∗q and a
generator P of G1, given the tuple (P, aP, bP, cP ) to com-
pute ê(P, P )abc is hard.

3 Certificateless Hybrid Signcryp-
tion Scheme

In this section, the certificateless hybrid signcryption
scheme is described in details. Our scheme includes the
following algorithms:

Setup: On input of a security parameter k, KGC picks a
bilinear pairing ê : G1 ×G1 → G2 and three security

cryptographic hash functions H1 : {0, 1}∗×G1 → G1,
H2 : {0, 1}∗×(G1)4×G2 → {0, 1}n and H3 : {0, 1}∗×
(G1)4 → {0, 1}n. Then the KGC randomly chooses
a master key s ∈ Z∗q and computes the master public
key Ppub = sP . The KGC keeps the master key
s and publishes the system parameters params =<
G1, G2, ê, q, P, Ppub, H1, H2, H3 >.

GUK (Generate user key): On input of an identity
ID and the system parameters params, a user ran-
domly choose xID ∈ Z∗q as his secret key, and then
computes his public key PKID = xIDP .

EPPK (Extract partial private key): On input of
an identity ID and the system parameters params,
KGC computes QID = H1(ID||PKID), and then
computes the partial private key DID = sQID.

GSK (Generate symmetric key): On input of
sender’s identity IDs, public key PKs, and private
key (xs, Ds), receiver’s identity IDr and public key
PKr. Randomly choose x, y ∈ Z∗q , the sender does
the following steps.

1) Compute U = xP , T = ê(Ds, Qr).

2) Compute session key KAB = H2(IDr, T , U ,
xPKr, xsPKr, PKr).

3) Obtain internal state information W̄ = (x, y,
U, xs, Ds, IDs, PKs, IDr, PKr).
Output (KAB , W̄ ).

Encapsulation: On input of a tag τ and internal state
information W̄ . The algorithm works as the following
steps.

1) Compute w = y(Ds + xsPKr).

2) Compute h = H3(τ, U,w, PKs, Pkr).

3) Compute v = 1/(y(x+ h)).

Output δ = (U,w, v).

Decapsulation: On input of signcryption δ, a tag τ , the
sender’s identity IDs, public key PKs, and the re-
ceiver’s identity IDr, public key PKr, private key
(xr, Dr). The receiver does the following steps.

1) Compute h = H3(τ, U,w, PKs, PKr).

2) Check if ê(vw, U + hP )
?
= ê(Qs, Ppub)ê(PKs,

PKr). If it is correct, go on and do the following
computations. Otherwise stop and return ⊥.

3) Compute T = ê(Dr, Qs).

4) Compute session key KAB = H2(IDr, T , U ,
xrU , xrPKs, PKr).

4 Security Analysis

In this section, we use some mathematical hard prob-
lems to analyze the confidentiality and unforgeability se-
curity of the scheme in the random oracle model, then
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we show that our scheme can survive against known
session-specific temporary information security (KSSTIS)
attacks.

4.1 Consistency

Our scheme satisfies the consistency.

ê(vw,U + hP )

= ê(y(Ds + xsPKr)/y(x+ h), xP + hP )

= ê((Ds + xsPKr), P )

= ê(Ds, P )ê(xsPKr, P )

= ê(Qs, Ppub)ê(PKs, PKr).

4.2 Confidentiality

Theorem 1. Assuming that CBDH is hard to solve in
random oracle model, the scheme is secure against any
IND-CLHSC-CCA2-I adversary AI attack.

Proof. Assuming that the challenger C receives an CBDH
challenge tuple (P, aP, bP, cP ), where P is a generator of
cyclic additive G1. And the goal for C is to compute
the answer of ê(P, P )abc. The challenger C sends the sys-
tem parameters params to AI , and sets Ppub = aP . C
maintains several lists L1, L2, L3, Lu, Le, Ld and answers
the following queries. Among these lists, L1, L2, L3 sim-
ulate H1, H2, H3 oracle respectively,Lu is used to track
GUK query, Le is used to track Encapsulation query, Ld

is used to track Decapsulation query.

H1 query: C selects two random numbers i, j ∈
{1, 2, · · · , q1}, where q1 is the number of H1 queries.
At the n-th query:

1) if IDn = IDi, C answers Qi = bp, and adds the
tuple (IDi,⊥, bP ) into list L1.

2) if IDn = IDj , C answers Qj = cP , and adds
the tuple (IDj ,⊥, cP ) into list L1.

3) if IDn /∈ {IDi, IDj}, C randomly chooses w ∈
Z∗q , answers Qn = wP , and then returns it and
adds the tuple (IDn, w,Qn) into list L1.

H2 query: C checks if there exists a tuple
(IDr, T, U, xPKr, xsPKr, PKr, h2) in the list L2. If
the tuple is found, C returns h2. Otherwise, C ran-
domly chooses h2 ∈ {0, 1}n, and then returns it and
adds the tuple (IDr, T, U, xPKr, xsPKr, PKr, h2)
into list L2.

H3 query: C checks if there exists a tuple
(τ, U,w, PKs, PKr, h3) in the list L3. If the
tuple is found, C returns h3. Otherwise, C randomly
chooses h3 ∈ Z∗q , and then returns it and adds the
tuple(τ, U,w, PKs, PKr, h3) into list L3.

GUK query: AI picks an identity IDn, C randomly
chooses xn ∈ Z∗q , and then answers PKn = xnP ,
adds the tuple(IDn, xn, PKn) into list Lu.

EPPK query: AI picks an identity IDn. Assuming
that the identity IDn has made H1 query before, if
IDn ∈ {IDi, IDj}, stops the challenge. Otherwise,
C searches the corresponding tuple (IDn, w,Qn) in
the list L1, returns Dn = wPpub and answers Dn.

Corruption query: AI picks an identity IDn. Assum-
ing that the identity IDn has made GUK query be-
fore, C searches the corresponding tuple in the list
L1, and answers xn.

RPK query: AI picks a new tuple (IDn, PKn), C up-
dates the list Lu and replaces with (IDn,⊥, PKn).

GSK query: AI picks a tuple (IDs, PKs, IDr, PKr).

1) If IDs /∈ {IDi, IDj}, C randomly chooses x, y ∈
Z∗q , computes U and T . And then C runs
the symmetric key generation algorithm and
answers KAB , updates and stores the internal
state information.

2) If IDs ∈ {IDi, IDj}, C stops simulation.

Encapsulation query: AI produces a tag τ , at the
same time, C checks if there exists an internal state
information W̄ . If it is found, C performs the fol-
lowing steps. Otherwise, C stops the simulation and
returns a ⊥.

1) If IDs /∈ {IDi, IDj}, C computes w = y(Ds +
xsPKr) with the internal state information, and
then computes h = H3(τ, U,w, PKs, PKr)and
v = 1/y(x + h). Finally, C answers the sign-
cryption δ = (U,w, v) to AI .

2) If IDs ∈ {IDi, IDj}, C stops simulation.

Decapsulation query: AI picks the tag τ , signcryption
δ = (U,w, v), the sender’s identity IDs and the re-
ceiver’s identity IDr. C does the following process-
ing:

1) If IDr /∈ {IDi, IDj}, firstly C computes
h = H3(τ, U,w, PKs, PKr), and then checks

if ê(vw,U + hP )
?
=ê(Qs, Ppub)ê(PKs, PKr). If

it is failure, C stops simulation and returns
⊥. Otherwise, C computes T = ê(Dr, Qs),
and then computes the session key KAB =
H2(IDr, T, U, xrU, xrPKs, PKr).

2) If IDr ∈ {IDi, IDj}, C stops simulation.

Challenge: AI can stop the phase 1 queries when-
ever he wants, and then produces two challenge
identities {IDA, IDB}, which IDA 6= IDB . if
{IDA, IDB} /∈ {IDi, IDj}, C stops simulation.
Otherwise C randomly chooses x, y ∈ Z∗q , and
sets T ∗ = η (η as a candidate answer for CBDH
problem), and then computes U∗ = xP , K1 =
H2(IDB , T

∗, U∗, xPKB , xAPKB , PKB). C ran-
domly chooses a number K0 ∈ {0, 1}n and a bit
d ∈ {0, 1}, sends Kd to AI . AI chooses a tagτ∗
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and sends it to C, C picks w∗ ∈ G1, computes
h∗ = H3(τ∗, U∗, w∗, PKA, PKB), v∗ = 1/y(x + h∗).
Finally, C sends the signcryption δ∗ = (U∗, w∗, v∗)
to AI .

AI makes the queries of Phase 2 just like he made
in the first phase. At last AI produces a bit d′ ∈
{0, 1} as a guess to d. Only when AI uses the tuple
(IDB , T

∗, U∗, xPKB , xAPKB , PKB)to make H2 query,
he can check the correctness of the signcryption δ∗ =
(U∗, w∗, v∗), and if d′ = d, C outputs T as a solu-
tion of the CBDH since the candidate answer KAB =
H2(IDB , T

∗, U∗, xBU
∗, xBPKA, PKB) for CBDH prob-

lem is in the list L2, where T ∗ = η = ê(DB , QA) =
ê(acP, bP ) = ê(P, P )abc. If d′ 6= d, C fails and outputs F .

Thus, if the adversary AI wants to break the sign-
cryption algorithm, he must solve the CBDH with non-
negligible advantage first. What he can do is to extract in-
formation from the signcryption messages, then uses some
polynomial-time algorithm to solve the CBDH problem.
But we all know that this algorithm does not exist so far.
Therefore, when attacked by an IND-CLHSC-CCA2 ad-
versary AI , the proposed CLHSC scheme can maintain a
safe state.

Theorem 2. Assuming that CDH is hard to solve in ran-
dom oracle model, the scheme is secure against any IND-
CLHSC-CCA2-II adversary AII attack.

Proof. Assuming that the challenger C receives an CDH
challenge tuple (P, aP, bP ), where P is a generator of
cyclic additive G1. And the goal for C is to compute the
answer of abP . C randomly chooses a number s ∈ Z∗q
as the master secret key, sets Ppub = sP , and sends
the system parameters params and s to AII . C main-
tains several lists L1, L2, L3, Lu, Le, Ld and answers the
following queries. Among these lists, L1, L2, L3 simulate
H1, H2, H3 oracle respectively, Lu is used to track GUK
query, Le is used to track Encapsulation query, Ld is used
to track Decapsulation query.

H1 query: AII randomly picks an identity IDi, and
sends it to C. C randomly chooses w ∈ Z∗q , com-
putes Qn = wP , and then returns it and adds the
tuple (IDn, w,Qn) into list L1.

H2 query: The same as Theorem 1.

H3 query: The same as Theorem 1.

GUK query: C selects a random number i ∈
{0, 1, · · · , qu}, where qu is the number of GUK
queries. At the n-th query:

1) If IDn 6= IDi, C randomly chooses xn ∈
Z∗q as the secret value, computes the public
key PKn = xnP , and then adds the tuple
(IDn, xn, PKn) into list Lu and answers PKn.

2) If IDn = IDi, C sets PKi = bP , adds the tuple
(IDi,⊥, bP ) into list Lu.

Corruption query: AII picks an identity IDn. Assum-
ing that the identity IDn has made GUK query be-
fore, if IDn = IDi, C stops simulation. Otherwise,
C searches the corresponding tuple in the list Lu and
answers xn.

GSK query: AII picks a tuple (IDs, PKs, IDr, PKr).

1) If IDs 6= IDi, C randomly chooses x, y ∈ Z∗q ,
computes U and T . And then C runs the sym-
metric key generation algorithm and answers
KAB , updates and stores the internal state in-
formation.

2) If IDs = IDi, C stops simulation.

Encapsulation query: AII produces a tag τ , and at the
same time, C checks if there exists an internal state
information W̄ . If it is found, perform the following
steps. Otherwise, C stops the simulation and returns
⊥.

1) If IDs 6= IDi, C computes w = y(Ds +xsPKr)
with the internal state information, and then
computes h = H3(τ, U,w, PKs, PKr) and v =
1/y(x+h). Finally, C answers the signcryption
δ = (U,w, v) to AII .

2) If IDs = IDi, C stops simulation.

Decapsulation query: AII picks the tag τ , signcryp-
tion δ = (U,w, v), the sender’s identity IDs and the
receiver’s identity IDr. C does the following process-
ing:

1) If IDr 6= IDi, firstly C computes h =
H3(τ, U,w, PKs, PKr), and then checks if

ê(vw,U + hP )
?
=ê(Qs, Ppub)ê(PKs, PKr). If

it is failure, C stops simulation and returns
⊥. Otherwise, C computes T = ê(Dr, Qs),
and then computes the session key KAB =
H2(IDr, T, U, xrU, xrPKs, PKr).

2) If IDr = IDi, C stops simulation.

Challenge: AII can stop the phase 1 queries when-
ever he wants, and produces two challenge iden-
tities {IDA, IDB}, which IDA 6= IDB . If
IDB 6= IDi, C stops simulation. Otherwise
C sets U∗ = aP , randomly chooses y ∈ Z∗q ,
and then computes T ∗ = ê(DA, QB), K1 =
H2(IDB , T

∗, U∗, η, xAPKB , PKB) (η as a candidate
answer for CDH problem). C randomly chooses a
number K0 ∈ {0, 1}n and a bit d ∈ {0, 1}, sends Kd

to AII . AII chooses a tag τ∗ and sends it to C, C
picks v∗ ∈ Z∗q , computes w∗ = y(DA + xAPKB),
h∗ = H3(τ∗, U∗, w∗, PKA, PKB). Finally, C sends
the signcryption δ∗ = (U∗, w∗, v∗) to AII .

AII makes the queries of Phase 2 just like he made
in the first phase. At last AII produces a bit d′ ∈
{0, 1} as a guess to d. Only when AII uses the tu-
ple (IDB , T

∗, U∗, η, xAPKB , PKB) to make H2 query,
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he can check the correctness of the signcryption δ∗ =
(U∗, w∗, v∗), and if d′ = d, C outputs T as a solu-
tion of the CDH since the candidate answer KAB =
H2(IDB , T

∗, U∗, η, xAPKB , PKB) for CDH problem is in
the list L2, where η = xBU

∗ = baP = abP . If d′ 6= d, C
fails and outputs F .

Thus, if the adversary AII wants to break the sign-
cryption algorithm, he must solve the CDH with non-
negligible advantage first. What he can do is to extract in-
formation from the signcryption messages, then use some
polynomial-time algorithm to solve the CDH problem.
This algorithm does not exist yet. Therefore, when at-
tacked by an IND-CLHSC-CCA2 adversary AII , the pro-
posed CLHSC scheme can maintain a safe state.

4.3 Unforgeability

Theorem 3. Assuming that CDH is hard to solve in ran-
dom oracle model, our scheme is secure against any sUF-
CLHSC-CMA-I adversary AI attack.

Proof. Assuming that the challenger C receives an CDH
challenge tuple (P, aP, bP ), where P is a generator of
cyclic additive G1. And the goal for C is to compute
the answer of abP . The challenger C sends the system
parameters params to AI , and set Ppub = aP . C main-
tains several lists L1, L2, L3, Lu, Le, Ld and answers the
following queries. Among these lists, L1, L2, L3 simulate
H1, H2, H3 oracle respectively, Lu is used to track GUK
query,Le is used to track Encapsulation query, Ld is used
to track Decapsulation query.

H1 query: C selects a random number i ∈
{1, 2, · · · , q1},where q1 is the number of H1 queries.
At the n-th query:

1) If IDn = IDi, C answers Qi = bP , and adds
the tuple (IDi,⊥, bP ) into list L1.

2) If IDn 6= IDi, C randomly chooses w ∈ Z∗q ,
answers Qn = wP , and then returns it and adds
the tuple (IDn, w,Qn) into list L1.

H2 query: The same as Theorem 1.

H3 query: The same as Theorem 1.

GUK query: The same as Theorem 1.

EPPK query: AI picks an identity IDn. Assuming
that the identity IDn has made H1 query before,
if IDn = IDi, stops the challenge. Otherwise, C
searches the corresponding tuple (IDn, w,Qn) in the
list L1, returns Dn = wPpub and answers Dn.

Corruption query: The same as Theorem 1.

RPK query: The same as Theorem 1.

GSK query: The same as Theorem 2.

Encapsulation query: The same as Theorem 2.

Decapsulation query: The same to Theorem 2.

Eventually, AI produces a valid forgery quaternion
(τ∗, δ∗, IDA, IDB). C checks if IDA 6= IDi. If it is
the case, C aborts. Otherwise, with the help of GUK
oracle, C can obtain IDA

′s public key PKA and IDB
′s

public key PKB , respectively. After that C uses tuple
(τ∗, U∗, w∗, PKA, PKB) to make H3 query and obtains
h∗ from list L3. Then C does the following verification:

ê(v∗w∗, U∗ + h∗P ) = ê(QA, Ppub)ê(PKA, PKB)

ê(w∗/y, P ) = ê(bP, aP )ê(xAP, PKB)

ê(abP, P ) = ê(P, (w∗/y)− xAPKB).

At last, C can compute abP = (w∗/y)− xAPKB .
If verification is right, C returns 1, otherwise 0.
So, if there exists a special adversary AI who can

forge a valid encapsulation message by learning something
about the signcryption, that means there is an algorithm
which can solve CDH problem with non-negligible advan-
tage. However, this cannot happen. In other words, there
is no adversary who can forge in this way. Thus, the
scheme is secure against any sUF-CLHSC-CMA-I adver-
sary AI attack.

Theorem 4. Assuming that CDH is hard to solve in ran-
dom oracle model, the scheme is secure against any IND-
CLHSC-CCA2-II adversary AII attack.

Proof. Assuming that the challenger C receives an CDH
challenge tuple (P, aP, bP ), where P is a generator of
cyclic additive G1. And the goal for C is to compute
the answer of abP . C randomly chooses a number s ∈ Z∗q
as the master secret key, sets Ppub = sP , and sends the
system parameters params and s to AII . C maintains
several lists, L1, L2, L3, Lu, Le, Ld and answers the fol-
lowing queries. Among these lists, L1, L2, L3 simulate
H1, H2, H3 oracle respectively, Lu is used to track GUK
query, Le is used to track Encapsulation query, Ld is used
to track Decapsulation query.

H1 query: The same as Theorem 2.

H2 query: The same as Theorem 1.

H3 query: The same as Theorem 1.

GUK query: C selects two random numbers i, j ∈
{1, 2, · · · , qu}, where qu is the number of GUK
queries. At the n-th query:

1) If IDn = IDi, C answers PKi = aP , and adds
the tuple (IDi,⊥, aP ) into list Lu.

2) If IDn = IDj , C answers PKj = bP , and adds
the tuple (IDj ,⊥, bP ) into list Lu.

3) If IDn /∈ {IDi, IDj}, C randomly chooses
xn ∈ Z∗q as the secret key and computes PKn =
xnP , and then answers it and adds the tuple
(IDn, xn, PKn) into list Lu.
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Corruption query: AII picks an identity IDn. Assum-
ing that the identity IDn has been made GUK query
before, if IDn ∈ {IDi, IDj}, C stops simulation.
Otherwise, C searches the corresponding tuple in the
list Lu and answers xn.

GSK query: The same as Theorem 1.

Encapsulation query: The same as Theorem 1.

Decapsulation query: The same as Theorem 1.

Eventually, AII produces a valid forgery quater-
nion (τ∗, δ∗, IDA, IDB). C checks if {IDA, IDB} /∈
{IDi, IDj} and IDA 6= IDB . If it is the case, C
aborts. Otherwise, with the help of GUK oracle, C
can obtain IDA

′s public key PKA and IDB
′s pub-

lic key PKB respectively. After that C uses tuple
(τ∗, U∗, w∗, PKA, PKB) to make H3 query and obtains
h∗ from list L3. Then do the following verification:

ê(v∗w∗, U∗ + h∗P ) = ê(QA, Ppub)ê(PKA, PKB)

ê(w∗/y, P ) = ê(DA, P )ê(aP, bP )

ê(abP, P ) = ê(P, (w∗/y)−DA).

At last, C can compute abP = (w∗/y)−DA.
If verification is right, C returns 1, otherwise 0.
So, if there exists a special adversary AII who can

forge a valid encapsulation message by learning something
about the signcryption, that means there is an algorithm
which can solve CDH problem with non-negligible advan-
tage. This is impossible. In other words, there is no
adversary who can forge in this way. Thus, the scheme
is secure against any sUF-CLHSC-CMA-II adversary AII

attack.

4.4 Known Session-specific Temporary
Information Security

Assuming that at the j − th communication, ephemeral
key xj and signcryption δj = (Uj , wj , vj) is leaked. For
adversary AI , he can not obtain the related informa-
tion about private key (Ds, xs) or (Dr, xr). AI can-
not compute Tj = ê(Ds, Qr) or Tj = ê(Dr, Qs) under
the assumption of CBDH problem and cannot compute
xsPKr or xrPKs under the assumption of CDH prob-
lem. All above problems will lead to the result that
it is hard to obtain the value of session key KAB =
H2(IDr, T, U, xjPKr, xsPKr, PKr) for AI . For adver-
sary AII , in the scheme, AII can obtain the partial private
key Ds or Dr, and then he can compute Tj = ê(Ds, Qr)
or Tj = ê(Dr, Qs). But AII cannot compute xsPKr

or xrPKs without xs or xr under the assumption of
CDH problem. This leads to the result that it is hard
to compute KAB = H2(IDr, T, U, xjPKr, xsPKr, PKr).
Hence, our scheme can survive against Known session-
specific temporary information security (KSSTIS) at-
tack. But in Li’s scheme [5], when the adversary ob-
tains the ephemeral key rj of j − th communication,

he can obtain T = ê(Ppub, QIDr )rj easily. And then
it is easy for the adversary to obtain the session key
KAB = H2(U, T, rjPKIDr

, IDr, PKIDr
). The same situ-

ation happens in Yin’s scheme [12]. When the adversary
obtains the ephemeral key r1−j , r2−j of j − th commu-
nication, he can obtain R1 = r1−jP,R2 = r2−jP,U =
r1−jPKR and V = ê(r2−jQR, Ppub) easily. And the ses-
sion key K = H2(IDS , IDR, R1, R2, U, V ) can be easily
obtained.

5 Performance Analysis

In this section, we will compare the scheme with Li’s
scheme and Yin’s scheme from two aspects: the se-
curity and the efficiency of Encapsulation(include GSK
phase) and Decapsulation phase in the table 1. We as-
sume that all the three schemes use the same parameters
< G1, G2, ê, q >. In the column of “Security”, “KISSTIS”
refers to known session-specific temporary information se-
curity. “Y” and “N” denote that whether satisfy this se-
curity property. In the column of “Computation Cost”,
the notations “Encapsulation” and “Decapsulation” refer
to the computation of Encapsulation and Decapsulation,
respectively. Note that offline computation is not included
in “Computation Cost”. And here, three operations will
be involved. MUL, EXP and PAI refer to the number of
point scalar multiplications, exponentiations and bilinear
pairing computations, respectively.

Table 1: Comparison of efficiency

Scheme
Security Computation Cost
KISSTIS Encapsulation Decapsulation

Li [5] N 4MUL+EXP MUL+4PAI
Yin [12] N 5MUL+EXP 4MUL+3PAI

Ours Y 3MUL 3MUL+PAI

Through Table 1 we can see that our scheme only needs
3 point scalar multiplications at the Encapsulation step,
which is more efficient than the other two schemes. And
at the Decapsulation stage, our scheme needs three point
scalar multiplications and one bilinear pairing computa-
tion. The computation cost of bilinear pairing computa-
tion is the most expensive in the scheme based on bilinear
pairing. Although Li’s scheme only needs one point scalar
multiplication, the number of bilinear pairing computa-
tions is far more than our scheme. Hence, our scheme
is the most efficient. And from the security aspect, our
scheme achieves the known session-specific temporary in-
formation security, which Li’s and Yin’s schemes can not
satisfy.
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6 Conclusion

In this paper, a secure CLHSC scheme is proposed from
bilinear pairing in random oracle model. In addition, the
scheme is highly efficient with only one bilinear pairing
operation. In terms of security, we solve the flaw that
most of the hybrid signcryption schemes cannot survive
against known session-specific temporary information se-
curity attack. Considering any length of plaintext can be
handled by hybrid signcryption and the efficiency of our
scheme, our scheme can be applied to the high security
requirements of communication networks and bandwidth-
constrained communication environments, such as ad hoc
net, 4G communication and so on.
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