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Abstract

In the case of most current digital signature algorithm
can be attacked by quantum algorithm, code based digital
signature algorithm, which represents the Post-Quantum
Cryptography, has become the hotspot of current re-
search. CFS algorithms proposed in 2001 is one of the
most important code based digital signature algorithm,
but its signature efficiency is very low. In this paper, an
improved CFS algorithm is proposed by means of code
based hash function. The output of this hash function
is a syndrome of a regular word whose weight is no more
than error correcting capacity t of the code. By using this
hash function instead of the random hash function, the de-
coding algorithm can avoid the time-consuming syndrome
decoding attempts. The signing time of the improved al-
gorithm reduces t! times than the original. At the same
time, the signature efficiency is no longer restricted to
error correcting capacity of the code. Furthermore, the
securities of these two algorithms both rely on the equiv-
alent NP complete problems.

Keywords: Digital Signature; Hash Function; Quantum
Attack; Syndrome

1 Introduction

Public-key cryptography has obtained a lot of valuable re-
sults since it was developed over 30 years ago. No matter
in the field of individual privacy, commercial confidential-
ity, or even national security etc., it has played a key role.
Under the threat of Quantum algorithm [13, 24], most
of the widely using public-key algorithms based on num-
ber theoretic difficult problems nowadays are no longer
secure. Currently, code based public key cryptography
technique is regarded as a method which can resist Quan-
tum attack [20, 23]. Because of this, it has become one
of the mainstream of public key cryptography in future
development.

McEliece proposed the first code-based public-key en-

cryption algorithm based on the irreducible binary Goppa
codes [14]. In this algorithm, the encryption process
is equivalent to adding a random wrong vector to the
plaintext; while the decryption process is correspond-
ing to decoding. Another important algorithm named
Niederreiter’s algorithm [18] realizes encryption and de-
cryption process through syndrome decoding. It has been
proved that its security is equivalent to the McEliece al-
gorithm: that means their security can be reduced to
two NP-complete problems: the random binary codes de-
coding problem and the Goppa code distinguishing prob-
lem [3, 9]. Since code based cryptography technology was
proposed, there are a number of research achievements
over the past 30 years, including encryption, digital sig-
nature [6, 22], identification [5], hash function [1], stream
ciphers [12] and so on, almost throughout all the fields of
cryptography. And in the midst of digital signature field,
Courtois-Finiasz-Sendrier (CFS) signature algorithm [6],
which was proposed in 2001, has been viewed as a classic
algorithm.

CFS algorithm, which is the first secure signature al-
gorithm based on binary Goppa codes, is constructed on
the basis of the Niederreiter encryption algorithm. Many
comprehensive discussions about the security of the CFS
have been made in the past decade [7, 11]. There are also a
variety of improved algorithms such as mCFS [7], parallel
CFS [10], etc. In addition, other special-purpose signa-
ture, such as ring signature [15, 25], blind signatures [19],
etc. also can be constructed on the basis of CFS. Similar
as CFS, the core of these algorithms is that the hash value
of the message has to be transformed to a syndrome of
Goppa code through preprocessing during signature. The
signing process is decoding syndrome by using the secret
decoding algorithm, which regards the codeword as sig-
nature value; to verify the validity of signature, the syn-
drome of the codeword is calculated and compared with
the hash value of the message.

Although signature algorithms based on CFS could
provide relatively high security, its shortcoming is still
evident, namely, the efficiency of signature is rather low.



International Journal of Network Security, Vol.19, No.6, PP.1072-1079, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).24) 1073

The original CFS algorithm, for example, in order to get
a decodable syndrome, it has to execute t! attempts av-
eragely, where t is error correcting capacity of the Goppa
codes. Apparently, if the parameter t increases, signatures
times will grow exponentially rapidly, while low security
defects can be brought by smaller t value. Meanwhile,
this contradicts the basic aim of high error correcting ca-
pacity of error correcting codes, which, to some extent,
hampers the application of CFS series algorithms.

In this paper, we mainly study the flaw mentioned
above of CFS algorithms. Through analyzing algorithm
implement details and identifying the main causes of the
inefficiency of signature, signing process could be im-
proved. We propose an efficient code based digital signa-
ture algorithm, whose signing time does not grow rapidly
with the parameter t. Without reducing security, the ef-
ficiency of algorithms could be effectively improved. It is
a type of more practical digital signature algorithm.

2 Preliminaries

2.1 Error Correcting Codes

Definition 1. A (n, k) linear code C over a finite field
Fq is a linear subspace with dimension k of the vector
space Fn

q . The elements of Fn
q are called words, while the

elements of C are called codewords. Number n is called
the length of C and k is called the rank of it.

Definition 2. The matrix G ∈ F k×n
q is a generator ma-

trix for the (n, k) linear code C over Fq, if the row of G
span C over Fq.

The generator matrix G for linear code C is not unique,
but the different generator matrixes can mutually convert
by elementary row transformation, namely, if G is a gen-
erator matrix for C, and P is an elementary matrix, PG
is also a generator matrix for C.

Definition 3. The parity check matrix H ∈ F (n−k)×n
q of

(n, k) linear code C is defined by H · xT = 0,∀x ∈ C.

The parity check matrix of the linear code is also not
unique, which is similar to generator matrix. And dif-
ferent parity check matrix can also mutually convert by
elementary row transformation. Vector c of length n is a
codeword of C is equivalent to HcT = 0. For any word c,
HcT is called the syndrome of c.

Definition 4. The Hamming distance d(u, v) is defined
as the number of different components of u and v, of
which u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are two
codewords of the linear codes respectively, i.e. d(u, v) =
|{i|ui 6= vi}|. Hamming weight w(u) of codeword u is
defined as the Hamming distance between u and all zero
codeword, i.e.w(u) = d(u, 0), the minimum Hamming
weight of non all zero codewords of code C is called the
minimum distance of code C, generally sign as dmin.

The error correcting capacity of the code is determined
by the minimum distance, in general, error correcting ca-
pacity t of linear codes with the minimum distance dmin

meets the condition t ≤ bdmin−1
2 c.

Goppa code is a kind of special linear code [2], whose
parameters used in the McEliece encryption algorithm
have the following form: n = 2m, k = n−mt. The foun-
dation of the efficient decoding is the specific structure of
the generator polynomial of Goppa codes, which is also
the basis of constructing code based cryptographic algo-
rithms. That is by regarding the structure information
of Goppa codes and corresponding decoding algorithm as
secret trapdoor information or decryption private keys,
a one-way trapdoor function can be used to construct
public-key encryption algorithm and signature algorithm.

In this paper, linear codes and Goppa codes are over
the binary field F2.

2.2 Difficult Problems

Public-key cryptography is always founded upon some dif-
ficult problems, such as the security of RSA relies on the
difficult problem of factoring big integer problem. The fol-
lowing is a summary of some difficult problems on which
code based public key algorithms mainly rely. All of them
have been proved that are NP-complete problems and can
effectively resist known quantum attacks.

Problem 1. Syndrome Decoding(SD) Problem,

Input: A finite field Fq, randomly select a matrix H ∈
F

(n−k)×n
q and vector s ∈ Fn−k

q , integer k > 0.

Output: A word x ∈ Fn
q , its weight w(x) ≤ k, and meets

HxT = s.

Problem 2. Goppa Codes Distinguishing(GD) Problem,

Input: A finite field Fq, randomly select a matrix H ∈
F

(n−k)×n
q .

Output: Judge whether H is a (n, k) Goppa parity check
matrix or a (n, k) random code parity check matrix?

3 CFS Signature Algorithm

3.1 Principle and Realization

Digital signature is an important cryptographic tech-
niques used to realize non-repudiation and authentica-
tion. There are generally three different ways to build
code based digital signature algorithm: (1) Building an
algorithm whose procedure is just the inverse process of
the code based public-key encryption algorithm; (2) Using
zero-knowledge identification algorithm together with the
Fiat-Shamir paradigm to develop a signature algorithm;
(3) Constructing a special subset of the syndrome space
as the foundation of digital signature algorithm.

CFS signature algorithm belongs to the first category,
which is a kind of signature algorithm based on classic
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Niederreiter encryption algorithm. Such algorithms digi-
tal signature process can be concluded as follows:

• Calculate the hash value of the message m by using
a public hash function;

• Regard the hash value as the cipher text and use the
signers private key to decrypt it;

• Attach the proper forms of the decryption results be-
hind a message m as a signature value.

For code based signature algorithm, however, it’s
pretty hard to accomplish the second step. The main
reason is the output of cipher text by Niederreiter algo-
rithm should be a syndrome with low weight error vec-
tors. But the message m may not be transferred to a
required syndrome, which is the cause of ineffectively de-
coding. Only the syndrome of the error vector whose
weight does not exceed the decoding capacity t of the se-
lected Goppa codes can be decoded successfully. There-
fore, in effect, CFS algorithm is a probabilistic signature
algorithm, which could not pause transforming the hash
value of the message repeatedly until a valid syndrome
has been found.

Basic CFS signature algorithm uses an increment
counter to tag the number of decoding attempts. In order
to avoid the security risks of this counter, Dallot devel-
oped a mCFS algorithm [7] which based on CFS signa-
ture algorithms but much secure. mCFS includes three
phases: Gen mCFS , Sign mCFS and Verify mCFS .
Detailed description of the algorithm is shown in Algo-
rithm 1.

3.2 Performance Analysis

Dallot et has conducted a rigorous formal proof of CFS
and mCFS signature algorithm, that the security of the
algorithm is reduced to the SD and GD problem under the
Random Oracle model. Because of the high level of the
security, most of the current code based signature scheme
is designed on the basis of CFS.

Even though mCFS algorithm has very high level secu-
rity, its realization efficiency, namely the speed of signa-
ture, is rather low, which is caused by too many syndrome
decoding attempts. The analysis of mCFS signature al-
gorithms success probability as below:

For pre-selected Goppa codes (n = 2m, k = n − mt),
we assume that the number of decodable syndrome is Nd,
the number of overall syndrome is Nt, obviously

Nt = 2n−k = 2mt = nt (1)

The weight of error vector which has decodable syn-
drome has to be less than the error correcting capacity t,
hence

Nd =

t∑
i=0

(
n

i

)
≈
(
n

t

)
≈ nt

t!
(2)

Algorithm 1 mCFS Signature Algorithm

1: Gen mCFS
2: Select a (n, k) Goppa code C randomly over F2, of

which the error correcting capacity is t, and the parity
check matrix is H, select a valid syndrome decoding
algorithm γ;

3: Select a (n−k)× (n−k) invertible matrix Q over F2,
and a n× n permutation matrix P randomly;

4: Select a public secure hash function h : {0, 1}∗ →
Fn−k
2 ;

5: Define < h, t,Hpub = QHP > as public parameters
of the system, and < Q,H,P, γ > as the users private
key.

6: Sign mCFS(msg,Q,P, γ)
7: For the signer needs to sign a message msg, the sig-

nature process is as follows:
8: Calculate the hash value of the message msg, s =
h(msg);

9: Randomly select i ∈ {1, 2, . . . , 2n−k}, by using the
secret decoding algorithm γ to try to decode si =
Q−1h(s||i), until i0 has been found, which meets the
existence of γ(si);

10: If v = γ(si0), the signature value is (i0||vP).
11: Verify mCFS(msg, i, u,Hpub)
12: Set < msg, i||u > as the message-signature pair of the

receiver, the verify process is:
13: Calculate a = h(h(msg)||i) as well as b = HpubuT ;
14: Signature is valid if and only if a = b.

And the approximate success probability of mCFS sig-
nature algorithms is

Ps =
Nd

Nt
≈

nt

t!

nt
=

1

t!
(3)

That is to say, every t! times attempts can only get
one decodable syndrome. With t increasing, this number
could grow relatively fast, such as set t = 10, a signature
can be obtained after trying 10! = 3628800 times aver-
agely. In some earliest literatures [6] authors proposed
t = 9. But under Bleichenbacher’s attack [11], this pa-
rameter is no longer safe, the parameter m = 15, t = 12
or m = 16, t = 10 is recommended. In the long term,
with new attack methods proposed, value of t will un-
avoidably growing larger and larger. In order to obtain a
valid signature, the signing speed becomes lower and lower
with numbers of syndrome decoding attempts growing ex-
ponentially, and at the same time, implement efficiency
would become worse.

The main reason of the inefficiency of mCFS signa-
ture algorithms is generally the si calculated from hash
value of the message is not a decodable syndrome of liner
code C. In order to decode successfully, it has to find
a decodable si through trying so many different si. A
valid decoding and successful signature based on finding
a proper si which is exactly within decoding capacity of
C. In order to improve the efficiency of signature, the
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original algorithm needs to be improved, so that the cal-
culated si itself or at least in a great probability should
be a decodable syndrome required.

4 Efficient Code Based Digital
Signature Algorithm

In this section, we first construct a code based hash func-
tion and then on the basis of it, we improve the mCFS
signature algorithm to obtain an efficient code based dig-
ital signature algorithm.

4.1 Code Based Hash Functions

The method for constructing a code based hash function
is first proposed by Augot et, which is based on Merkle-
Damgard design principle [16, 8], namely, a compression
function f permits to loop calculate the given message
several rounds for obtaining an iteration value as the hash
value of the message. It can be proved that the security
of the hash function constructed in accordance with this
method has no less security than the compression func-
tion [1]. Bernstein and Meziani et improved the imple-
ment efficiency of the original method respectively [4, 17].
Such constructing methods can be concluded as:

Set compression function as f , and the input is s bits,
the output is r bits (r < s). To derive hash value of
the given message msg, it needs to do a number of loop
iterations by using function f :

• The first round: Select the initial vector IV of length
r; Select s − r bits from a given message msg, sign
as m0, and concatenate it with the IV as the initial
input vector of f with length s, then get r bits initial
output;

• Starting from the second round, feed r bits pre-round
output back to the input, similar as the first round,
select s − r bits from the message msg as mi in or-
der, concatenate r with mi as the input vector of f .
Calculate the new r bits output.

• Loop this process until the message is taken out.
During the final round, if the remaining bits of the
message msg are insufficient to s− r bits, randomly
select some bits to meet the requirement. The fi-
nal output of the function f is the hash value of the
message msg.

Figure 1 shows this iterative process. In the construc-
tion of the hash function mentioned above, the compres-
sion function f is the most important part, and even the
security of hash function also depends on the security of
f . A kind of constructing method of compression function
f based on coding difficult problem is presented below.

First select a (n, k) Goppa codes, where n = 2m, k =
n−mt, and select a positive integer w|n. It is clear that
w = 2m

′
,m′ < m. Set l = n/w = 2m−m

′
.

Figure 1: The diagram of hash iterations

For any word c of length n, it can be divided into w
blocks of equal length, each block contains l bits. If a
word c of weight w within each block ((i−1)l, il] happens
to have only one 1, c is called as regular word.

Set H as the parity check matrix of Goppa codes,
which is a (n − k) × n matrix. Divide H into w sub-
matrix Hi, i = 1, 2, . . . , w in accordance with the follow-
ing method

H = (H1,H2, . . . ,Hw) (4)

of whichHi = (h(i−1)l+1, h(i−1)l+2, . . . , hil), andhj is the
jth column of the matrix H.

Next we define compression function f : F s
2 → F r

2 ,
where s = wlog2l, and r = n − k = mt is the number of
matrix H ’s rows.

For any x ∈ F s
2 , x is divided into the w blocks of

equal length in accordance with the same way, that is
x = (x1, x2, . . . , xw), and xi ∈ F log2l

2 . Convert xi into
numbers between 0 to l − 1. Select the (xi + 1)th col-
umn of the matrix Hi, that is h(i−1)l+xi+1. Calculate
z =

∑w
i=1 h(i−1)l+xi+1, then the output of the compres-

sion function is f(x) = z.

Theorem 1. The output of the compression function f
above is equivalent to calculating a syndrome of a regular
word of length n and weight w, that is, for any x ∈ F s

2 , a
regular word c could be found which meets HcT = f(x).

Proof. First of all, according to the definitions above,

f(x) =

w∑
i=1

h(i−1)l+xi+1. (5)

Define a word c = (c1, c2, . . . , cn) of length n is as
follows:cj = 1 ⇔ ∃xi, (i − 1)l + xi + 1 = j. That means
existing a xi, after converting it to a decimal number, the
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selected column number is corresponding to the location
label j of cj . Due to calculating a syndrome of a word is
equivalent to adding matrix H ’s columns which are corre-
sponding to non-zero bits of the word, by definition, f(x)
is exactly the syndrome of word c, namely HcT = f(x).

According to the definition of c, c have and only have
one 1 within each block ((i − 1)l, il], i = 1, 2, . . . , w. So
that c is a regular word of weight w.

Based on the compression function above, we define a
code based hash function hc : {0, 1}∗ → F r

2 as below:
For a given message msg, choose (n, k) Goppa codes

and get a compression function f in accordance with the
definition above. Through using Augot loop iteration
method several times to compress message msg by f , we
can obtain a bit string of length r as hash values hc(msg).
The function hc can apply on arbitrary length message
msg, and the output is a bit string of length r = n− k.

Theorem 2. As the above definition, the output of code
based hash function hc is a syndrome of a regular word of
length n and weight w.

Proof. According to the loop iteration constructing meth-
ods of the hash function, the output hash value of the final
round is also the output of the function f . According to
Theorem 1, for any message msg, hc(msg) is a syndrome
of a regular word of length n and weight w.

We analyze the security of hash functions having this
structure: obviously the one-way character of hash func-
tion hc relies on a special SD problem:

Input: A (n−k)×n matrix H over finite field F2, vector
s ∈ Fn−k

2 , integer k > 0;

Output: A regular word x ∈ Fn
2 , its weight w(x) ≤ k,

and satisfies the condition HxT = s.

Augot called this problem as Regular Syndrome De-
coding (RSD) Problem. It can be proved that this is a
NP complete problem [1].

4.2 An Efficient Digital Code Based Sig-
nature Algorithm

The mCFS algorithm,which is proposed by Dallot et,
can improve the original CFS signature algorithm [7]
with stronger security. In this section, by applying the
code based hash function hc given in 4.1, we aim to im-
prove the implement efficiency of mCFS to obtain an ef-
ficient signature algorithm mCFSc. This signature al-
gorithm can greatly improve the signature efficiency of
mCFS without any decrease of security. mCFSc also in-
cludes three phases: Gen mCFS c, Sign mCFS c and
Verify mCFS c. Algorithm 2 gives the details of the al-
gorithm.

The correctness of verify process in Algorithm 2 can
be proved as below: If < msg,R′||u > is a legitimate pair

Algorithm 2 mCFSc Signature Algorithm

1: Gen mCFSc

2: Selects a (n, k) Goppa codes C randomly over F2, with
the correcting error capacity t and the parity check
matrix H, a valid decoding syndrome algorithm γ;

3: Randomly select a n× n permutation matrix P over
F2;

4: Choose a positive integer w ≤ t and w|n, and con-
struct code based hash function hc : {0, 1}∗ → Fn−k

2 ;
5: Define < hc, t,H

pub = HP > as system public pa-
rameters, and < H,P, γ > as the users private key.

6: Sign mCFSc(msg,P, γ)
7: Set the message of the signer ismsg, and the signature

process is:
8: Choose a one-time random number R ∈
{1, 2, . . . , 2n−k}, and calculate s = hc(hc(msg)||R);

9: Set v = γ(s), so that the signature value is (R||vP).
10: Verify mCFSc(msg,R

′, u,Hpub)
11: Set the received message signature pair is <

msg,R′||u >, the verify process is:
12: Calculate a = hc(hc(msg)||R′) and b = HpubuT ;
13: Signature is valid if and only if a = b.

of message-signature through signature process above, it
can get the equation as follows:

b = HpubuT = HP(vP)T = HPPT vT

= HvT = s = hc(hc(msg)||R′) = a

5 Performance Analyses of Algo-
rithms

This section focuses on the security analysis and efficiency
analysis of the code based signature algorithm mCFSc

mentioned in Section 4.2 and comparing it with other ex-
isting code based signature algorithms.

Between the three kinds of construction method of
building code based digital signature algorithm, the sec-
ond one, based on zero-knowledge identification algorithm
and the Fiat-Shamir paradigm, always have very long sig-
nature length [20], roughly 120 Kbits. The third method,
constructing a special subset of the syndrome space as
the foundation of digital signature algorithm, have been
proved only be used as one-time signature [20]. So, the
first method, represented by mCFS, is the mainstream of
code based signature and we only compare our algorithm
with the mCFS algorithm.

5.1 Security Analysis

First of all, we analyze the security. Compared with the
mCFS signature algorithm, the primary difference is re-
placing the random hash function h with the code based
hush function hc. The point is the essence of this change
is that it substitutes random hash function for a trapdoor
hash function, and the trapdoor information is decoding
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Table 1: The security comparison of two algorithms

Signature algorithm Dependent problems Hardness of problems
mCFS SD, GD NP complete
mCFSc RSD, GD NP complete

Table 2: The efficiency comparison of two algorithms

Signature algorithm Hash times Decoding times Hash times(t = 9) Decoding times(t = 9)
mCFS t! + 1 t! 362881 362880
mCFSc 2 1 2 1

Table 3: The signature time consumption (in seconds) of two algorithms

(m, t) (15,7) (15,8) (15,9) (16,7) (16,8) (16,9)
mCFS 189.58 2570.48 35562.24 442.51 7862.41 57697.92
mCFSc 0.052 0.073 0.109 0.096 0.203 0.327

algorithm γ of selected Goppa codes. For this type of
hash functions, anyone who knows the trapdoor informa-
tion can effectively calculate the inverse of the hash value,
or else, any useful values cannot be provided without the
trapdoor information.

In mCFSc, decoding algorithm γ is the signer’s private
key which couldn’t be obtained but the signer. The secu-
rity of this hash function can be guaranteed so long as the
absolute confidentiality of private key. So the security of
mCFSc is equivalent to mCFS. Hence, this change does
not result in any reduction of security. Table 1 shows the
security comparison of these two algorithms.

5.2 Efficiency Analysis

According to Algorithm 2, during the process of signing
message msg, it has to perform twice hash computation
and once syndrome decoding algorithm. According to the
Theorem 2, the output of hash functions hc is a syndrome
of a regular word of weight w which does not exceed de-
coding capacity t of the selected Goppa codes. There-
fore anyone who has the secret syndrome decoding algo-
rithm γ can always effectively obtain one regular word of
length n and weight w. Compared with mCFS algorithm
average t! times attempts to get a decodable syndrome,
the biggest advantage of mCFSc is greatly improving sig-
nature speed by relieving plenty of decoding attempts.
In the long term, this algorithm provides a fundamen-
tal method to liberate algorithm from the restriction of
code parameter t, so that we can obtain high security by
choosing very large t without any reduction of signature
speed. Table 2 shows the efficiency comparison of these
two algorithms.

In Table 2, parameter t takes the classical value 9. In
order to obtain higher security, this value should be in-
creased, and t = 10 or t = 12 is recommended [11]. It

is easy to see with t increases, the consumption of mCFS
will increase rapidly, while the consumption of our algo-
rithms mCFSc remains very low. In order to resist the
new attacks in the future, the value of t will unavoidably
growing larger and larger, and the implement efficiency of
mCFS will become worse and worse, while mCFSc always
has good performance.

5.3 Experimental Results

In this section, we give some experimental results to re-
veal the efficiency difference between mCFS and mCFSc.
Because of the similarity of Gen and Verify phases of
these two algorithms, we only count the time consump-
tion of Sign phase, the most time-consuming phase in
Algorithm 1 and Algorithm 2.

The software we used is Magma V2.12, running on 64
bit Windows7 operating system, and the hardware pa-
rameters are: Intel Core i7-4710, 2.50GHz, 4GB RAM.
The decoding algorithm for Goppa codes is the Patterson
algorithm [21].

We first selected six different Goppa codes with differ-
ent parameters m and t. For each code we selected 20 text
files with size of 10kB and counted the average time con-
sumption of Sign phase in these two different algorithms.
The experimental results are show in Table 3.

6 Conclusions

As the most important code based digital signature al-
gorithm, the security and implement efficiency of CFS
has been extensively studied since it was first proposed.
However, with parameter increasing very quickly, its still
hard to fundamentally solve the sharp reduction of the
signing speed. The further application of the algorithm is
therefore seriously limited.
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This article proposed and analyzed an improved code
based signature algorithm mCFSc by introducing code
based hash function into mCFS algorithm. mCFSc algo-
rithm can be expected to avoid repeated decoding syn-
drome attempts to find a decodable syndrome, which in-
creases the signature speed. In addition, compared with
mCFS, the signature time can be greatly reduced with-
out any reduction of error correcting capacity t. Mean-
while, the new method has the same security as mCFS
algorithm. Therefore it is a more practical code based
signature algorithm.
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