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Abstract

UKS (unknown key-share) attacks are common attacks
on AKE (Authenticated Key Exchange) protocols. We
summarize two common countermeasures against UKS at-
tacks on a kind of AKE protocols whose message flows are
basic Diffie-Hellman exchanges. The first countermeasure
forces the CA to check the possession of private key during
registration, which is impractical for the CA. The second
countermeasure adds identities in the derivation of the
session key, which leads to modification of the protocols
which might already be standardized and widely used in
practice. By using protection of cryptographic keys pro-
vided by hardware security chips, such as TPM or TCM,
we propose a new way that requires no check of posses-
sion of private key and no addition of identity during the
derivation of the session key to prevent UKS attacks. We
modify the CK model to adapt protocols using hardware
security chip. We then implement a protocol once used
in NSA, called KEA and subject to UKS attacks, using
TCM chips. Our implementation, called tKEA, without
forcing the CA to check during registration and modify-
ing the original KEA, is proven to be secure. To show the
generality of our way, we also show that it can prevent
UKS attacks on the MQV protocol.

Keywords: Authenticated Key Exchange; CK Model;
KEA; Trusted Cryptography Module; UKS Attacks

1 Introduction

The key exchange protocol, first proposed by Diffie and
Hellman [11], allows two entities to establish a shared se-
cret key via public communication. In order to authenti-
cate identities of the two entities involved in the protocol,
authenticated key exchange (AKE) is proposed. AKE not
only allows two entities to compute a shared secret key
but also ensures the authenticity of entities.

To date, a great number of AKE protocols have been
proposed [1, 2, 3, 8, 12, 13, 14, 15, 19, 25, 27, 31] and
many of them are subsequently broken, such as KEA [25]
and MQV [22, 23]. KEA was designed by NSA (National
Security Agency) in 1994 and kept secret until 1998. Mi-
crosoft researchers K.Lauter and A.Mityagin find that the
original KEA protocol is susceptible to UKS attacks [21].
Then they present a modified version of KEA protocol,
called KEA+ [21], which is resistant to UKS attacks, and
give a formal proof. The MQV protocol is a famous and
efficient AKE protocol designed by Law, Menezes, Qu,
Solinas and Vanstone. This protocol was found to be sus-
ceptible to UKS attacks by Kaliski [17], then Krawczyk
found that MQV hold none of its stated security goals,
such as resistance to KCI attacks and the security prop-
erty of perfect forward secrecy (PFS). To achieve the se-
curity goals of MQV, Krawczyk proposes a hashed variant
of MQV, HMQV [19].

1.1 Related Work

In order to formally prove that AKE protocols are se-
cure, Bellare and Rogaway in 1993 provided the first for-
mal definition for an AKE model [4], which we refer to as
the BR model. After that, a lot of variants of BR model
were represented and many authenticated key exchange
protocols were proposed. For more details, we refer the
readers to [10] for a comparison and discussion of vari-
ants models for authenticated key exchange. Based on BR
model, Canetti and Krwaczyk proposed the CK model [7],
based on which the HMQV protocol was proved. LaMac-
chia, Lauter, and Mityagin defined a new model called
eCK [20], which is much stronger than BR and CK mod-
els. They also introduced a new AKE protocol called
NAXOS and proved its security in eCK model. However
the NAXOS protocol is less efficient in that it requires 4
exponentiations per entity compared to 3 exponentiations
for KEA.
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Katz [18] first gives the idea of using secure hardware
to achieve stronger security properties, and proves that
tamper-proof hardware suffices to circumvent the impos-
sibility result of secure computation of general function-
alities without an honest majority. Recently, some works
extend this idea to the improvement and security analysis
of AKE protocols on modern AKE security models. [30]
analyzes the SM2 key exchange protocol in TPM 2.0 se-
curity chip [29], and shows that protection provided by
the TPM security chip indeed helps the protocol to re-
sist two kinds of UKS attacks. [33] leverages the tamper-
proof hardware to protect cryptographic keys and designs
a set of APIs for HMQV, and formally proves that the
HMQV protocol achieves full PFS property with the help
of tamper-proof hardware in the CK model. [31] proposes
an efficient key exchange protocol called sHMQV, which is
a variant of HMQV. sHMQV eliminates the validation of
public ephemeral key by protecting the ephemeral private
key in trusted hardware devices, and enjoys the best effi-
ciency in current one-round key exchange protocols. [32]
models the protection provided by TPM 2.0 security chip
as an oracle, and formally proves that under the protec-
tion of TPM 2.0 the key exchange primitive in TPM 2.0
is secure in modern AKE model.

1.2 UKS Attacks

A UKS attack on an AKE protocol is that an entity A
ends up believing that he shares a key with an entity
B, and although this is in fact the case, B mistakenly
believes that the key is shared with an entity E 6= A.
Since the adversary E does not obtain the shared secret
key, he cannot modify or decrypt the messages between
A and B. However, E can take advantage of the entities’
false assumptions about the identity who shares the key.
Take a scenario described in [12] for example: B is a bank,
and A sends him a digital coin, encrypted with the shared
secret key, for deposit into her account. Believing that the
key is shared with E, B assumes the coin is from E and
deposits it into E’s account instead. Several UKS attacks
have been proposed in the literature, such as attacks on
STS [5], KEA [21], and MQV [17].

1.3 Contributions

We give our contributions as follows:

1) We summarize UKS attacks on AKE protocols and
existing countermeasures in the literature, and iden-
tify two kinds of attacks, called public key substi-
tution UKS attack and public key registration UKS
attack respectively. The details of the two attack are
described in Section 2. The usual way to resist the
two kinds of UKS attacks are: 1) force the CA to
check the possession of the private key, 2) add the
identity during the derivation of the session key. We
illustrate these countermeasures by overview of ex-
isting works on preventing UKS attacks on KEA and
MQV.

2) We present a new way to prevent the two kinds of
UKS attacks using the protection capability of hard-
ware security chip, such as Trusted Platform Mod-
ule (TPM) [29] and Trusted Cryptography Module
(TCM) [26]. The key idea is to make use of the se-
curity chip to generate the long-term secret key, and
register it to a CA who does not check the possession
of the private key and only makes sure that the key
comes from a real hardware security chip. The pro-
tection capability of the security chip prevents the
adversary from getting the plaintext of the private
key even he corrupts and controls the security chip.
In our security analysis we will show that the pro-
tection capability is crucial for the KEA protocol to
resist UKS attacks. Our new way of preventing UKS
attacks has advantages of not requiring the CA to
check the possession of the private key nor modifying
the original protocol. The former advantage makes
the protocol can be deployed in practical CAs who
usually do not check the possession of the private
key. The later advantage improves the security of
such protocols that have already been standardized
and deployed in many fields. Upgrading the stan-
dards might require quite a long time, and in some
fields system upgrades are rigorously controlled, such
as the industrial control field. To show the generality
of our way to resist UKS attacks, we also demonstrate
that our proposed way can prevent UKS attacks on
MQV protocol.

3) We give a variant of CK model to adapt protocols
implemented by hardware security chip. Then we im-
plement the KEA protocol (subject to UKS attacks)
using TCM chips and prove that our implementation
prevents UKS attacks. We make a comparison among
typical protocols with the ability of resisting UKS at-
tacks in terms of key registration (whether adversary-
controlled entities can register arbitrary public keys),
modification (whether the original protocol is modi-
fied in order to be proven secure formally), efficiency
(whether extra computation is added), security prop-
erties and assumptions in Table 1. The Modif column
shows that both KEA+ and HMQV modify the orig-
inal protocols (KEA and MQV respectively) in or-
der to be proven secure formally. The Effic column
shows that the HMQV adds 25% extra computation
to MQV while tKEA adds no extra computation to
KEA. Compared to KEA+ and HMQV, tKEA ob-
tains same security properties while making no mod-
ification of the original protocol and adding no extra
computation.

1.4 Organization

We summarize the two kinds of UKS attacks and cor-
responding countermeasures in Section 2. In Section 3,
we give a detailed description of protection of crypto-
graphic keys provided by one kind of hardware security
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Table 1: Comparison of HMQV, KEA+ and tKEA
Key Reg. Modif. Effic. Security Assumptions

tKEA Arbitrary No No CK, KCI, wPFS GDP+RO
KEA+ Arbitrary Yes No CK, KCI, wPFS GDP+RO
HMQV Arbitrary Yes 25% CK, KCI, wPFS GDP+KEA1+RO

chip, TCM, show that how it can be used on AKE pro-
tocols, and give our implementation, which we call tKEA
(the ‘t’ stands for trusted). Section 4 describes the secu-
rity model on which the formal security analysis of tKEA
is based. Section 5 proves the security of tKEA. We also
show how the protection provided by TCM prevents the
UKS attack on MQV protocol described in [19] in this sec-
tion. We end the paper with concluding and our future
work in Section 6.

2 UKS Attacks and Their Coun-
termeasures

AKE protocols can be categorized as the explicitly au-
thenticated or the implicitly authenticated by the way
they are authenticated. Both of the two kinds of AKE
protocols are vulnerable to UKS attacks. Baek and Kim
have summarized UKS attacks on the explicitly authenti-
cated key exchange protocol [21]. In this paper we give an
overview of UKS attacks on the implicitly authenticated
key exchange protocol.

In this section, we first introduce the explicitly and im-
plicitly authenticated key exchange protocols, and then
summarize two kinds of UKS attacks on the implicitly
authenticated key exchange protocol and the usual coun-
termeasures to prevent these two kinds of attacks.

2.1 Explicitly Authenticated Key Ex-
change Protocol

The explicitly authenticated key exchange protocol is
such a kind of protocol that first executes a basic Diffie-
Hellman key exchange and then uses digital signatures
or additional authenticating message flows to provide
authentication explicitly. ISO-DH [16], STS [12], SIG-
DH [28], SIGMA [8] are such typical protocols. In the
following, we take the ISO-DH protocol as an example to
illustrate such kind of protocol.

Let G be a group of primer order and denote by g a
generator of G. Assume that entities have secret/public
keys for some digital signature scheme SIG and that en-
tities know each other’s registered public keys. The hat
notation, such as Â, denotes the identities of entities in
the protocol. Denote the signature of a message M un-
der the secrete key of an entity Â by SIGÂ(M). We

depict the protocol in Figure 1. First, an entity Â as
an initiator randomly generates an ephemeral private key
x and sends a tuple {gx, SIGÂ(gx, B̂)} to B̂, the respon-

der. The responder B̂ generates an ephemeral private key

y and replies with a tuple {gy, SIGB̂(gy, gxÂ)}. Both Â

and B̂ then verify each other’s signatures, and compute a
shared session key K = gxy if the verification successes.

2.2 Implicitly Authenticated Key Ex-
change Protocol

The implicitly authenticated key exchange protocol only
needs basic Diffie-Hellman exchanges, and provides au-
thentication by combining ephemeral keys and long-term
keys during the derivation of the session key. KEA and
MQV are typical protocols of this kind of AKE. Figure 2
gives an illustration of KEA and its variant KEA+. KEA
involves two entities, Â and B̂, with respective secret keys
a and b and public keys ga and gb. KEA assumes that
entities know each other’s registered public keys. The
protocol first runs a Diffie-Hellman key exchange: Â and
B̂ each generates its ephemeral private key, x and y re-
spectively, and exchanges the ephemeral public keys gx

and gy. Then each entity computes gay and gbx and com-
putes a session key by applying a hash function H to
(gay, gbx). The KEA+ protocol differs from KEA when
computing the session key, it applies the hash function to
a tuple (gay, gbx, Â, B̂), adding the identities to the tuple
of KEA.

2.3 UKS Attacks on Implicitly Authenti-
cated Key Exchange Protocol

As Baek and Kim have given a conclusion of UKS attacks
on the explicitly authenticated key exchange protocol [21],
here we only summarize UKS attacks on the implicitly key
exchange protocol. We categorize these attacks as public
key substitution UKS attack and public key registration
UKS attack. We also summarize existing countermeasures
on the two kinds of UKS attacks.

2.3.1 Public Key Substitution UKS Attack

This kind of attack happens to some protocols when the
CA does not check the possession of the private key. In the
following we illustrate this attack on the KEA protocol.
Consider two entities Â and B̂ preparing to start a session.
An adversaryM registers a public key ga of Â as his own
public key. ThenM intercepts the session between Â and
B̂. M forwards the ephemeral public key gx from Â to B̂
and ephemeral public key gy from B̂ to Â. Since M has
the same public key as Â, both Â and B̂ will compute
identical session keys. However, Â completes a session
with B̂ and B̂ completes a session with M.
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Â B̂

x
gx,SIGÂ(gx,B̂)

−−−−−−−−−−−−−−−−−→
gy,SIGB̂(gy,gx,Â)

←−−−−−−−−−−−−−−−−−−− y

K = gxy K = gxy

Figure 1: Explicitly authenticated key exchange protocol: ISO-DH

Â B̂

X = gx
X−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−− Y = gy

K = H(σÂ) K = H(σB̂)

KEA: σÂ = (gay, gbx), σB̂ = (gay, gbx)

KEA+: σÂ = (gay, gbx, Â, B̂), σB̂ = (gay, gbx, Â, B̂)

Figure 2: Implicitly authenticated key exchange protocol: KEA and KEA+

The usual way to solve this kind of UKS attack is to
force the CA to check the possession of the private key.
If the CA does, M cannot register the public key of Â,
then Â and B̂ will compute non-identical session keys.
However, as the proof of knowledge check are rarely done
by CA in practice, this way to prevent UKS attacks are
impractical.

2.3.2 Public Key Registration UKS Attack

The typical attack example is a UKS attack on MQV
found by Kaliski [17]. Let me introduce MQV first. MQV
is a famous implicitly authenticated key exchange proto-
col, which was stated to have a lot of security properties,
such as resistance to UKS attacks and KCI attacks. We
depict MQV and HMQV in Figure 3. Entities Â and B̂
have their private/public key pairs (a, ga) and (b, gb) re-
spectively. The ephemeral public keys in their exchange
messages are gx and gy. The computation of the session
key by Â (B̂) is a hash value to (Y Be)x+da ((XAd)y+be).
The only difference between MQV and HMQV is the com-
putation of d and e. The former only uses the ephemeral
public key, while the later adds the identity information
and uses a hash function in the computation. However,
we will show below that this slight modification is crucial
for the security of HMQV.

We describe the public key registration UKS attack
on MQV in Figure 4. An adversary M intercepts the
ephemeral public key X = gx sent from Â to B̂. Based
on X, M computes a private/public key pair (c, gc), and
sends an ephemeral public key Z. After receiving Z, B̂
generates a random ephemeral key Y = gy and sends it to
M. M transmits Y to Â. We denote the session between
Â to B̂ by s, and the session between B̂ to M by s′. We
can see that the key pair (c, gc) and the ephemeral key Z
are computed so cleverly that s and s′ have the identical
shared secret key.

From the attack described above, we can see that check
proof of knowledge of private key cannot prevent this at-
tack as the the adversary holds the private key c that he
registers. The usual way to prevent this kind of attack
is to add the identities in the derivation of the session
key. Krawczyk and Menezes respectively present HMQV
and a variant of MQV [24] which both resist this kind of
UKS attack. HMQV adds the identity and uses a hash
function when computing d and e, while [24] adds the
identities in the derivation of the session key. From their
solutions we can see that adding identities in the deriva-
tion of the session key is an effective way to prevent the
public key registration UKS attack. Although it might be
easy to modify the protocol to achieve a higher security
level, for protocols that have been standardized it might
take a long time for them to be upgraded. So we need
to consider how to protect systems adopting non-secure
protocols while upgrades of protocols are still unavailable.
And for some fields, such as industrial control field, up-
grades are rigorously controlled as the system deals with
very crucial tasks involving electricity and other infras-
tructures and any modification must be tested rigorously.
So research on improving the security of AKE protocols
without modifying the original protocol is meaningful.

3 Protection Provided by TCM

Trusted Cryptography Module (TCM), a hardware secu-
rity chip similar to Trusted Platform Module (TPM), is
a small tamper-resistant cryptographic chip embedded in
computer platforms (e.g. on a PC motherboard). TCM
provides a set of cryptography capabilities that allow
some cryptographic functions to be executed in TCM,
such as public-key decryption/encryption (SM2-1), hash
(SM3), random number generating, key exchange proto-
col (SM2-2) and so on. TCM stores the secret data, such
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Â B̂

X = gx
X−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−− Y = gy

σÂ = (Y Be)x+da σB̂ = (XAd)y+eb

K = H1(σÂ) K = H1(σB̂)

MQV: d = 2l + (Xmod2l), e = 2l + (Y mod2l), l = |q|/2

HMQV: d = H2(X, B̂), e = H2(Y, Â)

Figure 3: The MQV and HMQV protocols

Â M B̂

X = gx
X=gx

−−−−→ u ∈R Zq

Z = XAdg−u

h = H1(Z)

c = u/h

C = gc
Z=XAdg−u

−−−−−−−−→
Y =gy

←−−−− Y = gy

K = H2((Y Be)x+da) K = H2((ZCh)y+eb)

Figure 4: A UKS attack on MQV

as keys and crucial user data, in a shielded location where
data is protected against interference and prying.

To operate the secret data in the shielded location,
TCM provides a set of cryptographic APIs for users.
Take the SM2-2 key exchange for example, TCM provides
TCM CreateKeyExchange and TCM GetKeyExchange to
generate a private/public key pair and generate a session
key respectively:

• TCM CreateKeyExchange: TCM generates a pri-
vate/public SM2 key pair, which we denote by (a, ga),
in the TCM’s shield location, and returns the public
part of the SM2 key pair.

• TCM GetKeyExchange: Input a public key of SM2,
e.g, gb, and return a session key gab.

TCM provides protection for cryptographic keys in the
following two aspects. First, a user who controls an SM2-
2 key pair generated by TCM cannot get plaintext of the
private key, and the only way he can use the SM2-2 key
is through TCM APIs. Second, as the key is randomly
generated by TCM and the user has no control of the
generation of a specific keys, a user cannot make TCM
chips generate a specified key pair. The second protection
feature constrains the adversary M from using TCM to
register a specified key.

3.1 Implementation of tKEA

Here we show how to implement KEA protocol using
TCM. Our implementation consists of two phases: reg-
istration phase and key exchange phase.

The registration phase involves a security TCM chip T ,
a Host H, and a CA C. T and its host H compose a whole
entity. Before the registration phase, T generates an at-
testation identity key (AIK) pair (skT , pkT ) (AIK is used
to identify the platform in trusted computing, here we
use it to certify the long-term key of an entity) and then
registers the public key pkT to a CA (note that this CA
issues certificates to platforms, and is not the CA in the
registration phase, which issues certificates to long-term
keys) through protocols such as Privacy-CA [9], which is
out of the scope of this paper. If higher anonymity is re-
quired, please refer to DAA [6] solution. After getting the
AIK certificate, the registration proceeds as follows:

1) H calls TCM CreateKeyExchange command of T ,
and T generates an SM2-2 key pair (a, ga) represent-
ing the long-term key of this entity.

2) H then calls TCM CerifyKey command of T , and
T makes a statement about (a, ga) using the AIK:
“this key is held in a TCM-shielded location, and it
will never be revealed”, and returns the statement
to H. The statement is actually a signature of the
SM2-2 key by AIK. The AIK has a feature that it
only signs the key generated within the TCM. This
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feature assures the CA that the SM2-2 key is a real
TCM-generated key if it has a legal signature.

3) H transmits the statement to C. C verifies the
statement to make sure that the public key ga is
generated by a real TCM chip. If the verification
passes, C issues a Cert about ga and gives it to H.

The key exchange phase is shown in Figure 5, and ac-
tually is the procedure of running the KEA protocol be-
tween two entities, e.g., Â and B̂. Â consists of a TCM
T1 and its host H1, and B̂ consists of a TCM T2 and its
host H2. Â’s long-term public key is A = ga, and B̂’s
long-term public key is B = gb.

4 Security Model for tKEA

In this section we introduce a variant of CK model on
which the security analysis of tKEA is based. For fur-
ther details of CK model, please consult [7] for complete
details. We modify the CK model by 1) modifying the
corruption(entity) in the CK model, 2) adding an estab-
lish(entity) query to the queries of an adversary in the
AKE experiment. The modified corruption(entity) query
can simulate the protection of cryptographic keys pro-
vided by TCM, and the establish(entity) query allows an
adversary to register public keys of adversary-controlled
entities at any time in the experiment, that is, the adver-
sary is allowed to mount the UKS attack.

4.1 Sessions

tKEA runs in a network of interconnected entities where
each entity can be activated to run an instance of the pro-
tocol called a session. Within a session an entity can be
activated to initiate the session or to respond to an incom-
ing message. As a result of these activations, the entity
creates and maintains a session state, generates outgoing
messages, and eventually completes the session by out-
putting a session key and erasing the session state. There
are two roles during a session, the entity that sends the
first message in a session is called the initiator and the
other the responder. We let I denote initiator and R
denote responder. We identify an AKE session by a 5-
tuple(role, Â, B̂,X, Y ) where role denotes the role, X is
the outgoing DH value and Y is the incoming DH value
to the session. The session (R, B̂, Â, Y,X) (if it exists) is
said to be matching to session (I, Â, B̂,X, Y ).

4.2 Adversary

The AKE experiment involves multiple honest entities
and an adversary M connected via an unauthenticated
network. The adversary M is modeled as a probabilistic
Turing machine and controls all communications. M can
intercept and modify messages sent over the network. M
also schedules all session activations and session-message

1X and Y are transmitted to T by TCM GetKeyExchange.

delivery. In addition, in order to model potential dis-
closure of secret information, the adversary is allowed to
access secret information via the following queries:

• session-state(s): M queries directly at session s
which is still incomplete and learns the session state
for s. The session state may include, for example,
the secret exponent of an ephemeral DH value but
not the long-term secret key.

• session-key(s): M obtains the session key for a ses-
sion s, provided that the session holds a key.

• corruption(entity): For the information not stored in
the TCM’s shield location, such as the session states
and session keys,M learns all of them. For the long-
term key stored in the TCM’s shield location,M has
the ability to use it, such as computing CDH(A,X)
(A stands for the long-term public key, X stands for
an element in G whose exponent is unknown) but
cannot get the plaintext of the private key.

• establish(entity): This query allows M to register a
public key generated in TCM, and M has the abil-
ity to use the private key of the registered key. If
M registers a public key not generated in TCM, the
CA will deny this registration after checking the AIK
signature of the public key. M can use this query to
control an entity.

The adversary can make queries above to gain local in-
formation. We say that a completed session is “clean” if
this session as well as its matching session (if it exists) is
not subject to any of session-state, session-key, corruption
queries.

EventuallyM should select a clean completed session,
which is called a test session, and make query Test(s) and
is given a challenge value C.

• Test(s): Pick b
R←− 0, 1. If b = 1, provide M with

C ←− sesssion-key(s); otherwise provide M with C,
which is a value r randomly chosen from the proba-
bility distribution of session keys.

Now M can continue to make session-state, session-
key, corruption and establish queries but is not allowed
to expose the test nor any of the entities involved in the
test session. At the end of its run,M outputs a bit b′. We
will refer to an adversary that is allowed the Test query
as a KE-adversary.

Definition 1. An AKE protocol Π is called SK-secure
if the following properties hold for any KE-adversary M
defined above:

1) when two uncorrupted entities complete matching
sessions, they output the same key, and

2) the probability thatM correctly guesses the bit b (i.e.,
outputs b′ = b) from the Test query is no more than
1/2 plus a negligible fraction.
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T1(a, ga) H1 H2 T2(b, gb)

X = gx
X−−−−−→
Y←−−−−− Y = gy

Y
1

←−−−−− X
1

−−−−−−→

Z1 = Y a Z1−−−−−→ Z2←−−−−− Z2 = Xb

K = H(Z1, B
x) K = H(Ay, Z2)

Figure 5: Implementation of KEA: tKEA

The advantage of KE-adversary participating in
above AKE experiment against a protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins] - 1

2 .

5 Security of tKEA and MQV

5.1 Security Proof of tKEA

Under the GDH assumption in a group G and the pro-
tection provided by TCM chips, with the hash function
H() modeled as a random oracle, we show that tKEA
satisfies AKE security against a KE-adversary defined
in Section 4. The GDH assumption is that the CDH
problem in G cannot be solved in polynomial time with
non-negligible success probability even when a DDH ora-
cle for G is available.

LetM be any AKE adversary against tKEA. We start
by observing that since the session key of the test session is
computed as K = H(σ) for some 2-tuple σ, the adversary
M has only two ways to distinguish K from a random
value:

1) Forging attack. At some point M queries H on the
same 2-tuple σ as that of the test session.

2) Key-replication attack. M succeeds in forcing the
establishment of another session that has the same
session key as the test session.

Let us first show that the key-replication attack is impos-
sible if random oracles produce no collisions. If M finds
some session with the same 4-tuples as that of the test
session, then this session must be executed by the same
two entities, A and B. Let the ephemeral public keys of
this session be X ′ and Y ′. Since the session has the same
signature as the test session, CDH(A, Y ′) must be equal
to CDH(A, Y ) and CDH(B,X ′) - equal to CDH(B,X).
This implies that X = X ′ and Y = Y ′, and thus the ses-
sion must be identical to the test session, which conflicts
with the fact that the session is different from the test
session.

However, the key-replication attack can happen to
KEA. Lauter and Mityagin describe this attack in [21].
We here review this attack. An adversary M registers a
public key ga of some honest entity Â asM’s own public

key. Then M intercepts a key-exchange session between
Â and B̂, and at the same time starts a session between
M and B̂. M forwards ephemeral public key gx from Â
to B̂ and ephemeral public key gy from B̂ to Â. SinceM
has the same public key as Â, both Â and B̂ will com-
plete identical session keys, however they participate in
two different sessions. B̂ participates in a session withM
while Â participates in a session with B̂. Then M can
announces one of the two sessions as a test session and re-
veals the session key of the other session. To avoid UKS
attacks, KEA+ adds the identities of the participating
entities to the tuples, see Figure 2. This slight modifi-
cation prevents adversaries to activate a session with the
same tuple, thereby preventingM from performing a key-
replication attack. We show below that the protection
provided by TCM can also prevent UKS attacks.

In the tKEA, we demonstrate that if an adversary M
plays a key-replication attack, he can break the protection
provided by TCM. We denote the test session by s and
the corresponding 2-tuple by (CDH(A, Y ), CDH(B,X)).
Correspondingly, we denote another session by s′ which
has the same session key with s, and the corresponding 2-
tuple on whichM queries H to get the session key of s by
(CDH(A′, Y ′), CDH(B′, X ′)). A′ and B′ are public keys
M registers to the CA through the establish(entity), and
M can do the computation of CDH(A′orB′, T ) for any
T whose exponent is unknown. Since s and s′ has the
same session key, CDH(A′, Y ′) must be equal to Z1 =
CDH(A, Y ) and CDH(B′, X ′) must be equal to Z2 =
CDH(B,X). Since CDH(A′, Y ′) = Z1, we can get Y ′ =

Z
1
a′
1 and A′ = Z

1
y′

1 . The only two ways for M to get a
pair (A′, Y ′) meeting equation CDH(A′, Y ′) = Z1 are:

1) Register a controlled key A′ to the CA, and compute

the ephemeral public key Y ′ = Z
1
a′
1 where a′ denotes

the private key of A′.

2) Generate an ephemeral key pair (y′, Y ′ = gy
′
), and

register A′ = Z
1
y′

1 to the CA.

We can see that the first way requiresM to get the plait-
text of the public key A′, and the second way requires
M to register a specified key. However, both of the two
ways violate the protection provided by TCM which is
described in Section 3.
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We are left to show the impossibility of a forging at-
tack. The proof of tKEA is similar to KEA+ [21]. It can
be directly obtained by placing the 4-tuple of KEA+ on
which is used to query H with tKEA’s 2-tuple. So we
omit the proof.

To summarize the proof, for any AKE adversary M
running in time t we can construct a GDH solver S which
runs in time O(t2) such that

AdvGDH(S) ≥ 1
nkAdvAKE

tKEA(M)

As for the wPFS and KCI security property of tKEA,
they can be proved directly following the proof in [21].

5.2 Securing MQV

To prove the generality of our way, we show that our way
of using the protection capability provided by TCM/TPM
to prevent UKS attacks can prevent the UKS attack [17]
on MQV protocol. Figure 4 shows this attack. To attack
MQV, the adversaryM registers an public key C = gc to
the CA. AsM knows the private key of C, the CA cannot
deny the registration of C even it require proof of knowl-
edge of the private key. However, if the CA requires that
the key must come from a security chip, such as TPM or
TCM, this UKS attack can be prevented. That’s because
if the key is generated in a security chip, M cannot gen-
erate a key whose private key is specified to be c. That’s
to say, M cannot register C = gc to the CA.

6 Conclusion and Future Work

This paper summarizes two kinds of UKS attacks on the
implicitly authenticated key exchange protocol and cor-
responding countermeasures to the two kinds of attacks.
One of the countermeasure requires the CA to check the
possession of the private key, which is unpractical, and
the other countermeasure is to add the identity during the
derivation of the session key, which modifies the original
protocol. Motivated by the protection capability provided
by security chips, we present a new way of preventing UKS
attacks on AKE protocol.

We introduce the protection capability provided by
hardware security chips and give a variant of CK model
which covers UKS attacks. Through the security proof of
tKEA in our variant model, we show that our new way
of preventing UKS attacks is effective and have some ad-
vantages compared to existing countermeasures. We also
show the generality of our new way by preventing the
UKS attack on MQV protocol.

In Section 5, we show that our new way can prevent
the UKS attack on MQV without a formal proof. In the
future, we hope to implement a ‘tMQV’ using a hardware
security chip like TCM, and give it a formal proof. We
also hope to check whether the protection capability of
hardware security chips can provide other advantages to
AKE protocols.
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