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Abstract

Policy-based Signatures (PBS), which were introduced by
Bellare and Fuchsbauer, enable signers to sign messages
that conform to some policy, yet privacy of the policy is
maintained. Bellare et al. defined the policy in any NP
language. In PBS schemes for NP language, one should
have a valid witness for the policy checking and signing
algorithms. In this work, we consider the case of PBS
for P language which is a special case of NP language.
In PBS schemes for P language, one can directly run the
policy checking and signing algorithms without witness.
We set policies as some boolean predicates and define the
notion of PBS for predicates and its security. Next, for
an important class of policy predicates described as (1-
dimensional) ranges (i.e., prefix predicate), we design a
PBS scheme for such predicate based on tree-based sig-
natures and analyze its application in some real-world sce-
narios. In addition, based on multilinear maps, we design
three PBS schemes for more complex predicates, bit-fixing
predicate, left/right predicate, and circuits predicate, re-
spectively.

Keywords: Attribute-based Signatures; Digital Signatures;
Group Signatures; Policy-based Signatures

1 Introduction

Digital signatures are one of the most fundamental and
well studied cryptographic primitives for providing au-
thentication. In standard signature schemes, a signer who
has established a public key pk and a matching secret key
sk can sign any message that it wants.

Policy-based Signatures (PBS). The notion of policy-
based signatures was introduced by Bellare and Fuchs-
bauer [1]. In PBS schemes, signer’s secret key skp is as-
sociated with a policy p that allows the signer to produce
a valid signature σ of a message m if and only if the mes-
sage satisfies the policy. PBS provides flexible and fine-
grained privacy-respecting authentication which cannot
be provided by the other signature variants. For exam-
ple, group signatures [6, 14], ring signatures [22, 23, 25],

and attribute-based signatures [20] also have private sign-
ing policy. In these signature variants, any verifier can be
convinced that the message was signed by someone enti-
tled to, but not who this person is. In addition, in mesh
signature scheme [3], the policy itself is always public, as
in the warrant, which specifies the policy in proxy sig-
natures [7, 17, 21]. However, note that there has a big
difference between policy-based signatures and the other
signature variants that the policy-based signatures pro-
vide fine-grained control over what kind of messages can
be signed by skp which associates a policy p.

Bellare et al. [1] defined the policy to be any NP lan-
guage L. In order to check that whether a message
satisfies a policy or not, they defined a policy checker
(i.e., an NP-relation) PC : {0, 1}∗ × {0, 1}∗ → {0, 1}.
The first input is a pair (p,m) representing a policy
p ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, while the sec-
ond input is a witness w ∈ {0, 1}∗. The associated lan-
guage L(PC) = {(p,m) : ∃w s.t. m satisfies p} is called
the policy language associated to PC. Given a witness w,
one can test in polynomial time whether a given policy
p allows a given message m, where (p,m) ∈ L(PC), or

PC((p,m), w)
?
= 1 for short.

Our Motivation. Bellare et al. [1] designed a generic
construction of PBS scheme for any NP language based on
Groth-Sahai proofs [11]. In the scheme of [1], policies can
be expressed and enforced are restricted neither in form
nor in type, the only condition being that, given a witness,
one can test in polynomial time whether a policy allows a
message or not. However, in real-world applications, we
may only need some specific policies. In addition, it is
preferable that check whether a policy allows a message
without the help of any witness. In the case of PBS for
NP, the witness is necessary for the policy checker and
signing algorithm. Hence, in this work, we consider a
special case that the policy language in P, meaning that
one can directly (without any witness w) run the signing
algorithm and test in polynomial time whether a given

policy allows a given message, or p(m)
?
= 1 for short.

Our Results. First of all, we define the notion of PBS
for predicates, i.e., describe the policies as some boolean
predicates, and its security. Then, we design several con-
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crete PBS schemes for different predicate families.

• Prefix predicates are an important class of policy
predicates. Based on tree-based signatures, we de-
sign a PBS scheme and prove its security. In addi-
tion, we will analyze the applications of PBS scheme
for prefix predicates in some real-world scenarios.

• Furthermore, we provide another method to con-
struct PBS for more complex predicates, bit-fixing
predicate, left/right predicate, and circuits predicate.
The main tool for these three constructions is multi-
linear map [4]. However, low efficiency which dues to
the low efficiency of existing multilinear map can-
didates and selective unforgeability are two major
shortcomings with respect to these mulitlinear-map-
based constructions. Therefore, this part of work is
tend to theoretical realization.

2 Preliminaries

2.1 Multilinear Maps

The notion of multilinear maps was introduced by Boneh
and Silverberg [4]. Then, Garg et al. [9] gave the first
approximate candidate of multilinear maps. Then, many
subsequent schemes have been proposed, e.g., [8, 10]. Un-
fortunately, some of them have been breached, e.g., [12,
18]. However, even so, many cryptographic schemes based
on multilinear maps have been proposed, for examples,
aggregate signatures [13], attribute-based signatures for
circuits [24], constrained PRFs [5] and so on.

Let
−→
G = (G1, . . . ,Gk) be a sequence of groups each

of large prime order p, and gi be a canonical generator
of Gi, where we set g = g1. There exists bilinear maps
{ei,j : Gi × Gj → Gi+j |i, j ≥ 1 ∧ i + j ≤ k}, which
satisfy: ei,j(g

a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp. When the con-

text is obvious, we drop the subscripts i and j, such as
e(gai , g

b
j) = gabi+j . It also will be convenient to abbreviate

e(h1, h2, . . . , hj) = e(h1, e(h2, . . ., e(hj−1, hj) . . .)) ∈ Gi
for hj ∈ Gij and i1 + i2 + . . . + ij ≤ k. We assume that
G(1λ, k) is a PPT group generator algorithm which takes
as input a security parameter λ and a positive integer k to
indicate the number of allowed pairing operations, then
it outputs the multilinear parameters mp = (G1, . . ., Gk,
p, g = g1, g2, . . . , gk, ei,j) to satisfy the above properties.

The assumption of Multilinear Computational Diffie-
Hellman (MCDH) can be viewed as an adaptation of Bi-
linear Computational Diffie-Hellman assumption in the
setting of multilinear maps.

Definition 1. For any PPT algorithm B, any polynomial
p(·), any integer k, and all sufficiently large λ ∈ N,

Pr

 mp← G(1λ, k);

c1, . . . , ck
R← Zp; : T = g

∏
i∈[k] ci

k−1
T ← B(mp, gc1 , . . . , gck)

 < 1

p(λ)
,

where ci
R← Zp means that ci is randomly and uniformly

chosen from the set Zp, and [k] is an abbreviation of the
set {1, 2, . . . , k}.

2.2 Example Predicate Families

We take the predicate families in [5] as examples to realize
PBS schemes.

Prefix predicates. Let v ∈ {0, 1}n, where n ∈ [k], be a
bit string, the prefix predicate pv : {0, 1}k → {0, 1}
is defined as: pv(m) = 1 ⇔ m has v as a prefix.
The set of prefix predicates is Ppre = {pv : v ∈
{0, 1,⊥}n, n ∈ [k]}. Prefix predicate is a special case
of bit-fixing predicate.

Bit-fixing predicates. Let v ∈ {0, 1,⊥}n be a vector,

the bit-fixing predicate p
(BF )
v : {0, 1}n → {0, 1} is

defined as: p
(BF )
v (m) = 1 ⇔ (vi = mi or vi =

⊥) for all i = 1, . . . , n. The set of bit-fixing predi-

cates is PBF = {p(BF )
v : v ∈ {0, 1,⊥}n}.

Left/right predicates. For a bit string w ∈ {0, 1}|m|/2,
where m ∈ M and |m| = 2 · s denotes the size

of the message, define two predicates p
(L)
w , p

(R)
w :

{0, 1}|m|/2 → {0, 1} as: p
(L)
w (m1,m2) = 1 ⇔ m1 =

w and p
(R)
w (m1,m2) = 1⇐⇒ m2 = w.

Circuit predicates. Let C be the set of polynomial size
circuits. Circuit predicate family is defined as Pcir =
{p : p ∈ C}.

3 Policy-based Signatures for
Predicates

3.1 Definition

A policy-based signature scheme, PBS, consists of the
following four PPT algorithms:

• Setup(1λ): The setup algorithm takes as input a se-
curity parameter λ. It outputs public parameters
pp and a master secret key msk, where the public
parameters, pp, contain the descriptions of the mes-
sage spaceM, signature space S, and policy (boolean
predicate) space P. The master secret key msk can
sign all messages in M.

• KeyGen(msk, p): The key generation algorithm takes
as input the master secret key msk and a boolean
predicate p ∈ P. It outputs a signing key skp for the
predicate p.

• Sign(skp,m): The signing algorithm takes as input a
signing key skp and a message m ∈M. It outputs a
signature σ ∈ S if p(m) = 1. Otherwise, it outputs
⊥.
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• Verify(pp,m, σ): The verification algorithm takes as
input the public parameters pp and a purported sig-
nature σ for a message m. It outputs 1 or 0.

We require that for all security parameter λ,
(msk, pp) ← Setup(1λ), p ∈ P, skp ← KeyGen(msk, p),
and m ∈ M, if p(m) = 1 and σ ← Sign(skp,m), then we
have Verify(pp,m, σ) = 1.

3.2 Security Models

The security of policy-based signature for predicates is
defined by the following two notions: unforgeability and
privacy (i.e., indistinguishability in [1]).

Unforgeability. This notion guarantees that one can
sign some message m only if it has a signing key skp
such that p(m) = 1.

• Setup: The challenger runs the setup algorithm
to generate public parameters pp and a master
secret keymsk. It then gives pp to the adversary
and keeps msk to itself.

• Key Generation Oracle: The adversary
adaptively makes any polynomial number of
signing key queries for boolean predicate p ∈ P
of its choice. The challenger returns back skp ←
KeyGen(msk, p).

• Signing Oracle: The adversary adaptively
makes any polynomial number of signature
queries on input a message m ∈ M. The chal-
lenger chooses a p ∈ P such that p(m) = 1 and
returns back σ ← Sign(skp,m), where skp is ob-
tained from the key generation algorithm.

• Forgery: The adversary finally outputs a
tuple (m∗, σ∗). It wins the game if (1)
Verify(pp,m∗, σ∗) = 1; (2) m∗ was never queried
to the signing oracle; and (3) p(m∗) = 0 for all
p queried to the key generation oracle.

We denote the advantage of a PPT adversary A (taken
over the random choices of the challenger and adversary)

to win the game as AdvUnfA = Pr[A wins].

Definition 2. A policy-based signature scheme is exis-
tentially unforgeable if any PPT adversary can win the
above game with at most negligible advantage.

Remark 1. In the case of PBS for NP, the above notion
is unsatisfactory. This is because one cannot efficiently
verify whether an adversary has won the game, as this
needs it has a valid witness w to checking that whether
(p,m) ∈ L(PC) for all p queried to the key generation
oracle and m from the adversary’s final output. However,
in the case of PBS for P, one can always efficiently verify
it without any witness.

We also define a weaker (selective) variant to the above
definition where the adversary is required to commit to a
challenge message, m∗, before the setup phase.

Definition 3. A policy-based signature scheme is selec-
tively unforgeable if any PPT adversary can win the se-
lective game with at most negligible advantage.

Perfect Privacy. This notion guarantees that a valid
signature will reveal nothing about the signing policy.

• Setup: The challenger runs the setup algorithm
to generate public parameters pp and a master
secret key msk. It then gives pp and msk to the
adversary.

• Challenge: The adversary submits a challenge
message m∗ ∈ M and two different boolean
predicates p0, p1 ∈ P such that p0(m∗) =
p1(m∗) = 1, to the challenger. The challenger
flips a random coin b← {0, 1} and returns back
σb ← Sign(skpb ,m

∗), where skpb is obtained
from the key generation algorithm.

• Guess: Finally, the adversary outputs his
guessing bit b′ and wins the game if b′ = b.

We denote the advantage of an unbounded adversary
A (taken over the random choices of the challenger and
adversary) to win the game as AdvPriA = |Pr[b′ = b]− 1

2 |.

Definition 4. A policy-based signature scheme is per-
fectly private if even an unbounded adversary wins the
above game with at most negligible advantage.

4 Policy-based Signatures Based
on One-Way Functions

We now construct a policy-based signature scheme sup-
porting the class of prefix predicate based on the tree-
based signature scheme [19].

4.1 Tree-based Signature Scheme

Let T T S = (keygen, sign, verify) be a two-time signature
scheme.1 For a binary string m, let m|i = m1 · · ·mi de-
note the i-bit prefix of m (with m|0 := ε, the empty
string). More specifically, we imagine a binary tree of
depth k where the root is labelled by ε (i.e., the empty
string), and a node that is labelled with a binary string
w, where |w| < k, has left-child labelled w0 and right-
child labelled w1. For every node w, we associate a key
pair (pkw, skw) from the two-time signature scheme. The
public key of the root, pkε, is the actual public key of the
signer. To sign a message m ∈ {0, 1}k, the signer does
the following steps:

1) It first generates keys for all nodes on the path from
the root to the leaf labelled m. Some of these public
keys may generated in the process of signing previous

1The original tree-based signature scheme is based on any one-
time signature (e.g., [16]). For ease of description, we define the
tree-based signature scheme based on any T T S which can be easily
realized from any one-time signature scheme.
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messages, in such case the previous values are stored
as part of the state.

2) It then “certifies” the path from the root to the leaf
labelled m by computing a signature on pkw0 or pkw1

(which depends on whether m|w|+1 = 0 or 1), using
secret key skw, for each string w that is a proper
prefix of m.

3) Finally, the signer “certifies” m itself by computing
a signature on m using the secret key skm.

Formally, the tree-based signature scheme T BS =
(keygen∗, sign∗, verify∗) is as follows:

keygen∗(1λ): The key generation algorithm runs
(pkε, skε) ← keygen(1λ) and outputs the public key
pkε. The secret key and initial state are skε.

sign∗(sk,m ∈ {0, 1}k): To sign a message m ∈ {0, 1}k
using the current state, the singing algorithm does
the following:

1) For i = 0, . . . , k − 1: let m|ib be the (i + 1)-bit
prefix of m.

• If pkm|ib and σm|ib are not in the current
state, compute them:

(pkm|ib, skm|ib)← keygen(1λ);
σm|ib ← sign(skm|i , pkm|ib),

and then store all these computed values as
part of the state.

2) If σm is not yet included in the state, compute
σm ← sign(skm,m) and store it as part of the
state.

3) Output σ = ({(pkm|ib, σm|ib)}i∈[0,k−1], σm) as
the signature for message m.

verify∗(pk,m, σ): Given a public key pkε, a message m ∈
{0, 1}k, and a signature ({(pkm|ib, σm|ib)}

k−1
i=0 , σm),

output 1 if and only if the following two equations
hold:

1) verify(pkm|i , pkm|ib, σm|ib) = 1 for all i =
0, . . . , k − 1.

2) verify(pkm,m, σm) = 1.

Theorem 1. If T T S is a signature scheme that is exis-
tentially unforgeable against two-time chosen-message at-
tack. Then the tree-based signature scheme T BS is exis-
tentially unforgeable against adaptive chosen-message at-
tack.

The proof this theorem is similar to that of the tree-
based signature scheme based on any one-time signature
scheme. We omit the proof.

4.2 PBS for Prefix Predicates based on
T BS

We now construct a policy-based signature scheme for
the prefix predicates based on the tree-based signature
scheme. The idea of our construction is as follows:2 a
singing key skpv corresponding to a predicate pv ∈ Ppre
will be the partial certification of the T BS tree, at level
|v|. Given this partial certification, a signer will be able
to compute the completion for any message m which has
v as a prefix. However, as we will argue, the computation
of all other messages will remain unknown to the signer.
Formally, our PBS scheme (Setup,KeyGen,Sign,Verify) for
prefix predicates is as follows:

Setup(1λ): This algorithm runs (pkε, skε) ←
keygen∗(1λ) and sets msk := skε, pp := pkε.

KeyGen(msk, pv): To compute a signing key skpv for a
prefix predicate pv ∈ Ppre, where |v| ≤ k. This key
generation algorithm does the following:

1) For i = 0, . . . , |v| − 1: let v|ib be the (i+ 1)-bit
prefix of the vector v.

• If pkv|ib and σv|ib are not in the current
state, compute them:

(pkv|ib, skv|ib)← keygen(1λ);
σv|ib ← sign(skv|i , pkv|ib),

and then store all these computed values as
part of the state.

2) Output skpv = ({(pkv|ib, σv|ib)}i∈[0,|v|−1], skv)
as the signing key for pv.

Sign(skpv ,m ∈ {0, 1}k): To sign a message m ∈ {0, 1}k
using the current state, the signing algorithm does
the following:

1) If pv(m) = 0, i.e., ∃i ∈ [|v|] s.t. mi 6= vi, then
abort.

2) For i = |v|, . . . , k − 1: let m|ib be the i + 1-bit
prefix of m.

• If pkm|ib and σm|ib are not in the current
state, compute them:

(pkm|ib, skm|ib)← keygen(1λ);
σm|i ← sign(skm|i , pkm|ib),

and then store all these computed values as
part of the state.

3) If σm is not yet included in the state, compute
σm ← sign(skm,m) and store it as part of the
state.

4) Output σ = ({(pkm|ib, σm|ib)}i∈[0,k−1], σm) as
the signature for message m.

Verify(pp,m, σ): It is same the verify∗ algorithm in the
T BS scheme.

2A similar idea has been used to construct constrained PRFs [2].
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Unforgeability. Our PBS scheme PBS is similar to the
tree-based signature scheme T BS. The only differ-
ence is that in PBS the signer obtains a signing key
skpv , rather than a full-featured key msk := skε as
in T BS, which enables him to signing a subset of
the domain {0, 1}k. For completeness, we give the
following proof.

Theorem 2. If T T S is a signature scheme that is ex-
istentially unforgeable under a two-time chosen-message
attack. Then the policy-based signature scheme PBS for
message space {0, 1}k is existentially unforgeable under
an adaptive chosen-message attack.

Proof. For length of messages k, we prove security based
on two-time signature scheme T T S. We show that if
there exists a PPT adversary A on our PBS scheme then
we can construct an efficient algorithm B to break the
security of scheme T T S. We describe how B interacts
with A. The algorithm B first receives a challenge key pk
from the challenger of scheme T T S.

Let qk, qs be the upper bounds on the number of key
generation queries and signing queries, respectively, made
by A, and set ` = k(qk+qs)+1. Note that ` upper-bounds
the number of public keys from T T S that are needed to
generate qk keys and qs signatures using PBS (in the
worst case), and there is one additional key form T T S
that is used as the actual public key pkε.

Setup: Initially, B chooses a random i∗ ← [`], we assume
that i∗ is put on the node (or leaf) w∗. Construct a
list pk1, . . . , pk` of keys as follows:

• Set pki
∗

:= pk.

• For i 6= i∗, run (pki, ski)← keygen(1λ).

Then B runs A on input the public key pkε := pk1.
Note that B knows all secret key ski, for i ∈ [`], ex-
cept that the challenge one ski

∗
:= sk. With respect

to the challenge key sk, B can make at most two sign-
ing queries to the T T S challenger according to the
security of the T T S scheme.

Key Generation Oracle: A will query for a signing key
for a prefix predicate pv ∈ Ppre. B creates it for the
adversary as follows:

• If w∗ is not on the path from the root to the
node v, then B can create signing key skpv hon-
estly since it knows all secret keys with respect
to the nodes on the path from the root to the
node v.

• If w∗ is on the path from the root to the node
v, to certify w∗’s child w∗b, B first makes a
signing query to the T T S challenger on in-
put pki

∗+1, and then it will receive a signature
σw∗b ← sign(sk, pki

∗+1). Finally, B can create
skpv .

Signing Oracle: The adversary A will query for a signa-
ture for a message m ∈ {0, 1}k. B creates signatures
for the adversary as follows:

• If w∗ is not on the path from the root to the
leaf m, then B can create signature σ honestly
since it knows all secret keys with respect to the
nodes on the path from the root to the leaf m.

• If w∗ is on the path from the root to the leaf m,
and if w∗ is a internal node, to certify the w∗’s
child w∗b, B first makes a signing query to the
T T S challenger on input pki

∗+1 and then it will
receive a signature σw∗b ← sign(sk, pki

∗+1); if
w∗ is the leaf m, then B makes singing query to
the T T S challenger on input m and then it will
receive a signature σm ← sign(sk,m). Finally B
can compute the complete signature σ.

Forgery: Eventually, A outputs

σ∗ = ({(pk′m∗|ib, σ
′
m∗|ib)}

k−1
i=0 , σ

′
m∗)

for message m∗. If it is valid, then:

Case 1: There exists a j ∈ [0, k − 1] for which
pk′m∗|ib 6= pkm∗|ib, this means that A creates

a new key pk′m∗|ib but not initially defined by

B. If j = i∗, B outputs (pk′m∗|ib, σ
′
m∗|ib).

Case 2: If Case 1 does not hold, then pk′m∗ = pkm∗ .
Let j be such that pkj = pkm. If j = i∗, B
outputs (m∗, σ′m∗).

Note that i∗ was chosen uniformly at random and is
independent of the view of A, and the list pk1, . . . , pk`

generated by keygen(1λ) is distributed identically to the
view of A in the real unforgeability game. Thus if A
outputs a valid forgery (regardless of which of the above
cases occurs) with probability ε, B can outputs a forgery
with probability ε/`, where 1/` means the probability of
j = i∗ in which of the above cases occurs. By the assumed
security of T T S and the fact that ` is polynomial, we
conclude that ε must negligible.

Perfect Privacy. Given a valid signature (m∗, σ∗), we
show that any key skpv such that pv(m

∗) = 1 could
possibly have created it. The proof is straight-
forward.

Theorem 3. The above PBS scheme based on OWF is
perfectly private.

Proof. Any unbounded adversary A submits a challenge
tuple (pv, pw,m

∗) such that pv(m
∗) = pw(m∗) = 1.

The distribution of the signatures for m∗ generated by
the signing key skpv is: ({(pkm∗|ib, σm∗|ib)}i∈[0,k−1], σm∗),
where each key pair (pki, ski) is generated by the key gen-
eration algorithm randomly and independently. Similarly,
The distribution of the signatures for m∗ generated by
the signing key skpw is: ({(pk′m∗|ib, σ

′
m∗|ib)}i∈[0,k−1], σ

′
m∗),
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where each key pair (pk′i, sk
′
i) also is generated by the

key generation algorithm randomly and independently.
Therefore, these two distributions are identical. The per-
fect privacy follows easily from this observation.

4.3 Application of PBS for Prefix Predi-
cates

We consider the application scenario which was raised by
Bellare et al. [1]. A company implements a scheme where
each employee gets a signing key with a policy and there
is only one public key which is used by outsiders to verify
signatures in the name of the company. Company stipu-
lates that employee in different department has different
policy. For example, the policy for sales department states
the prices of the products, the policy for technology de-
partment states the functionalities of the products, and
so on.

PBS for prefix predicates is a useful tool in addressing
this problem. For an employee in sales department,
company sets policy ps which states the prices of the
products, then distributes a signing key skps to this
employee. Finally, the employee can sign messages on
behalf of the company, where these messages may contain
the statement “product prices||after-sale service

terms|| · · · ”. In such a scenario, the employee can decide
the after-sale service terms and some other regulations,
however, the product prices which are stipulated in the
policy ps cannot be changed. If the PBS scheme for prefix
predicates is secure, then any outsider can be convinced
that, from a valid PBS signature, the regulations (i.e.,
message) was agreed by someone entitled to, but not who
this person is.

Related Works. Append-Only Signatures (AOS) [15]
are a similar notion to the PBS for prefix predicates.
In AOS schemes, any party is given an AOS signature
σm1

for message m1 can compute σm1||m2
for message

m1||m2, where the message m2 is chosen by the party.
In AOS, anyone can append and verify signatures. How-
ever, in PBS, the signing key skp cannot be opened, and
hence only the holder of the signing key can sign mes-
sages. Kiltz et al. [15] showed that AOS is equivalent
to Hierarchical Identity-Based signatures (HIBS), and it
can be used to the Border Gateway Protocol (BGP). PBS
for prefix predicates and AOS are two different signature
variants because: (1) there has no obvious evidence shows
that the PBS for prefix predicates has the properties (i.e.,
connection to HIBS and application to BGP) provided by
the AOS; and (2) AOS apparently does not apply to the
above application scenario because, in the above appli-
cation scenario, the signer should to be some authorized
employee rather than anyone. Although, there may be
have some potential connections between these two signa-
ture variants, e.g., realize one from the other one by some
transformation, which beyond the reach of this work.

5 Policy-based Signatures Based
on Multilinear Maps

In this section, we take advantage of the multilinear maps
to realize three PBS constructions for bit-fixing predi-
cates, left/right predicates, and circuit predicates, respec-
tively. The main technique of our multilinear-map-based
PBS schemes follows Boneh and Waters’ [5] work which
constructs constrained pseudorandom functions. Their
technique has been used to construct different crypto-
graphic primitives, such as attribute-based signatures for
circuits [24] and so on. In this work, we also follow Boneh
et al.’s [5] technique, however, to construct a different
cryptographic primitive, policy-based signatures.

5.1 PBS for Bit-Fixing Predicates

Setup(1λ, k): The setup algorithm takes as input a se-
curity parameter λ and an integer k. The algo-

rithm then runs G(1λ, k) that produces groups
−→
G =

(G1, . . . ,Gk) of prime order p, with canonical gener-
ators g1, . . . , gk, where we let g = g1. Next it chooses
random α ∈ Zp and (a1,0, a1,1), . . . , (ak−1,0, ak−1,1) ∈
Z2
p and computes Ai,β = gai,β for i ∈ [k − 1] and

β ∈ {0, 1}.
The master secret key is msk = α. The pub-
lic parameters, pp, consist of the group sequence
description plus group elements gα, {Ai,β |i ∈ [k −
1], β ∈ {0, 1}}, message space M = {0, 1}k−1, sig-
nature space S = Gk−1, and predicate space P =
{0, 1,⊥}k−1.

KeyGen(msk,v ∈ {0, 1,⊥}k−1): For a vector v ∈
{0, 1,⊥}k−1, let V be the set of indices i ∈ [k−1] such
that vi 6= ⊥. That is the indices for which the bit is
fixed to 0 or 1. The signing key for the predicate pv
is:

skv = (g
∏
i∈V ai,vi
|V | )α ∈ G|V |.

Sign(skv,m ∈ {0, 1}k): Given a message, m, of length
k − 1, let m1, . . . ,mk−1 be the bits of this message.
If the message m does not satisfy the predicate, i.e.,
pv(m) = 0, then abort. Otherwise, pv(m) = 1. That
is vi = mi for all i ∈ V , then the signing algorithm
compute a signature:

σ = e(skv, g
∏
i∈[k−1]\V ai,mi

k−|V |−1 ) = g
α·

∏
i∈[k−1] ai,mi

k−1 ∈ Gk−1,

where g
∏
i∈[k−1]\V ai,mi

k−|V |−1 can be computed by the mul-

tilinear maps from the parameters Ai,mi for i ∈
[k − 1]\V .

Verify(pp,m, σ): Given a purported signature σ on a
message m, verify the following equation:

e(σ, g) = e(gα, A1,m1 , . . . , Ak−1,mk−1
).

Output 1 if it holds, else 0.
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Correctness. The verification of the final signatures is
justified by the following two equations:

e(σ, g) = e((g
∏
i∈[k−1] ai,mi

k−1 )α, g)

= g
α·

∏
i∈[k−1] ai,mi

k .

and

e(gα, A1,m1
, . . . , Ak−1,mk−1

) = g
α·

∏
i∈[k−1] ai,mi

k .

Theorem 4. If the k-MCDH assumption is hold in the
multilinear groups, then the above PBS construction for
bit-fixing predicates and for messages of length k − 1 is
selectively unforgeable and perfectly private.

Selective Unforgeability. We prove selective unforge-
ability, where the key access structures are bit-fixting
predicates. For length of messages k − 1, we prove se-
curity under the k-MCDH assumption. We show that if
there exists a PPT adversary A on our PBS scheme for
messages of length k − 1 in the selective security game
then we can construct an efficient algorithm B on the k-
MCDH assumption. We describe how B interacts with
A.

The algorithm B first receives a k-MCDH challenge

instance consisting of the group sequence description
−→
G

and g = g1, g
c1 , . . . , gck . It also receives challenge message

m∗ = m∗1 . . .m
∗
k−1 ∈ {0, 1}k−1 from the adversary.

Setup: Initially, B chooses random u1, . . . , uk−1 ∈ Zp
and sets

Ai,β =

{
gci , if m∗i = β
gui , if m∗i 6= β

for i ∈ [k−1], β ∈ {0, 1}. This corresponds to setting
ai,β = ci if m∗i = β and ui otherwise. We observe
these are distributed identically to the real scheme.
In addition, it will internally view α = ck.

Key Generation Oracle: The adversary A will query
for a signing key for a bit-fixing predicate pv, where
v ∈ {0, 1,⊥}k−1. We let V be the set of indices
i ∈ [k − 1] such that vi 6= ⊥.

If pv(m∗) = 1, that is m∗i = vi for all i ∈ V . Then B
aborts the game.

If pv(m∗) = 0, that is ∃j ∈ [k − 1]\V, s.t. m∗j 6=
vj . Then B will be able to create signing keys
for the adversary, because his query will differ
from the challenge message at least one bit. More
specifically, B produces the signing key as skv =

e(gck , g
∏
i6=j∈V ai,xi
|V |−1 )uj .

Signing Oracle: The adversary A will query for a sig-
nature for a message m 6= m∗, and we let mj 6=
m∗j , j ∈ [k − 1]. Then B will be able to produce a
valid signature:

σ = e(gck , g
∏
i6=j∈[k−1] ai,mi

k−2 )uj .

Forgery: Eventually, A outputs a signature σ∗ on mes-
sage m∗. Then B outputs σ∗ as the solution of the
given instance of the k-MCDH assumption.

According to the public parameters built in the setup
phase and the assumption that σ∗ is valid, we know that

σ∗ = g
∏
i∈[k] ci

k−1 , implies that σ∗ is a solution for the given
instance of the k-MCDH problem, and thus B breaks the
k-MCDH assumption. It is clear that the view of A sim-
ulated by B in the above game is distributed statistically
exponentially closely to that in the real unforgeability
game, hence B succeeds whenever A does. �

Perfect Privacy. Given a valid signature (m∗, σ∗), we
show that any signing key skv such that pv(m∗) = 1
could possibly have created it. The proof is straight-
forward.

According to the setup of the signing algorithm, for any
tuple (v[0],v[1],m∗) such that pv[0](m

∗) = pv[1](m
∗) = 1,

which was chosen by an unbounded adversary A, both of
the signatures created by the signing key skv[0] and skv[1]

are g
α·

∏
i∈[k−1] ai,m∗i

k−1 . Therefore, any signing key skv such
that pv(m∗) = 1 can compute a same signature on a given
message m∗. The perfect privacy follows easily from this
observation. �

5.2 PBS for Left/Right Predicates

Setup(1λ, k = 2 · s+ 1): The setup algorithm takes as
input a security parameter λ and an odd num-
ber k = 2 · s + 1. The algorithm then runs

G(1λ, k) that produces groups
−→
G = (G1, . . . ,Gk) of

prime order p, with canonical generators g1, . . . , gk,
where we let g = g1. Next it chooses ran-
dom α ∈ Zp, (a1,0, a1,1), . . . , (as,0, as,1), (b1,0, b1,1),
. . . , (bs,0, bs,1) ∈ Z2

p and computes Ai,β = gai,β ,

Bi,β = gbi,β for i ∈ [s] and β ∈ {0, 1}.
The master secret key is msk = α. The public pa-
rameters, pp, consist of the group sequence descrip-
tion plus group elements gα, {Ai,β , Bi,β |i ∈ [s], β ∈
{0, 1}}, message space M = {0, 1}k−1, signature
space S = Gk−1, and predicate space P = {0, 1}s.

KeyGen(msk, p = (p
(L)
x , p

(R)
y )): For (x, y) ∈ {0, 1}s, the

signing keys for the predicates p
(L)
x , p

(R)
y are sk

p
(L)
x

=

(g
∏
i∈[s] ai,xi

s )α ∈ Gs and sk
p
(R)
y

= (g
∏
i∈[s] bi,yi

s )α ∈
Gs, respectively.

Sign(skp,m): Given a message, m, of length k − 1, let
m1, . . . ,ms,ms+1, . . . ,mk−1 be the bits of this mes-
sage. If the message m satisfies the left predicate

p
(L)
x , i.e., mi = xi for i ∈ [s], then the signing algo-

rithm can compute a signature:

σ = e(sk
p
(L)
x
, B1,ms+1

, . . . , Bs,mk−1
) =

g
α·

∏
i∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k−1 ∈ Gk−1.
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If the message m satisfies the right predicate p
(R)
y ,

i.e., ms+i = yi for i ∈ [s], then the signing algorithm
can compute a signature:

σ = e(sk
p
(R)
y
, A1,m1

, . . . , As,m1
) =

g
α·

∏
i∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k−1 ∈ Gk−1.

Verify(pp,m, σ): Given a purported signature σ on a
message m, verify the following equation:

e(σ, g) = e(gα, A1,m1 , . . . , As,ms , B1,ms+1 , . . . , Bs,mk−1
).

Output 1 if it holds, else 0.

Correctness. The verification of the final signatures is
justified by the following two equations:

e(σ, g) = e((g
∏
i∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k−1 )α, g)

= g
α·

∏
i∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k .

and

e(gα, A1,m1 , . . . , As,ms , B1,ms+1 , . . . , Bs,mk−1
) =

g
α·

∏
i∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k .

Theorem 5. If the k = (2s + 1)-MCDH assumption
is hold in the multilinear groups, then the above PBS
construction for left/right predicates and for messages of
length s is selectively unforgeable and perfectly private.

Selective Unforgeability. For length of messages k −
1 = 2 · s, we prove security under the k-MCDH as-
sumption. We show that if there exists a PPT adver-
saryA on our PBS scheme for messages of length k−1
in the selective security game then we can construct
an efficient algorithm B on the k-MCDH assumption.
We describe how B interacts with A.

The algorithm B first receives a k = (2 · s+ 1)-MCDH

challenge consisting of the group sequence description
−→
G

and g = g1, g
c1 , . . . , gck . It also receives challenge mes-

sage m∗ = m∗1 . . .m
∗
sm
∗
s+1 . . .mk−1 ∈ {0, 1}k−1 from the

adversary.

Setup: Initially, B chooses random u1, . . . , us ∈ Zp and
sets

Ai,β =

{
gci , if m∗i = β
gui , if m∗i 6= β

for i ∈ [s], β ∈ {0, 1}. This corresponds to setting
ai,β = ci if m∗i = β and ui otherwise.

It also chooses random v1, . . . , vs ∈ Zp and sets

Bi,β =

{
gcs+i , if m∗s+i = β
gvi , if m∗s+i 6= β

for i ∈ [s], β ∈ {0, 1}. This corresponds to setting
bi,β = cs+i if m∗s+i = β and vi otherwise. We observe
these are distributed identically to the real scheme.
In addition, it will internally view α = ck.

Key Generation Oracle: The adversary A will query

for a secret key for a left predicate p
(L)
x or a right

predicate p
(R)
y .

If p
(L)
x (m∗) = 1 or p

(R)
y (m∗) = 1, then B aborts the

game.

Otherwise, p
(L)
x (m∗) = p

(R)
y (m∗) = 0, then B will be

able to create signing keys for the adversary, because
his query will differ from the challenge message at
least one bit. More specifically, for the left predi-

cate p
(L)
x , we let xj 6= m∗j , j ∈ [s], then B produces

the delegation key as sk
p
(L)
x

= e(gck , g
∏
i6=j∈[s] ai,xi

s−1 )uj ;

for the right predicate p
(R)
y , we let yj 6= m∗s+j , j ∈

[s], then B produces the signing key as sk
p
(R)
y

=

e(gck , g
∏
i6=j∈[s] bi,yi

s−1 )vj .

Signing Oracle: The adversary A will query for a signa-
ture for a message m 6= m∗, and we let mj 6= m∗j , j ∈
[k − 1]. Conceptually, B will be able to create signa-
ture for the adversary, because his query will differ
from the challenge message in at least one bit. More
specifically, B proceeds to make the signature accord-
ing to the following two cases.

Case 1: If j ∈ [s], B produces the signature as:

σ = e(gck , g
∏
i6=j∈[s] ai,mi ·

∏
i∈[s] bi,ms+i

k−2 )uj .

Case 2: If j ∈ {s + 1, . . . , k − 1}, B produces the
signature as:

σ = e(gck , g
∏
i∈[s] ai,mi ·

∏
i6=j∈[s] bi,ms+i

k−2 )vj .

Forgery: Eventually, A outputs a signature σ∗ on mes-
sage m∗. Then B outputs σ∗ as the solution of the
given instance of the k-MCDH assumption.

According to the public parameters built in the setup
phase and the assumption that σ∗ is valid, we know that

σ∗ = g
∏
i∈[k] ci

k−1 , implies that σ∗ is a solution for the given
instance of the k-MCDH problem, and thus B breaks the
k-MCDH assumption. It is clear that the view of A sim-
ulated by B in the above game is distributed statistically
exponentially closely to that in the real unforgeability
game, hence B succeeds whenever A does. �

Perfect Privacy: Given a valid signature (m∗, σ∗), we
show that any signing key skp such that p(m∗) = 1
could possibly have created it. The proof is straight-
forward.

According to the setup of the signing algorithm, for
any tuple (p0, p1,m

∗) such that p0(m∗) = p1(m∗) = 1,
which was chosen by any adversary A, both of the sig-
natures created by the signing key skp0 and skp1 are

(g

∏
i∈[s] ai,m∗i

·
∏
i∈[s] bi,m∗s+i

k−1 )α. Therefore, any signing key
skp such that p(m∗) = 1 can compute a same signature
on a given message m∗. The perfect privacy follows easily
from this observation. �



International Journal of Network Security, Vol.19, No.5, PP.811-822, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).19) 819

5.3 PBS for Circuit Predicates

We now construct a policy-based signature scheme for
boolean circuit predicates. Our circuit notion is from [5],
please refer to [5] for details.

Setup(1λ, k = `+ n+ 1): The setup algorithm takes as
input a security parameter λ, the maximum depth `
of a circuit and the length of the message n (it also
is the number of boolean inputs).

The algorithm then runs G(1λ, k = n + ` + 1) that

produces groups
−→
G = (G1, . . . ,Gk) of prime or-

der p, with canonical generators g1, . . . , gk, where
we let g = g1. Next it chooses random α ∈ Zp
and (a1,0, a1,1), . . . , (an,0, an,1) ∈ Z2

p and computes
Ai,β = gai,β for i ∈ [n], β ∈ {0, 1}.
The master secret key is msk = α. The public
parameters, pk, consist of the group sequence de-
scription plus group elements gα`+1, {Ai,β |i ∈ [n], β ∈
{0, 1}} and message space M = {0, 1}n, signature
space S = Gk−1, and predicate space P = C that is
the set of polynomial size circuit predicates.

KeyGen(sk, p = (n, q,A,B, GateType)): The key gener-
ation algorithm takes as input the master secret key
msk and a description p of a circuit. The circuit
has n + q wires with n input wires, q gates and the
(n+ q)-th wire designated as the output wire.

The key generation algorithm chooses random inte-
gers r1, . . . , rn+q−1 ∈ Zp, where we think of the ran-
dom value rw as being associated with wire w. It sets
rn+q = α.

Next, the algorithm generates key components for ev-
ery wire w. The structure of the key components depends
upon whether w is an input wire, an OR gate, or an AND
gate. We describe how it generates components for each
case.

• Input wire.
By our convention if w ∈ [n] then it corresponds to
the w-th input. The key component is:

Kw = g
rwaw,1
2 .

• OR gate.
Suppose that wire w ∈ Gates and that
GateType(w) = OR. In addition, let j = depth(w)
be the depth of the wire. The algorithm will choose
random aw, bw ∈ Zp. Then the algorithm creates
key components as:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 =

g
rw−aw·rA(w)

j ,Kw,4 = g
rw−bw·rB(w)

j .

• AND gate.
Suppose that wire w ∈ Gates and that
GateType(w) = AND. In addition, let j = depth(w)
be the depth of wire w. The algorithm chooses

random aw, bw ∈ Zp and creates the key components
as:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .

The signing key skp consists of the description of p
along with these n+ q key components.

Sign(skp,m ∈ {0, 1}n): The signing algorithm takes as
input a signing key skp for a circuit predicate p =
(n, q,A,B, GateType) and a message m = m1 . . .mn.
The algorithm first checks that p(m) = 1; if not it
aborts.

The goal of the algorithm is to compute the signature

σ = g
α·

∏
i∈[n] ai,mi

n+` ∈ Gn+`. We will compute the
circuit from the bottom up.

• Input wire.
By our convention if w ∈ [n] then it corre-
sponds to the w-th input. Suppose that mw =
pw(m) = 1. The algorithm computes Ew =

g
rw·

∏
i6=w ai,mi

n+1 . Using the multilinear operation
from Ai,mi for i ∈ [n] 6= w. It then computes:

Ew = e(Kw, g
∏
i6=w ai,mi

n−1 ) =

e(g
rwaw,1
2 , g

∏
i6=w ai,mi

n−1 ) = g
rw

∏
i∈[n] ai,mi

n+1 .

• OR gate.
Consider a wire w ∈ Gates and that
GateType(w) = OR. In addition, let j =
depth(w) be the depth of the wire. For expo-

sition we define D(m) = g
∏
i∈[n] ai,mi

n . This is
computable via the multilinear operation from
Ai,mi for i ∈ [n]. The computation is performed
if pw(m) = 1. If pA(w)(m) = 1 (i.e., the first in-
put evaluated to 1) then it computes:

Ew = e(EA(w),Kw,1) · e(Kw,3, D(m))

= e(g
rA(w)

∏
i∈[n] ai,mi

j+n−1 , gaw)

·e(grw−aw·rA(w)

j , g
∏
i∈[n] ai,mi

n )

= g
rw·

∏
i∈[n] ai,mi

j+n .

Otherwise, if pA(w)(m) = 0 but pB(w)(m) = 1,
then it computes:

Ew = e(EB(w),Kw,2) · e(Kw,4, D(m))

= e(g
rB(w)

∏
i∈[n] ai,mi

j+n−1 , gbw)

·e(grw−bw·rB(w)

j , g
∏
i∈[n] ai,mi

n )

= g
rw·

∏
i∈[n] ai,mi

j+n .

• AND gate.
Consider a wire w ∈ Gates and that
GateType(w) = AND. In addition, let j =
depth(w) be the depth of the wire. The
computation is performed if pw(m) = 1 (i.e.,
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pA(w)(m) = pB(w)(m) = 1) then it computes:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2)
·e(Kw,3, D(m))

= e(g
rA(w)

∏
i ai,mi

j+n−1 , gaw) · e(grB(w)

∏
i ai,mi

j+n−1 , gbw)

·e(grw−aw·rA(w)−bw·rB(w)

j , g
∏
i ai,mi

n )

= g
rw·

∏
i ai,mi

j+n .

The above procedures are evaluated in order for all
w for which pw(m) = 1. The final output of these
procedures gives a signature:

σ = g
rn+q

∏
i∈[n] ai,mi

n+` = g
α·

∏
i∈[n] ai,mi

n+` ∈ Gn+`.

Verify(pk,m ∈ {0, 1}n, σ ∈ Gk−1): Given a purported
signature σ on a message m, verify the following
equation:

e(σ, g) = e(gα`+1, A1,m1
, . . . , An,mn).

Output 1 if it holds, else 0.

Correctness. The verification of the signature is justi-
fied by the following two equations:

e(σ, g) = e(g
α·

∏
i∈[n] ai,mi

n+` , g)

= g
α·

∏
i∈[n] ai,mi

n+`+1 .

and

e(gα`+1, A1,m1
, . . . , An,mn) = g

α·
∏
i∈[n] ai,mi

n+`+1 .

Theorem 6. If the k = (n+ `+ 1)-MCDH assumption is
hold in the multilinear groups, then the above PBS con-
struction for arbitrary circuits of depth ` and input length
n, and messages of length n is selectively unforgeable and
perfectly private.

Selective Unforgeability. For length of messages n
and a circuit of max depth ` and input length n, we
prove security under the k = (n+ `+ 1)-Multilinear
Computational Diffie-Hellman assumption.

We show that if there exists a PPT adversary A on
our PBS scheme for messages of length s and circuits of
depth ` and inputs of length n in the selective security
game then we can construct an efficient algorithm B on
the (n + ` + 1)-MCDH assumption. We describe how B
interacts with A.

The algorithm B first receives a k = (n+ `+1)-MCDH

challenge consisting of the group sequence description
−→
G

and g = g1, g
c1 , . . . , gck . It also receives challenge at-

tribute message m∗ ∈ {0, 1}n from the adversary A.

Setup: Initially, B chooses random u1, . . . , un ∈ Zp and
sets

Ai,β =

{
gci , if m∗i = β
gui , if m∗i 6= β

for i ∈ [n], β ∈ {0, 1}. This corresponds to setting
ai,β = ci if m∗i = β and ui otherwise. In addition, it
will internally view α = cn+1 · cn+2 · · · cn+`+1.

Key Generation Oracle: The adversary A
will query for a signing key for a circuit
p = (n, q,A,B, GateType), where p(m∗) = 0.
B proceeds to make the key. The idea for this oracle
is same as in [5]. We will think have some invariant
properties for each gate. Consider a gate w at depth
j and the simulators viewpoint (symbolically) of rw.
If pw(x∗) = 0, then the simulator will view rw as
the term cn+1 · cn+2 · · · cn+j+1 plus some additional
known randomization terms. If pw(x∗) = 1, then the
simulator will view rw as the 0 plus some additional
known randomization terms. If we can keep this
property intact for simulating the keys up the circuit,
the simulator will view rn+q as cn+1 · cn+2 · · · cn+`.
We describe how to create the key components for
each wire w. Again, we organize key component cre-
ation into input wires, OR gates, and AND gates.

• Input wire.
Suppose w ∈ [n] and is therefore by convention
an input wire.

∗ If (m∗)w = 1 then we choose random rw ←
Zp (as is done honestly). The key compo-
nent is:

Kw = g
rwaw,1
2 .

∗ If (m∗)w = 0 then we let rw = cn+1cn+2 +
ηw where ηw ∈ Zp is a randomly chosen
value. The key component is:

Kw = (e(gcn+1 , gcn+2) · gηw2 )uw = g
rwaw,1
2 .

• OR gate.
Suppose that wire w ∈ Gates and that
GateType(w) = OR. In addition, let j =
depth(w) be the depth of the wire.

∗ If pw(x∗) = 1, then algorithm will choose
random aw, bw, rw ∈ Zp. Then the algo-
rithm creates key components as:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 =

g
rw−aw·rA(w)

j ,Kw,4 = g
rw−bw·rB(w)

j .

∗ If pw(x∗) = 0, then we set aw = cn+j+1 +
ψw, bw = cn+j+1 + φw, and rw = cn+1 ·
cn+2 · · · cn+j+1 + ηw, where ψw, φw, ηw are
chosen randomly. Then the algorithm cre-
ates key components as:

Kw,1 = gcn+j+1+ψw ,Kw,2 = gcn+j+1+φw ,
Kw,3 =

g
ηw−cc+j+1ηA(w)−ψw(cn+1···cn+j+ηA(w))

j ,
Kw,4 =

g
ηw−cc+j+1ηB(w)−ψw(cn+1···cn+j+ηB(w))

j .

B can create the last two key components
due to a cancellation. Since both the A(w)
and B(w) gates evaluated to 0, we have
rA(w) = cn+1 · · · cn+j + ηA(w) and similarly

for rB(w). Note that g
cn+1···cn+j

j is always
using the multilinear maps.
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• AND gate.
Suppose that wire w ∈ Gates and that
GateType(w) = AND. In addition, let j =
depth(w) be the depth of wire w.

∗ If pw(x∗) = 1, then the algorithm chooses
random aw, bw, rw ∈ Zp and creates the key
components as:

Kw,1 = gaw ,Kw,2 = gbw ,

Kw,3 = g
rw−aw·rA(w)−bw·rB(w)

j .

∗ If pw(x∗) = 0 and pA(w)(x
∗) = 0, then we

let aw = cn+j+1 + ψw, bw = φw, and rw =
cn+1 ·cn+2 · · · cn+j+1+ηw, where ψw, φw, ηw
are chosen randomly. Then the algorithm
creates key components as:

Kw,1 = gcn+j+1+ψw ,Kw,2 = gφw ,
Kw,3 =

g
ηw−ψwcn+1···cn+j−(cn+j+1+ψw)ηA(w)−φwrB(w)

j .

B can create the last key component due to
a cancellation. Since the A(w) gate evalu-
ated to 0, we have rA(w) = cn+1 · · · cn+j +

ηA(w). Note that g
rB(w)

j always computable
regardless of whether pA(w)(x

∗) evaluated

to 0 or 1, since g
cn+1···cn+j

j is always using
the multilinear maps.

The case where pB(w)(x
∗) = 0 and pA(w)(x

∗) =
1 is performed in a symmetric to what is above,
with the roles of aw and bw reversed.

Signing Oracle: The adversary A will query for a sig-
nature for a message m 6= m∗, and we let mj 6= m∗j .

B can produce a valid signature σ = (g
∏
i6=j∈[k] ci

n+` )uj

by knowing the exponent uj .

Forgery: Eventually, A outputs an attribute signature
σ∗ on message m∗. Then B outputs σ∗ as the solu-
tion of the given instance of the k = (n+`+1)-MCDH
assumption. According to the public key built in the
setup phase and the assumption that σ∗ is valid, we

know that σ∗ = g
∏
i∈[k] ci

k−1 , implies that σ∗ is a solu-
tion for the given instance of the k-MCDH problem,
and thus B breaks the k-MCDH assumption.

It is clear that the view of A simulated by B in the
above game is distributed statistically exponentially
closely to that in the real unforgeability game, hence
B succeeds whenever A does. �

Perfect Privacy. Given a valid signature (m∗ ∈
{0, 1}n, σ∗ ∈ Gk−1), we show that any signing key
skp such that p(m∗) = 1 could possibly have created
it. The proof is straight-forward.

According to the setup of the signing algorithm, for
any tuple (p0, p1,m

∗) such that p0(m∗) = p1(m∗) = 1,
which was chosen by an unbounded adversary A, both of
the signatures created by the signing key skp0 and skp1

are g
α·

∏
i∈[n] ai,m∗i

n+` . Therefore, any signing key skp such

that p(m∗) = 1 can compute a same signature on a given
message m∗. The perfect privacy follows easily from this
observation. �

6 Conclusion

In this work, we introduce the notion of policy-based sig-
nature for predicates. In such a signature scheme, signers
can sign messages that conform to some predicate, yet
privacy of the predicate is maintained. Then, we con-
struct a policy-based signature scheme for prefix predi-
cate based on tree-based signature scheme. Furthermore,
we also construct several policy-based signature schemes
for bit-fixing predicate, left/right predicate, and circuits
predicate, respectively, based on multilinear maps.
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