
International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 794

A General Formal Framework of Analyzing
Selective Disclosure Attribute-Based Credential

Systems

Caimei Wang1,2, Yan Xiong1, Wenjuan Cheng3, Wenchao Huang1, Huihua Xia1,
Jianmeng Huang1

(Corresponding author: Wenjuan Cheng)

School of Computer Science, University of Science and Technology of China1

Elec-3 (Diansan) Building, West Campus of USTC, Huang Shan Road, Hefei, Anhui Province, China

Department of Computer Science, Hefei University2

Building 38, No.99, Jinxiu Avenue, Hefei, Anhui Province, China

School of Computer and Information, HeFei University of Technology3

193, Tunxi Road, Hefei, Anhui

(Email: cheng@ah.edu.cn)

(Received Nov. 16, 2016; revised and accepted Feb. 21 & Mar. 11, 2017)

Abstract

A selective disclosure attribute-based credential system
(SDABCS) can provide a communication mechanism to
protect both security and privacy in electronic commu-
nication, by issuing a kind of credential with attributes,
which the user can disclose parts of attributes. We present
a general framework for formally verification of SDABCS
with applied Pi calculus, and provide three definitions
of relevant security properties. The framework can im-
plement secure communication among the user, service
provider and trusted authority. Two important functions
are implemented: the first allows the user to receive a
credential encoded a list of attributes from a trusted au-
thority; the second allows the user to convince a service
provider with the credential. Particularly, the user can
selectively reveal parts of the attributes according to the
needs of service provider, while not revealing the rest of
the attributes. In our experiments, we apply the frame-
work to a concrete security protocol and successfully prove
three security properties in the protocol using ProVerif.

Keywords: Attribute-based Credential; Formalize; Gen-
eral Framework; Selective Disclosure

1 Introduction

A selective disclosure attribute-based credential system
[11, 17, 22] (SDABCS) allows a service provider to identify
a user with a credential, which contains a list of attributes,
from an authority. One of the most important character-
istics in this system is that the user can selectively disclose

parts of the attributes in the credential to different ser-
vice providers according to practical requirements. For
the other undisclosed attributes, the user can generate
cryptographic commitments to encode attributes which
can be verified without revealing the attribute informa-
tion. Authentication is one of the potential applications
of this system. For example, Alice gets a credential Ccre
with several attributes from an authority and generates
two different presentation proofs, P1 and P2, according
to different attributes. Then she can access services pro-
vided by provider S1 under P1, and by S2 under P2, while
no one can find that the two presentation proofs belong
to the same user.

Although a lot of scholars study SDABCS [8, 14], so
far there is no an effective formal verification framework
to verify the correctness of the system and the related
security properties. Actually, organizations and individu-
als are now paying more attention to the design of secure
system. The formal analysis is a state-of-the-art method
used to analyze security protocols and systems. There are
many researches on the formal analysis and verification of
security protocols [2, 4, 19, 23]. Li et al. propose a general
symbolic model for anonymous credential protocols and
make formal definitions of a few critical security proper-
ties [13]. Shao et al. conduct a formal analysis and ver-
ification of the enhanced authorization mechanism under
TPM 2.0 API [20]. In [3], zero knowledge proof is applied
to a simplified Direct Anonymous Attestation protocol,
which enables remote authentication of TPM while pre-
serving the user’s privacy at the same time. They present
security proof and report a novel attack. However, exist-
ing formal work considers neither the feature of selectively

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 795

disclosed attributes nor the credential protected by hard-
ware.

In order to carry out an analysis of SDABCS, we pro-
pose a general framework of formally verifying the SD-
ABCS. In our framework, a user can authenticate herself
to a service provider by disclosing parts of her attributes,
while preserving the privacy of the undisclosed ones. All
attributes are encoded in the credential issued by an au-
thority. In order to increase the security, we consider the
situation that the credential is protected by the security
hardware. The complexity of the system makes the for-
malized process involve many parameters. As a result,
it is challenging to reasonably construct all the functions
and equations with applied Pi calculus [9].

As a case study, we formally verify an innovative
cryptographic protocol named U-Prove protocol [15, 18],
whose SDK has been released by Microsoft and then inte-
grated into a range of its own identity products. We first
give the detailed description of the formal analysis, then
prove the authenticity properties by setting correspon-
dence assertions and prove the untraceability of U-Prove
token by observational equivalence using ProVerif.

To the best of our knowledge, this is the first formal
and automated verification of the SDABCS.

Contributions. The contributions of this paper are
threefold: first, we put forward a general model frame-
work of a SDABCS in applied Pi calculas, and provide
three formal definition of security properties. It is mean-
ingful to reduce the workload of verification of attribute-
based credential system. Second, we apply our framework
to the U-Prove protocol and give the formalized descrip-
tion of it. Finally, we prove that the protocol satisfies the
relevant security properties by Proverif.

Outline of the Paper. In Section 2, applied Pi cal-
culus is reviewed. In Section 3, we propose our general
model framework of the SDABCS and the definitions of
relevant security property. In Section 4, after detailed
analysis of the U-Prove protocol, we apply the framework
to verify the protocol, and successfully prove the three se-
curity properties using Proverif. In Section 5, conclusion
and future work are presented.

2 Review of Applied Pi Calculus

2.1 Syntax and Semantics

The applied Pi calculus [3, 12, 21] is a language for de-
scribing and analyzing security protocols. Now we briefly
review the syntax and operational semantics of the ap-
plied Pi calculus, and define the additional notation used
in our paper. The syntax of the applied Pi calculus is
given in Table 1.

The syntax of the calculus is composed of terms and
processes. Terms are defined by a signature Σ which con-
sists of a finite set of function symbols with arbitrary arity.
Every function symbol means a primitive used by security
protocols, and all symbols are divided into two finite sets
of constructor and destructor symbols. Both two symbols

Table 1: Syntax of the applied Pi calculus
M,N,F, Z ::= Terms
s, k, ..., a, b names
x, y, z vars

f(M1, ...,Mk) function
f ∈ Σ and k is the arity of f

P,Q ::= Processes
0 null process

P | Q parallel composition
vn.P name restriction

!P replication
u(x).P message input
u〈N〉.P message output

if M = N then P else Q conditional

are built from an infinite set of names, and an infinite set
of variables, e.g., encryption function, decryption func-
tion, digital signature function, etc. Usually, constructors
are used to generate terms which model primitives used
by protocols, while destructors are used to handle terms
generated by constructors.

A process is a set of programs, which are connected
via channels. That means two processes can communicate
with each other by such channels. The executing program
is known as the active program. An active program can
execute operation and send messages to another program.
A process or an extended process with a hole is called
context, marked as C[].

In Pi calculus, the grammar of processes is defined as
follows: the null process 0 does nothing; P | Q is the
parallel composition of precess P and Q, used to express
participants of a protocol running in parallel; the process
vn.P is used to produce a fresh name n and then behaves
as P , in which the restricted name n is binded inside P ;
replication process is the infinite compositions P |P | . . . ,
which means there are infinite copies of P running in par-
allel; in u(x).P process, a message x can be received from
the channel u, then the process behaves as P ; on the con-
trary, in u〈N〉.P process, a message N can be sent to the
channel u, and then process behaves as P ; the conditional
process if M = N then P else Q means that when equa-
tion holds process behaves as P , otherwise Q, when Q is
null, we always abbreviate it as if M = N then P .

A protocol P consists of a set of agents and channels,
agents can communicate over the channels. Every agent
runs a set of programs, and a program is an honest pro-
gram only if it follows the protocol.

We equip the terms with an equational theory E, that
is a finite set of equations of the form M = N where
M,N ∈ Σ.

2.2 Security Properties

This section presents two security properties that will be
used in our paper.

Correspondence property is usually used to prove the

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 796

authentication of the participants in many protocols. We
proof it by setting the events in protocol at different
stages, and then verify identity according to the events
occur successively relationship. So we can annotate pro-
cesses with a set of events {e1, e2, . . . en} in a running
protocol.

Definition 1 (Correspondence property). A corre-
spondence property is used to express relationship between
events with the form:

ei < ej where i < j, i, j ∈ {1, 2, . . . , n}

The property means that if an event ei has happened
then event ej must have happened previously. Authenti-
cation can be captured as a correspondence property.

Zero-knowledge proof regarded as an important and
most basic technology will be used in our system. Anyone
can use zero-knowledge proof to communicate with other
and convince the latter the given statement is true, with-
out conveying any more information in addition to the
statement. A formal definition of non-interactive zero-
knowledge has been devised in [3].

Observational equivalence is the property that two or
more underlying entities are indistinguishable on the basis
of their observable implications. We define Observational
Equivalence as the following description.

Definition 2 (Observational Equivalence). If there
are two terms M and N satisfy C[M] and C[N] are both
valid terms with the same value in all contexts C[], then
it is not possible, within the system, to distinguish the two
terms. We call the observation equivalence as the largest
symmetric relation between M and N.

3 General Model Framework of
SDABCS

3.1 Modelling the Roles in Framework

A general model on the verification of a SDABCS allows
a user to receive a credential with a list of attributes from
a trusted party. This credential can be used to convince
a service provider. The core feature of the system en-
ables a user to select disclosable attributes, and generates
the verifiable presentation proof for the undisclosed at-
tributes, then the Verifier finishes the verification work.

There are three types of agents in our model: Issuer,
Prover, and Verifier. The role of Issuer is an authority,
who can generate and issue the credentials with a list
of attributes containing an unforgeable digital signature
by applying its private key Isk. The role of Prover is
a person in possession of a credential encoded a list of
attributes, which can be optionally protected by a secu-
rity hardware. Prover can control which attributes are
revealed, and which attributes are generated presentation
proof according to the needs of different service providers.
The role of Verifier is a person who verifies the Issuer’s
signature in the credential, and the presentation proof of
attributes generated by the Prover.

We set a process for each role in our model, and assume
that the system is executed in a public network, where at-
tackers can listen to, delete, forge and send all messages in
the network, following the so-called Dolev-Yao model [10].

Prover process. When a Verifier relying on authenti-
cation or other identity-related attributes communicates
with a Prover, the Prover must first demand a creden-
tial with attributes signed by an Issuer which is trusted
by the Verifier. Then the Prover provides necessary at-
tributes, and generates a cryptographic presented proof
for the undisclosure attributes. Hence a Prover process
can be defined as in Equation (1).

ProverP
def
= in (c, IP). (P Ini(CI,Csk, Cpk)

| P getsig(CI, Ipk) | P getp(CI,AUp,ACp))
(1)

c models the public channel which is used to transmit
all kinds of messages. IP models an unique identifier
for the Issuer parameters including Issuer’s public key.
CI models an unique identifier of the credential. The
process P Ini(CI,Csk, Cpk) models the Prover’s behavior
of generating the private key Csk and the correspond-
ing public key Cpk for the credential CI. The process
P getsig(CI, Ipk) models the Prover’s behavior of getting
the signature from Issuer IPK using the blind operation to
the credential. The process P getp(CI,AUp,ACp) models
the Prover’s behavior of generating presentation proof for
the credential CI. AUp models the proof of undisclosed
attributes, and ACp models the proof of needing to sub-
mit information commitment attributes. So presentation
proof contained several parts as in Equation (2).

P getp(CI,AUp,ACp)
def
= Pundisp(CI,

AU) . P commitp(CI,AC) . PTPMp
(2)

where Pundisp(CI,AU) models the Prover’s behavior of
generating presentation proof for undisclosed attributes
AU in credential CI, and P commitp(CI,AC) models the
behavior of generating presentation proof. If the token is
protected by TPM 2.0, then PTPMp models the Prover’s
behavior of generating presentation proof for TPM 2.0.

Issuer process. Correspondingly, an Issuer process
consists of initializing issuer parameter modelled by the
process IIni(Ipk, IP), and signing the credential with spe-
cific attributes modelled by the process Isign(IP,CI).
The process IIni(Ipk, IP) models the behavior of generat-
ing issuer parameters by Issuer Ipk, an application-specific
unique identifier for the issuer parameters is denoted as
IP . The process Isign(Ipk, IP, CI) models Issuer Ipk sign-
ing the credential CI under IP . An Issuer process can be
defined as in Equation (3).

IssuerP
def
= IIni(Ipk, IP) | Isign(IP,CI) (3)

Verifier process. Verification of a credential by a
Verifier is made up of four parts. So the verifier needs
to do: firstly, verify the signature of credential CI from

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 797

the Issuer Ipk, which is modelled by V Isig(CI, Ipk). Sec-
ondly, verify the proof of undisclosed attribute, which
is modelled by V undisp(AUp,Cpk). Thirdly, verify the
proof of the committed attributes, which is modelled by
V commitp(ACp,Cpk). Lastly, if token is protected by the
TPM 2.0, verify the proof of the TPM 2.0, which is mod-
elled by V TPMp. An Verifier process can be defined as in
Equation (4).

verifierP
def
= V Isig(CI, Ipk). V undisp(AUp,

Cpk). V commitp(ACp,Cpk). V TPMp
(4)

3.2 Modules

According to the different functions implemented by the
roles, the system needs to complete two modules. One
is denoted as issuance module, the other is denoted as
presentation proof module. A Prover can retrieve a cre-
dential encoded any kinds of attributes from an Issuer in
an issuance module, and generate a presented proof for
undisclosed attributes in the credential to a Verifier in a
presentation proof module.

We model the issuance module process as an un-
bounded number of Prover processes and trusted Issuer
processes running in parallel. The presentation proof
module process is modelled as an unbounded number of
Prover processes and Verifier processes running in paral-
lel.

Definition 3 (Issuance module). An Issuance Process is
made up of four sub-processes, including the initialization
process run by the Prover, the initialization process run by
the Issuer, the process of producing and issuing credential
run by the Issuer, the process of getting and blinding cre-
dential run by the Prover. Due to the process of blind in
this protocol the Issuer never sees his own digital signa-
ture on the credential. The composition of the processes
in applied pi shows as Equation (5).

IP
def
= vñ. (P Ini(CI,Csk, Cpk) | P getsig(CI,

Ipk) | IIni(Ipk, IP) | Isign(IP,CI))
(5)

The restricted name ñ models the secrets shared be-
tween the Provers and the Issuer. The rest of the param-
eters have the same meaning as described elsewhere.

Definition 4 (Presentation Proof module). A Presen-
tation Proof Process is made up of two sub-processes,
including the presentation proof generation run by the
Prover and the presentation proof verification run by the
Verifier. The composition of the processes in applied pi
shows as Equation (6).

showP
def
= in(c, sigt).P

getp(CI,AUp,ACp)

| in(c,< AUp,ACp, TPMp > P verifierP
(6)

The restricted c models the public channel. The rest
of the parameters means the same above.

3.3 Events and Properties

As mentioned in a lot of papers [1, 5], correspondence
assertions can be used to prove many trace-based security
properties among events. Here we summarize a set of
events which can be used later.

- PCreInf(CI,Cresk): where CI is the value of the
credential information field. It is used to encode
Credential-specific information that is always dis-
closed to Verifier, such as a validity period, credential
usage restrictions and so on. Cresk is the private key
of the credential, which is generated in the issuance
protocol and should be kept secret. This event is ex-
ecuted after the Prover to generate the private key
of the credential with the value of CI in the P Ini

process.

- IissueCre(CI, Isk): where CI is the same as above.
Isk is the private key of the Issuer. This event is
executed before the Issuer sends credential with the
value of CI signed by himself.

- PgetCre(Crepk, Ipk): where Crepk is the public key
of a credential corresponding to its private key Cresk.
Ipk is the public key of the Issuer corresponding to
its private key Isk. This event is executed after the
Prover to generates presentation proof for the cre-
dential with Crepk.

- VerifiedCre(Crepk, proof, Ipk): where Crepk,
proof and Ipk are the same as above. proof is one
of the parameters needs to be proved. This event is
executed after successful validation by the Verifier.

According to the definition of Section 2.2, we provide
three definitions of basic security properties which the
general model framework needs to meet.

Definition 5 (Authenticity of the Issuance Protocol).
Given processes as follows.

< Pgetsig(CI, I pk) | Isig(CI, I sk) >

authenticity of the Issuance Protocol is satisfied if the pro-
cess satisfies the following property:

∀(CI, I sk, I pk),∃{PgetCre(CI, I pk)

=⇒ IissueCre(CI, I sk)}

This property shows that when a Prover gets a token
signed by an Issuer with public key I pk, the Issuer has
actually signed with the corresponding private key I sk
and issued that credential.

Definition 6 (Authenticity of the Presentation Proto-
col). Given processes as follows.

P getsig(CI, Ipk) | P verifierP

authenticity of the Presentation Protocol is satisfied if the
process satisfies the following correspondence property.

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 798

∀(CI,Cre pk, Cre sk),
∃{V erifedCrek(Cre pk, proof, I pk) =⇒

PCreInf(CI,Cre sk)PgetCre(Cre pk, I pk)}

This property shows that if there is a Verifier who can
complete the validation of proof signed by the Issuer and
Cre sk, we can say not only an Issuer with public key
I pk has actually signed and issued that credential with
the corresponding private key I sk, but also the Prover
has got that credential.

Definition 7 (Untraceability of Credential). Assume the
same attributes CI encoded into two different credentials
(CI1, CI2) by the Prover, if the issuer cannot identify
two credential from the same user, we call this feature as
untraceability.

This property shows that when a user provides two
credentials issued by an issuer, the issuer cannot judge
whether the two certificates are from the same user.

4 Case Study: U-Prove Protocol

4.1 Detail of the U-Prove Protocol

U-Prove is an innovative cryptographic technology, its
core is a U-Prove token [18] with any type of application-
specific attributes. There are three types of angents in
the protocol: Prover (P), Issuer (I), Verifier (V). Each
U-Prove token can be seen as a credential of a Prover (P).
It can be optionally protected by a trusted hardware such
as security chip TPM 2.0. Its prototype has been first in-
troduced in [7] by Liqun Chen. The trusted hardware in
this paper refers to TPM 2.0. In the rest of the paper,
we use the following notation: Let Gq =< g > be a cyclic
group of prime order q and g be a generator.

There are two sub-protocols in U-Prove protocol: is-
suance protocol and presentation proof protocol. The
former mainly generates and issues a U-Prove token. The
latter mainly produces and verifies a presentation proof
about the undisclosed attributes in the U-Prove token.
The Issuance Protocol.

Assume I and P agree on the application-specific at-
tributes (A1, . . . , An), the value of the token informa-
tion field TI is used to encode token-specific informa-
tion. P wants to get a U-Prove token with attributes
Ai, i ∈ (1, . . . , n) from I, both parties must communicate
with each other under the issuance protocol.

The protocol consists of the following steps:

1) I generates the issuer parameters denoted as IP .

IP = {(g0, g1, . . . , gn, gt), (e0, e1, . . . , en)}

where (g0, g1, . . . , gn, gt) represents I’s public key and
satisfies the equation g0 = gy0 , which y0 is I’s private
key. The rest of gi values must be random generators
of Gq.

2) I and P complete the precomputation respectively:
γ = (g0g

x1
1 . . . gxn

n gxt
t hd), where (x1, . . . , xn) are the

operation results, according to the values in the list of
(e0, e1, . . . , en). The value of ei is 0 or 1. xi=H(Ai)
when ei = 1, otherwise xi=Ai. H is a collision-
resistent hash function. The parameter hd means
that the credential needs to be protected by TPM
2.0 with private key xd and the corresponding public
key hd = gxd

d . The parameter gd is one of the random
generators of Gq.

3) Signature process of I includes two steps: commit
computation and signature computation. The for-
mer contains parameters: σa = gw, σb = γw, w is
a random number. The latter contains parameter:
σz = γy0 and sends (σa, σb, σz) to P .

4) The main job of P consists of two parts: one is
generating a pair of keys for the U-Prove token,
the other is masking the parameters come from I
which prevents I from seeing the value of its sig-
nature. P generates a random α and computes
h: h = (g0g

x1
1 . . . gxn

n gxt
t hd)

α. The value of α−1

is regarded as the U-Prove token’s private key and
the public key is h. After receiving the message
(σa, σb, σz), P produces two blind factors β1 and β2
to mask the three parameters respectively, then gets
(σ′a, σ

′
b, σ
′
z) and σ′c, using the following formula re-

spectively:

σ′a = gβ1

0 gβ2σa,

σ′z = σαz ,

σ′b = = σ′β1
z hβ2σαb

σ′c = H(h, PI, σ′z, σ
′
a, σ
′
b)→ Zq,

σc = σc + β1 mod q

where PI is the Prover information field produced
by P , which is always revealed during presentation
protocol. Then P sends σc to I.

5) After I got the parameter σc , I generates and con-
veys the signature σc with private key y0 to P by the
Schnorr signature scheme: σr = σcy0 + w mod q.

6) After P received the parameter σr, P masks σr with
β2 as follow: σ′r = σr + β2 mod q. Then P verifies
the validity of the signature, as in Equation (7).

σ′aσ
′
b = (gh)σ

′
r (g0σ

′
z)
−σ′

c (7)

P gets a valid U-Prove token denoted as follows if
result is valid.

T = h, TI, PI, σ′z, σ
′
c, σ
′
r

The Presentation Proof Protocol.
After getting an issued U-Prove token (T) with a pair

of keys (α−1, h), where α−1 is secret as private key, h
is disclosed to V without revealing to I in the issuance

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 799

Protocol as public key. When using T , P can selectively
disclose parts of attributes to V , and create a presentation
proof for undisclosed attributes. T can be protected by
the TPM 2.0 or not. The usage of T based on the TPM
2.0 protection will be discussed in this section.
Generate Presentation.
P has the right to determine the following parame-

ters: the indices of disclosed attributes is denoted as
D ⊂ {1, . . . , n}, the indices of undisclosed attributes is
denoted as U ⊂ {1, . . . , n} −D, the indices of committed
attributes is denoted as C ⊂ U . P can not only gener-
ate a pseudonym for T , but also specify the pseudonym
derived from a specific scope s.
P can generate the presentation proof with the TPM

2.0 as follows:

1) P sends s to the TPM 2.0.

2) After receiving s, TPM 2.0 generates w′d at random,

then computes: ad = g
w′

d

d , gs = GenEle(s)), a′p =

g
w′

d
s , P ′s = gxd

s and sends (ad, a
′
p, Ps) to P .

3) P computes each xi, and generates w0, wd, for i ∈ U .
P generates wi at random, for i ∈ C. P generates
õi, w̃i at random. Then computes equations as follow.

a = H(hh0(Πi∈Ug
wi
i)gwd

d ad),

gs = GenEle(s), ap = H(g
wp
s)a′p),

c̃i = gxigõi1), ãi = H(gwigw̃i
1),

cp = H(a,D, xi,i∈D, C, {c̃}i,i∈C , {ã}i,i∈C , ap, Ps,m),

c = H(cp,md), r0 = cα−1 + w0,

ri = −cxi + wi,i∈U

sends (cp,md) to the TPM 2.0.

4) TPM 2.0 computes and sends the response r′d :

c = H(cp,md), r
′
d = −cxd + w′d.

5) P completes the following operation and eventually
gets the presentation proof about T :

PP =< Ai,i∈D, a, (ap, Ps), r0, ri,i∈U , rd, {c̃i, ãi, r̃i}i∈C > .

where: rd = r′d + wd, r̃i = −cõi + w̃i (i ∈ C)

Verify Presentation. Given a presented T , V can check
it without any secret information. V first gets the input
parameters:

xi = cxi(IP,Ai) for each i ∈ D
cp = H(a,D, {xi,i∈D, C, {c̃i,i∈C , {ãi,i∈C , ap, Ps,m)

c = H(cp,md).

Then V computes the following equations:

a = H((g0g
xt
t Πi∈Dg

xi
i)−chr0(Πi∈Ug

ri
i)grdd)

gs = GenEle(s), ap = H(P cs g
rd
s),

ãi = H(c̃cig
rigr̃i1)(i ∈ C).

If the above equations are proved, the authentication
is successful.

4.2 Modelling the U-Prove Protocol

According to the previous framework, we model the U-
Prove Protocol with the applied Pi calculus. This calculus
is an extension of the Pi calculus with function symbols
which satisfy particular equations. We design function
symbols and an equational theory for modelling the U-
Prove protocol. All the parameters of this section have
the same meaning as Subsection 4.2.

According to our model in Section 3, we define three
processes according to different roles:

• Prover process (written as P) with three sub-
processes Pini, Pgetsig, Pgetp.

• Issuer process (written as I) with two sub-processes
Iini and Isig.

• Verifier process (written as V) with one sub-process

verifier, TPM 2.0 process (written as T̃) with one
sub-process TPM 2.0.

We define a public channel c to represent a public net-
work through which all messages are transmitted. How I
and P agree on the contents of the issued U-Prove token,
and how TPM 2.0 provides its public key are outside the
scope of this paper.
Functions. We define the relevant functions in this paper
with respect to the signature

Σ ={c/2, sign/2, Schsign/2, getgt/1, getgU/1,
getgD/1, getgc/1, getAD/1,&getAU/1,

getAC/1, cxt/3, cxi/2, b/2, bc/2, b1/2, b2/2}

, where,

- {c/2} models generating a commitment value.

- {sign/2} models signing messages.

- {Schsign/2} models getting a Schnorr signature.

- {getgt/1, getgU/1, getgD/1, getgc/1} models
derivation functions to derive Issuer’s public key.

- {getAD/1, getAU/1, getAC/1} models derivation
functions to derive all attributes by Prover and Is-
suer.

- {cxt/3, cxi/2} models getting the value of parame-
ters used to compute the γ.

- {b/2, bc/2, b1/2, b2/2} models the blind processes
of commitments in different situations.

Equations. After setting all functions, we specify an
equational theory in terms of a convergent rewriting sys-
tem. This theory is suitable for ProVerif.

1) b2(sign(γ, y0), α) = blindsign(γ, α, y0)

2) bc(c(γ,w), α) = bc2(γ, α,w)

3) bc(c(γ, α), β1, β2) = bc3(γ, α, β1, β2)

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 800

4) bc(bc(γ, α,w), β1, β2) = bc4(γ, α,w, β1, β2)

5) verif(bc3(γ, α, β1, β2), b2(schsign(
b(H(h, bc3(γ, α, β1, β2), σb1, σz1), β1), y0), β2),
pk(g, y0)) = true

The four equations are convergence equations and form
a convergent rewriting system when oriented from left to
right. The last equation can be used to check parameters.
Modelling of the Issuance Protocol.

We denote IP as the unique identifier of I parame-
ters under which a T is issued, all Issuer parameters are
derived from IP using the derivation functions such as
getgt(IP), getgU(IP), getgD(IP), getgC(IP). We denote
TI as the unique identifier of the T , all attributes are de-
rived from TI, including disclosed attributes, undisclosed
attributes and committed attributes, which are modelled
by getAD(TI), getAU(TI), getAC(TI) respectively.

The signature is generated by I under the Schnorr type
of signature scheme [7]. The generation of the signature
by I is divided into two parts: generation of commitment
using a random number, and generation of signature us-
ing the private key. The function symbol c/2 represents
the commitment constructor, and sign/2 represents the
signature constructor.
I interacts with P as the following.

• To initiate a new session, I sends the messages
c〈sign(γ, y0), c(g, w), c(γ,w)〉 with a public parame-
ter sign(γ, y0) and two commitments c(g, w), c(γ,w).

• After receiving {sign(γ, y0), c(g, w), c(γ,w)}, P cal-
culates and sends out parameter σc.

• After receiving {σc}, I begins to generate the
Schnorr signature by the operation of σz =
schsign(σc, y0), then sends out {σz}.

• After receiving {σz}, P begins to verify and blind the
signature, and finally get the blind signature token by
I.

Modelling of the Presentation Protocol.
In this paragraph, we assume that the U-Prove token is

protected by TPM 2.0 and V needs commitments about
some undisclosed attributes. P can only complete the
presentation proof generation under the help of TPM 2.0.
P needs to provide the disclosed attributes, I’s signa-

ture, the token’s public key and all presentation proofs.
Presentation proofs include presentation proof for undis-
closed attributes, presentation proof for committed at-
tributes and presentation proof for information protected
by TPM 2.0, denoted as a, ãi, ap respectively. We use
getAD(TI) to get the disclosed attributes (denoted as
AD) and b(γ, α) to get the token’s public key (denoted
as h) in our codes.

P interacts with T̃ as the following.

• T̃ generates parameters and sends out
{c(gd, wd1), c(gs, wd1), getgs(descG)}.

• P generates the related presentation proofs and sends
out {h, a, ap, ai, r0, rU, ri, rd}.

where h models T ’s public key, a models presentation
proof of the undisclosed attributes, ap models presenta-
tion proof of the protection of the token by TPM 2.0,
ai models presentation proof of the commitments which
is needed by V , r0 models blind signature signed with
token’s private key, rU models blind signature of each
undisclosed attributes, ri models blind signature of each
committed attributes, rd models blind signature signed
with TPM’s private key.

4.3 Security Analysis of the U-Prove Pro-
tocol

4.3.1 Authenticity of the Issuance Protocol

The first property we would like to model is the authen-
ticity of the issuance protocol: if P reaches the end of
the protocol and she believes she has got a U-Prove token
issued by I, then I has really issued the token. To prove
this property we annotate processes with some events,
marking important stages reached by the protocol which
do not have effect on the execution of the processes.

There are a lot of test events in our experiments, here
we list three events, which are denoted as follows.

1) Issuetoken (TI, g, y0). I executes this event before
signing the token with the private key y0 and issuing
a token with identifier TI.

2) Gettoken (TI, σr1, g0). P executes this event after
receiving the token signed by I with the public key
g0.

3) Bisign (σr1). P executes this event after blinding
the token issued by I.

Given processes as follows.

< IIni(IP, y0) | PIni(TI, IP, g0) |Isig(TI,
IP, y0) | Pgetproof(h, α) >

According to the definition 5. We have verified the
authenticity of the issuance protocol by the following two
trace properties with ProVerif.

1) ∀(TI, g, y0),∃{Gettoken(TI, σr1, pk(g, y0))
=⇒ Issuetoken(TI, g, y0)},

2) ∀(TI, σr1, g, y0),∃{Gettoken(TI, σr1, pk(g, y0))
=⇒ Issuetoken(TI, g, y0) ∨Bisign(σr1)}

The first result shows that when P gets a token signed
by I with public key pk(g, y0), then I has actually signed
with the corresponding private key y0 and issued that
token. The second results shows that when P gets a token
signed by I with public key pk(g, y0), not only the I has
actually signed with the corresponding private key y0 and
issued that token, but also P has blinded the token.

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 801

In our experiment, we set up the event Issuetoken
in the process Isig(TI, IP, y0), event Gettoken in the
process PIni(TI, IP, g0), event Bisign in the process
Pgetproof(h, α) respectively. The following results are ob-
tained after running the program.

1) RESULT event(Gettoken(h 162, pk(g 163, y0 164)))
=⇒ event(Issuetoken(TI 161, g 163, y0 164)) is
true.

2) RESULT event(Gettoken(h 162, pk(g 163, y0 164)))
=⇒ event(Bisign(TI 161, h 162)) &&
event(Issuetoken(TI 161, g 163, y0 164))) is true.

4.3.2 Authenticity of the Presentation Protocol

We model the authenticity of the presentation protocol:
if V reaches the end of the protocol with the presented
U-Prove token, then P has really sent out the presented
token signed by I.

As above, we annotate processes with three events and
mark important stages reached by the protocol. Three
events are denoted as follows.

1) Gettokenpk (h, α, gU, xU). P executes this event
after the initialization of parameters, and gets the
U-Prove token public key as token’s identification.

2) Evpproof (h, a). P executes this event before she
sends out the generation proof of the token.

3) Verifok (h, a,multpk2(pk(h, inverse(α)). V exe-
cutes this event after she verifies the validity of the
token’s presentation proof.

Given processes as follows.

Pgetsig(g0, g, gU, gd) | Pgetproof(h, α) | verifier(g, g0)

According to the definition 6. We have verified the
authenticity of the Presentation Protocol with ProVerif
by the following trace property.

∀(h, a, α, gU, xU) :
∃{V erifok(h, a,multpk2(pk(h, inverse(α)),

pk(gU, xU)))) =⇒ Evpproof(h, a)
∨Gettokenpk(h, α, gU, xU)}.

In our experiment, We set up the event Gettokenpk
in the process Pgetsig(g0, g, gU, gd), event Evpproof in
the process Pgetproof(h, α), event V erifOK in the process
verifier(g, g0) respectively. The result shows that once
validation is completed by V , then not only a valid I
has actually signed and issued that token, but also P has
blinded the token issued by I.

The following result is obtained after running the pro-
gram.

RESULT event(V erifOK(h 213, a 214,multpk2(pk(h
213, inverse(alpha 215)), pk(gU 216, xU 217))))

=⇒ (event(Evpproof(h 213, a 214))&&event(Gettokenpk
(h 213, alpha 215, gU 216, xU 217))) is true.

4.3.3 Untraceability of U-Prove Token

In order to protect the identity information about individ-
uals. During the Issuance Protocol, the Issuer uses blind
signature rather than conventional RSA or DSA signa-
ture, and issuance is a three-leg interactive protocol en-
abling the Prover to hide certain token elements from the
Issuer. This makes the Issuer never see its own digital
signature on an issued U-Prove token, and never see the
public key of the U-Prove token.

The blind signature scheme provides a strong privacy
guarantee for the Issuance Protocol by untraceability
property: the Issuer and all Verifiers cannot learn even
a single bit of information beyond what can be inferred
from the disclosed attributes in presented U-Prove tokens,
even if they would collude from the outset.

According to Definition 7. We have verified the un-
traceability of U-Prove token by the observational equiv-
alence between two processes P1, P2, where in Pi the
Prover gets and provides the token Ti. In our design we
define a natural formulation P1 and P2 as follows:

Pi :=

let(TI, gd) = (TI1, gd1) in PIni(TI, gd)|
let(TI, gd) = (TI2, gd1) in PIni(TI, gd)|
in(sc2, (hi, αi));

let(TI, h, α) = (TI1, hi, αi) in Pgetsig(TI, h, α).

We get the following result in our experimental.
RESULT Observational equivalence is true (bad not

derivable).

5 Conclusion and Future Work

In this paper, we provide a general model framework on
the SDABCS, and as a case study, provide the first for-
mal analysis of U-Prove protocol. We give the detailed
definitions about authenticity in each sub-protocols and
untraceability of U-Prove token. Authenticities are ex-
pressed as a correspondence property and untraceability
is proved by observational equivalence. All of the security
properties are suitable for ProVerif [6].

As an innovative cryptographic technology, in addition
to the properties proven in our paper, there are a lot
of contents worth studying in SDABCS, such as revoca-
ble [16], reusable and so on. In particular, the properties
of accountability has attract the attention of experts in
recent years, we think studying the accountability in the
U-Prove protocol is necessary.

Acknowledgments

The research is supported by National Natural Science
Foundation of China under Grant No.61572453, No.6120
-2404, No.61520106007, No.61170233, No.61232018,No.61
-572454,Natural Science in Colleges and Universities in

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 802

Anhui Province under Grant No.KJ2015A257, and An-
hui Provincial Natural Science Foundation under Grant
No.1508085SQF215. We gratefully acknowledge the
anonymous reviewers for our valuable comments.

References

[1] M. Abadi, B. Blanchet, and C. Fournet, “Just fast
keying in the pi calculus,” ACM Transactions on In-
formation and System Security, vol. 10, no. 3, pp. 9,
2007.

[2] R. Amin, “Cryptanalysis and efficient dynamic id
based remote user authentication scheme in multi-
server environment using smart card.,” International
Journal of Network Security, vol. 18, no. 1, pp. 172–
181, 2016.

[3] M. Backes, M. Maffei, and D. Unruh, “Zero-
knowledge in the applied pi-calculus and automated
verification of the direct anonymous attestation pro-
tocol,” in IEEE Symposium on Security and Privacy
(SP’08), pp. 202–215, 2008.

[4] G. Barthe, B. Grégoire, and S. Zanella B., “Formal
certification of code-based cryptographic proofs,”
ACM SIGPLAN Notices, vol. 44, no. 1, pp. 90–101,
2009.

[5] B. Blanchet and A. Chaudhuri, “Automated formal
analysis of a protocol for secure file sharing on un-
trusted storage,” in IEEE Symposium on Security
and Privacy (SP’08), pp. 417–431, 2008.

[6] B. Blanchet, B. Smyth, and V. Cheval, Proverif
1.90: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, 2014.

[7] L. Chen and J. Li, “Flexible and scalable digital
signatures in tpm 2.0,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & Commu-
nications Security, pp. 37–48, 2013.

[8] L. Chen and R. Urian, “Daa-a: Direct anonymous at-
testation with attributes,” in International Confer-
ence on Trust and Trustworthy Computing, pp. 228–
245, 2015.

[9] S. Delaune, M. Ryan, and B. Smyth, “Automatic
verification of privacy properties in the applied pi
calculus,” in IFIP International Conference on Trust
Management, pp. 263–278, 2008.

[10] D. Dolev and A. Yao, “On the security of public key
protocols,” IEEE Transactions on Information The-
ory, vol. 29, no. 2, pp. 198–208, 1983.

[11] R. Gay, I. Kerenidis, and H. Wee, “Communication
complexity of conditional disclosure of secrets and
attribute-based encryption,” in Annual Cryptology
Conference, pp. 485–502, 2015.

[12] J. Goubault-Larrecq, C. Palamidessi, and A. Troina,
“A probabilistic applied pi–calculus,” in Asian Sym-
posium on Programming Languages and Systems,
pp. 175–190, 2007.

[13] X. Li, Y. Zhang, and Y. Deng, “Verifying anony-
mous credential systems in applied pi calculus,” in
Cryptology and Network Security, pp. 209–225, 2009.

[14] W. Lueks, G. Alpár, J. Hoepman, and P. Vullers,
“Fast revocation of attribute-based credentials for
both users and verifiers,” in IFIP International In-
formation Security Conference, pp. 463–478, 2015.

[15] W. Mostowski and P. Vullers, “Efficient u-prove
implementation for anonymous credentials on smart
cards,” in Security and Privacy in Communication
Networks, pp. 243–260, 2012.

[16] L. Nguyen and C. Paquin, “U-prove designated-
verifier accumulator revocation extension,” Tech-
nical Report MSR-TR-2014-85, Microsoft Research,
2014.

[17] T. Okamoto and K. Takashima, “Efficient attribute-
based signatures for non-monotone predicates in the
standard model,” IEEE Transactions on Cloud Com-
puting, vol. 2, no. 4, pp. 409–421, 2014.

[18] C. Paquin, U-prove Technology Overview v1, 2013.
[19] H. Patel, D. Jinwala, M. Highway, M. Bhandu, and

S. Ichchhanath, “Automated analysis of internet key
exchange protocol v2 for denial of service attacks,”
International Journal of Network Security, vol. 17,
no. 1, pp. 66–71, 2015.

[20] J. Shao, Y. Qin, D. Feng, and W. Wang, “Formal
analysis of enhanced authorization in the tpm 2.0,”
in Proceedings of the 10th ACM Symposium on In-
formation, Computer and Communications Security,
pp. 273–284, 2015.

[21] F. Tiezzi and N. Yoshida, “Reversible session-based
pi-calculus,” Journal of Logical and Algebraic Meth-
ods in Programming, vol. 84, no. 5, pp. 684–707,
2015.

[22] P. Vullers and G. Alpár. “Efficient selective disclo-
sure on smart cards using idemix,”. in Policies and
Research in Identity Management, pp. 53–67, 2013.

[23] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute
based data sharing with attribute revocation,” in
Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security,
pp. 261–270, 2010.

Biography

Caimei Wang was born in 1978. She is a lecturer
in Department of Computer Science and Technology,
HeFei University. She also is a Ph.D. candidate of
University of Science and Technology of China. Her
main research interests include computer network,
information security, and mobile computation. (Email:
wangcmo@mail.ustc.edu.cn)

Yan Xiong was born in 1960. He is a professor in
School of Computer Science and Technology, University
of Science and Technology of China. His main research
interests include distributed processing, mobile com-
putation, computer network and information security.
(Email: yxiong@ustc.edu.cn)

Wenjuan Cheng (corresponding author) was born in
1970. She is a professor in School of Computer and

International Journal of Network Security, Vol.19, No.5, PP.794-803, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).17) 803

Information, Hefei University of Technology. Her main
research interests include computer network and infor-
mation security, computer application technology.(Email:
cheng@ah.edu.cn)

Wenchao Huang was born in 1982. He received both
the B.S. and Ph.D. degrees in computer science from
University of Science and Technology of China. He is
associate professor in School of Computer Science and
Technology, University of Science and Technology of
China. His current research interests include mobile
computing, information security, trusted computing and
formal methods. (Email: huangwc@ustc.edu.cn)

Huihua Xia was born in 1994. He received the B.S. de-
gree in computer science from University of Science and
Technology of China. He is currently a PhD student in
School of Computer Science and Technology, University of
Science and Technology of China. His current research in-
terests include data publishing and data privacy. (Email:
download@mail.ustc.edu.cn)

Jianmeng Huang was born in 1991. He received the
B.S. degree in computer science from University of Sci-
ence and Technology of China in 2013. He is currently
working towards the Ph.D. degree at the Department of
Computer Science and Technology, University of Science
and Technology of China. His current research inter-
ests include information security and mobile computing.
(Email: mengh@mail.ustc.edu.cn).

