
International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 761

An Unsupervised Method for Detection of XSS
Attack

Swaswati Goswami1, Nazrul Hoque1, Dhruba K. Bhattacharyya1, Jugal Kalita2

(Corresponding Author: Dhruba K. Bhattacharyya)

Department of Computer Science and Engineering & Tezpur University1

Napaam, Sonitpur, Assam-784028, India

(Email: dkb@tezu.ernet.in)

Department of Computer Science, University of Colorado2

Colorado Springs, O 80933-7150, USA2

(Received Jan. 3, 2016; revised and accepted May 20 & Apr. 9, 2016)

Abstract

Cross-site scripting (XSS) is a code injection attack that
allows an attacker to execute malicious script in another
user’s browser. Once the attacker gains control over the
Website vulnerable to XSS attack, it can perform actions
like cookie-stealing, malware-spreading, session-hijacking
and malicious redirection. Malicious JavaScripts are the
most conventional ways of performing XSS attacks. Al-
though several approaches have been proposed, XSS is
still a live problem since it is very easy to implement, but
difficult to detect. In this paper, we propose an effec-
tive approach for XSS attack detection. Our method fo-
cuses on balancing the load between client and the server.
Our method performs an initial checking in the client side
for vulnerability using divergence measure. If the sus-
picion level exceeds beyond a threshold value, then the
request is discarded. Otherwise, it is forwarded to the
proxy for further processing. In our approach we intro-
duce an attribute clustering method supported by rank
aggregation technique to detect confounded JavaScripts.
The approach is validated using real life data.

Keywords: Attribute Clustering; Divergence; Malicious
Script; Proxy; XSS

1 Introduction

Cross-site Scripting (XSS) is one of the most common ap-
plication layer hacking techniques. It allows an attacker to
embed malicious JavaScript, VBScript, ActiveX, HTML
or Flash into a vulnerable dynamic page to fool the user,
executing the script on his/her machine in order to gather
data [17]. Most common way of stealing cookies or hijack-
ing session is to embed a JavaScript encoded with browser
supported HTML encoding technique. XSS attacks are
categorized into three types [10]: reflected XSS, stored
XSS and Document Object Model or DOM-based XSS

attack.
As the Internet applications are becoming more and

more dynamic, the possibilities of such attacks have be-
come more prominent. The number of vectors which are
used to carry out such attacks are increasing with the in-
crease in interactiveness of an application. Severeness of
XSS attack can easily be predicted as it is ranked in top
positions in recent security related surveys. For example,
XSS is ranked third in the “OWASP Top 10 Application
Security Risks-2013” [32].

Most of the existing intrusion detection systems which
are designed to detect the XSS attack consider that, XSS
attack is substantially caused by the failure of a Web ap-
plication to check the contents for malicious codes before
running it in the user’s browser. The existing approaches
can be categorized into three basic types [27]: dynamic
approach, static approach, and hybrid approach. Static
analysis includes various methods such as taint propa-
gation analysis [20], string analysis [31], software testing
techniques [28], etc. Taint propagation analysis includes
construction of a control flow graph, where each node
contains a label. An Web page is considered vulnera-
ble, if the input node of the control flow graph for a cer-
tain variable has an edge leading to the output node. In
string analysis, the program generated string values con-
tain formal language expressions, such as Context Free
Grammar (CFG) with labels. Minamide’s method [24]
of string tainting, which is an example of string analy-
sis approximates string output of a program with a CFG
. Software based testing techniques such as fault injec-
tion, penetration testing are used to infer the existence
of vulnerabilities. Dynamic analysis includes proxy based
solutions [21], browser enforced embedded policies [19],
etc. In proxy based solutions, requests from the client
side are intercepted in the proxy and based on the rules
of the proxy the required actions are taken. On the other
hand, in browser enforced embedded policies client is pro-
vided with a list of benign scripts by the Web application

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 762

and only these scripts are run. Although the static and
dynamic solutions are effective in various cases, but in
some situations the combination of both the approaches
is much needed. Hence, the hybrid approaches are in-
troduced. Sanar [3] is such a tool which combines static
and dynamic approaches. In static analysis, it models the
data input methods to indicate sanitization process. On
the other hand, the code irresponsible for sanitization is
reconstructed by dynamic analysis approach.

Machine learning based approaches use statically and
dynamically extracted characteristic features from both
malicious and benign samples and build classification
tools [4].

1.1 Motivation

Although several methods have been introduced so far
to mitigate XSS attack, it is still a live problem. The
attack instances are increasing continuously and intrud-
ers are introducing more complex ways for embedding
their scripts to trick users. Motivation behind choosing
JavaScripts is that, now a days most of the web applica-
tions use JavaScripts extensively and the XSS attacks re-
ported so far are in maximum cases found to be executed
using JavaScripts. Moreover, already existing incremen-
tal approaches show a high false alarm rate and are not
scalable [5]. Taking the whole scenario into consideration
we are motivated to introduce a faster, stable and cost
effective detection mechanism which will ensure high de-
tection accuracy. Our aim is to reduce the false alarm
rate and to increase the scalability.

1.2 Contributions

The two major contributions of this work are:

• A load balanced Client-Server based architecture to
support XSS attack detection.

• An attribute clustering technique to support feature-
level unsupervised grouping of attack and normal
scripts over relevant and optimal feature space.

The remainder of this paper is organized as follows. The
background of XSS attacks and a brief discussion on why
we have concentrated mainly on reflected XSS attack is
discussed in Section 2. Section 3 gives an overview of
related works. Section 4 introduces our proposed method
which is followed by experimental results in Section 5.
Finally, we conclude our paper in Section 6.

2 Background and Related Work

In this section, we discuss the basics of XSS attacks, their
categories and characteristics.

2.1 Basics of XSS Attacks

XSS attack mainly occurs due to the improper sanitiza-
tion and validation of the user inputs given in the form of
scripts. Figure 1 depicts a typical scenario of XSS attack.
It shows, how an attacker can easily generate an XSS at-
tack by sending a mail to the user containing a malicious
URL. In the first step, attacker crafts a URL containing
the malicious script and e-mail it to the victim. In Step 2,
user clicks on the link send by the attacker and on clicking
the link, the script is sent to the web server as the user
request as shown in Step 3. In Step 4, the server reflects
back the request to the user and the script is executed in
the user’s browser. Once the script is executed, sensitive
data like session cookies are sent to the attacker in Step 6.
Then attacker gets control over the user’s session and can
access the Web server on behalf of the user. The meth-
ods through which one can execute an XSS attack can be
categorized into the following three types.

2.1.1 Persistent or Stored XSS Attack

Persistent or Stored XSS attack is server database related
and it can affect a numerous number of users visiting the
server which contains the malicious script in its database
injected by the attacker. This type of attack mainly oc-
curs due to the improper validation of the user inputs.
Let us take an example to clarify the statement. A guest-
book, which is a visitors log through which they can post
their query or just leave a comment or give feedback for
some services provided by a Website can be an easy vic-
tim of persistent XSS attack. Suppose a malicious user
crafts a special script for cookie stealing and posted that
as a comment in the guest-book. This malicious link may
be a link to provoke the user for getting free recharge by
posting a link with the tagline “Hey check this link. I
got free Recharge!!!”. If the server is not able to sani-
tize the input properly then this comment is saved to the
server database. Now the visitors visiting that particular
Webpage will execute that javascript in their browser un-
knowingly. The attacker will thus get the cookies of the
user’s browser and thus will get the control over the user’s
session.

2.1.2 Non-Persistent or Reflected XSS Attack

Recently, non-persistent or reflected XSS attacks have
been found as a common type of XSS attack. Here, vic-
tim’s request itself contains the malicious string. The
server then responds with an HTML page that contains
the script and thus the script is executed in the user’s
browser. Let us consider the following scenarios.

Scenario 1: Email is one of the most common ways of
tricking a user to click on a malicious script. The
attacker can send a link to the user via an email
crafting a link which contains the malicious link. As
and when the link is clicked by the user, the script
which is hidden either in the link itself or in a script

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 763

Attacker

Victim

Web

Server
E-Mail

1. Attacker sends a
link containing a
malicious script. Eg.,
http://www.serversi
te.com/search?q=<s
cript>...</script>

2. User clicks on the link

6. Attacker gets control over the server

5. Attacker gets sensitive

info like session cookies

of the victim

3. Victim requests the website containing

the malicious script

4. Malicious script is reflected back and is

executed in the victim’s browser

Figure 1: An overview of XSS attack

which the attacker refers to is executed and users
credentials such as session cookies. are sent to the
attacker. The attacker can easily get access to the
site which the legitimate user is surfing. Figure 2(a)
shows the scenario of this attack.

Scenario 2: We can consider yet another scenario of XSS
attack. Here, the attacker acts as an intermediary
agent. The attacker can be the host of a legitimate
Website. When the user visits the attacker’s Website,
then the attacker prompts with a specially crafted
link. When the user clicks on the link, it redirects
the user to another Website to which the user have
access to. This reflected message can contain a script,
which is then executed in the user’s browser and the
attacker can get the browser info this way. The link
may contain a page which actually doesn’t exist on
the requested server. Then the server sends back a
message to the user saying that page not found.
This scenario is depicted in Figure 2(b).

2.1.3 DOM-based XSS Attack

DOM-based XSS attack is the type of XSS attack that oc-
curs in the Document Object Model (DOM) of an HTML
page in lieu of the part of an HTML page. Here, since
the changes occur to the DOM environment, so the HTTP
response code runs in a different manner. DOM XSS at-
tack can be carried out with a numerous DOM objects as
mentioned below.

• User name or password part of a location or URL:

Here the payload is received by the server in the au-
thentication header.

• Portion where the query part is located in the URL:
Here the payload is received by the server as URL
part of HTTP request.

• Fragment part of an URL: This part basically con-
tains the portion of the URL separated by ’#’ sym-
bol from the rest of the URL. Here payload is not
received by the server.

• HTML DOM referrer object: The referrer object
is the document.referrer, which represents currently
loaded document’s URL. Here the payload is received
by the server at the referrer header.

A report by Trustwave’s Spiderlabs says that the num-
ber of applications that are vulnerable to XSS attack are
82% of the total Web applications (2013)1. Again, ac-
cording to WhiteHat Security XSS stood first in the most
common vulnerability category (2014)2. XSS also tops
the list of most frequently occurring vulnerability in the
survey carried out by Cenzic (2014)3. CWE by MITRE [8]
also warns by saying that XSS is one of the most preva-
lent, obstinate and dangerous vulnerability in Web appli-
cation. Among the XSS vulnerabilities, the most frequent
one is the reflected XSS attack.

1https://www.trustwave.com/Resources/Library/Documents/2013-
Trustwave-Global-Security-Report/

2http://info.whitehatsec.com/rs/whitehatsecurity/images/statsreport2014-
20140410.pdf

3http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-
Vulnerability-Trends-Report-2013.pdf

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 764

Attacker Victim Web Server

1. Login Request

2. Credentials verified

3. Set cookies

4. Sends link to the victim

5. Clicks on the link

6. Run script on victim’s
browser

7. Send cookies to the attacker

8. Attacker gets access to the server

9. Attacker acts on behalf of the victim

(a)
(a) Reflected XSS attack generated through E-mail

(b) Reflected XSS attack generated through the links on
malicious user’s server

Figure 2: Different scenarios to generate reflected XSS
attacks

In this work, we consider the attack instances of re-
flected XSS attacks. Reflected or Non-persistent XSS at-
tack is the most common attack among all the three XSS
attacks. It is easy to create and also can be launched
easily to gather sensitive informations. So, attackers gen-
erally tend to carry out such attacks frequently. Since the
Web service users are the common people who may not
have an insight knowledge of the underlying architecture.
So it becomes easy for the attackers to trick such individ-
uals by creating a specially crafted URL and making the
user to click on that. Moreover, since here the attacker
crafted script is reflected back to the user’s browser, so
one need not to store the script in the server and to wait
for user to check that Website for executing the attack.

2.2 Related Work

Javascript has become an unavoidable part of most Web
applications due to the necessity of increased interactivity
between the user and the Web applications. So the idea
of detection of malicious JavaScript is not new. A brief
summary of the work done so far, that are thoroughly

studied to understand the present scenario in this field,
are mentioned in Table 1.

In [22], Likarish et al. propose a classification based
approach for detecting obfuscated malicious JavaScript
detection. They propose features that can identify ob-
fuscation, since obfuscation is a well known method of
bypassing security filters. Based on the recommendation
of various clssifiers, the designed malicious JavaScript de-
tector either passes or discards the request.

In [21], Kirda et al. propose a tool Noxes. This is a
client side solution to mitigate XSS-attack. It uses both
manual and auto generated rules to mitigate XSS-attacks.
Since we are focusing on designing a solution which bal-
ances the loads among server and the client, so it is very
important for us to study the existing client based and
server based approaches. Noxes identifies all the links ei-
ther as statically embedded or dynamic links. Dynamic
links are considered vulnerable to XSS attack, since at-
tacker can embed their code in a dynamic link.

In [33], Wurzinger et al. propose a tool Secure Web
Application Proxy(SWAP), which is a server-side solution
for mitigating XSS attack. SWAP consists of a reverse
proxy. It interprets the HTML responses and the modified
web browser detects the script contents.

In [23], Di Lucca el al. propose an approach, which
is a combination of both static and dynamic approach.
Static analysis is used to determine whether a server page
is vulnerable to XSS attack. Dynamic approach verifies
whether the determined vulnerable web application by
static approach is actually vulnerable or not. This ap-
proach uses a control flow graph (CFG) to determine the
vulnerability in a Web application.

In [28], Salas et al. propose an approach which uses se-
curity testing methods like penetration testing and fault
injection for detection of XSS attack. Depending upon the
results of penetration testing by a user utility referred to
as soapUI and interpretation of HTTP status codes in the
header of SOAP message, they develop 8 rules. On the ba-
sis of which they determine the existence of vulnerability
in Web services. Fault injection phase is carried out with
WSInject, which is placed as proxy between client and
server and intercept the messages sent by soapUI before
passing it to the server. Faults are injected during this
phase. By intercepting the HTTP messages sent by the
SOAP request message, they use the previously defined
vulnerability analysis rules to determine the injection.

In [2], Athanasopoulos et al. present a tool called
xHunter, which checks the JavaScript parse tree depth.
If the depth is beyond some threshold value, it considers
the URL as suspicious.

In [1], Adi et al. propose a design for a proxy named
Wines that monitors the browser requests sent to a server.
Depending upon the patterns of malicious strings kept
in different cells of Wines(TH1, TH2), the requests are
categorized as either harmful or harmless. Harmless
strings are forwarded to the server and harmful strings
are blocked. All the terms used by the method are bio-
logical term since the work is inspired by Human Immune

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 765

Table 1: Comparison among existing methods

Referred Work Year Description Dataset(R/S)
Likarish el al. [22] 2009 This technique propose a method

to suppress potentially malicious
JavaScripts based on the recommenda-
tion of classifiers.

S

Kirda el al. [21] 2006 This is a rule based client side solution
to mitigate XSS attack.

R

Wurzinger el al. [33] 2009 This server side solution intercepts all
HTML responses, and uses a modified
Web browser which is utilized to detect
script content.

R

Di Lucca el al. [23] 2004 This approach is a combination of static
and dynamic approach for detecting
XSS attack.

R

Salas et al. [28] 2014 This method is to analyze the robust-
ness of web services by fault injection
with WSInject.

R

Athanasopoulos et al. [2] 2010 Proposes a method called xHunter to
detect XSS exploits from web trace.

R

Shar et al. [29] 2013 Hybrid model for XSS and SQL injec-
tion attack detection

S

Adi et al. [1] 2012 Proposes a method called Wines to de-
tect mutated attack strings.

R

Gupta et al. [11] 2015 Proposed a method to prevent XSS at-
tacks using Apache Tomcat and Web
Goat

S

Chun et al. [9] 2016 XSS Attack Detection Method based on
Skip List

S

R=Real life, S=Synthetic

System.
Gupta et al. [12] proposed a method called XSS-SAFE

for XSS attack detection and prevention based on auto-
mated feature injection statements and placement of san-
itizers in the injected code of JavaScrip. The main ad-
vantage of this method is that it can detect XSS attacks
without any modification to client- and server-side com-
modities.

Our approach is a Client-Server based approach, which
focuses on balancing the load between client and the
server. The detection mechanism in the proxy includes
an ensemble based feature selection approach followed by
an attribute clustering method to distinguish the mali-
cious traffic from the benign traffic.

3 Proposed Method

The following definitions and theorem provide the theo-
retical basis of our work. The symbols/notations used to
describe our work are reported in Table 2.

Definition 1. Attribute Rank: The rank of an at-
tribute Dai

is defined as the relevance of the attribute ai
for a given class (attack or normal) in a dataset D.

Definition 2. Attribute Cluster: An attribute cluster
Ci

k of an attribute Dai
is defined as a subset of objects

of a given dataset D (i.e., Ci
k ⊆ Dai

) which has high
intra-cluster similarity over the attribute Dai

.

Definition 3. Cluster: A cluster CA is a subset of ob-
jects of a given dataset D (i.e., CA ⊆ D) which is obtained
by considering the common objects Ci

A over a selected sub-
set of relevant attributes S. In other words,

CA = C1
A ∩ C2

A ∩ ...CS
A, S ≤ n

Theorem 1. If SD attrib clus() assigns an in-
stance/object Oj to attack group CA, it cannot be
in the normal group of a relevant attribute clus-
ter, w.r.t predefined attribute rank or relevance, i.e.,
Oj /∈ Ci

N ,∀i = 1, ..., S.

Proof: It can be proved by contradiction.
Let an object Oj ∈ CA as given by SD attrib clus()
and also let Oj ∈ Ci

N , i.e., a normal group for a given
relevant attribute.
Now, as per definition, the attack group, i.e., CA given by
SD attrib clus() is the intersection of all those attribute
clusters Ci

A which,

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 766

• have high relevance for attack class over selected sub-
set of relevant features and

• have high compactness.

So if Oj ∈ Ci
N , none of the above two conditions are

fulfilled. Hence the proof. �

Table 2: Symbol Table

Symbols Used Their meaning
D Dataset.

Dai
ith Attribute of dataset D (i = 1, 2, ...
, n).

Ci
k Attribute cluster of ith attribute

(k=1,2).
CP i

k Compactness value for cluster Ci
k

S Subset of attributes.
Oi

j jth object of ith attribute (j=1,2,...,m).

n Total number of attributes
m Total number of objects
Ci

A Attack cluster for ith attribute.
Ci

N Normal cluster for ith attribute.
CA Final attack cluster

3.1 Proposed Framework

The proposed framework for the detection of XSS attack
is shown in Figure 3. We have proposed a proxy based
approach, where it is attempted to balance the load in
both the client and the server. A majority of the detec-
tion task is carried out in the proxy. An initial check for
vulnerability is done in the client side.

A. Client-based Processing: An initial checking for
the vulnerability is carried out at the client machine.
Though one of our objects is to balance the work
load between the client and the server, considering
the possible low computational ability of a client,
we maintain minimum overhead in the client ma-
chine. We assign three tasks to the client, i.e., prepro-
cessing, feature extraction of the captured data and
α−divergence test. The client machine also main-
tains the profiles of attack and normal instances pro-
vided by the detection module in the proxy for refer-
ence. When the client sends a request to the server,
it is handled by the client for preprocessing, feature
extraction and α−divergence test with reference to
the attack/normal profile. If the value exceeds a pre-
defined threshold value then the request is not fur-
ther processed. It is dropped in the client side only.
Otherwise, the request is forwarded to the proxy for
further processing.

B. Proxy-level Processing: The majority of the de-
tection tasks are carried out in the proxy server to

keep the load in the main server minimum. This
includes a step-by-step method to detect the attack
using an unsupervised approach. The method fol-
lows four steps in sequence, viz., (a) data gathering,
(b) preprocessing and feature extraction, (c) feature
selection using an ensemble approach and (d) attack
detection using attribute clustering over an optimal
subset of relevant features. The steps are discussed
in detail next.

B.1 Data Gathering: A major brainstorming
task of this proxy level processing is to find
the Websites for gathering the attack scripts.
Since most of the Websites remove the scripts as
they are no longer in use once detected, so find-
ing such scripts are difficult. We have collected
most of the attack scripts from [6]. Similarly,
we gather the normal scripts using a testbed in
our institution.

B.2 Preprocessing and Feature Extraction:
This step involves finding out a number of
features to describe the gathered data. We
have found a total of 15 features relevant
to our problem as also can be found in [22].
After extracting the features a 16 dimensional
dataset (including the class label) is prepared.
But since all the features in the dataset are not
equally weighted and the ranges vary by a large
margin, we have normalized the dataset using
min-max normalization method.

B.3 Feature Selection Using Rank Aggrega-
tion: At this step, the features which are least
relevant are excluded and only a subset of op-
timal relevant features is taken. Rank aggre-
gation algorithm available in R package selects
an optimal subset of attributes (say S) from
total number of attributes n. Rank aggrega-
tion framework consists of a number of steps
as shown in Figure 4. The prerequisite for the
algorithm is a dataset with class labels which
is given to different ranking based feature se-
lection algorithms such as infogain [26], correla-
tion based feature selection [14], gain Ratio [25],
symmetric uncertainty [13], chi-square [18], mu-
tual information [16] and reliefF [30]. The rank-
ings given by these algorithm are input to a rank
aggregation algorithm for the final subset of rel-
evant features generation as shown in the Fig-
ure 5.

B.4 Attribute Clustering: Our proposed at-
tribute clustering clusters the instances using
the algorithm shown in Algorithm 1. At-
tribute clustering algorithm is based on the
kmeans [15] clustering algorithm. Here each fea-
ture is clustered individually applying kmeans.
The kmeans algorithm refers the parameters,

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 767

 Test Instance Response (Attack/

 Normal)

Test Instance

 Normal/Suspicious Normal

 CSP : Class Specific Profiles
 Using optimal feature
 Subsets

Attack

Internet

Gathering normal
And attack script

Preprocessing

Feature

Extraction

Ensemble

Classifier

Proxy
Server

CSPs

Preprocess

Feature Extraction

CSPs

Feature Dataset

 Labelling

Attribute Clustering Labelled

Dataset
Ensemble
Feature
Selection

Profile Generation

Conflict resolving and

update database

Feature Selection and

Divergence Test

C L I E N T M O D U L E

Figure 3: Proposed framework for XSS attack detection

viz., indexMatrix and sumd (as shown in Al-
gorithm 1). The indexMatrix holds the cluster
ids for the objects of an attribute. After that,
cluster intersection is performed on the basis
of the cluster compactness i.e., the more com-
pact cluster of each attribute is considered. The
attributes are taken on the basis of their rank
given by the rank aggregation algorithm. After
clustering, the groups are labeled using super-
vised approach w.r.t the already built profiles.

3.2 Algorithm for Attribute Clustering

The steps of the proposed attribute clustering algorithm
is given in Algorithm 1.

3.3 Complexity Analysis

The complexity of the SD attrib clus() algorithm is pri-
marily dominated by the kmeans clustering algorithm.
All other operations are simple merging and intersection
operations. So they are of O(n ×m). Where (n ×m) is
the dimension of the original dataset. As we know, the
complexity of kmeans algorithm is O(n ×m(dk+1)logm).
Where m × n is the dimension of the dataset , d= di-
mension of the dataset given as input to the kmeans al-
gorithm, and k=number of clusters. For our algorithm
k=2 and d=1. Hence the complexity of our algorithm is
O(n×m3logm).

4 Experimental Results

The experiments were carried out in both Windows 7 and
Linux environment. The machine used was a 64-bit ma-
chine with 2 GB RAM. Matlab 2010 was used to perform-
ing attribute clustering. WEKA 3.7.11 was used to run
the individual ranking algorithm on the labeled dataset.
R package was used to run the rank aggregation algo-
rithm over the rank lists given by the individual rankers.
All the experiments carried out can be subdivided into
the following sections.

4.1 Dataset Preparation

Dataset preparation involves several steps as described
below.

4.1.1 Data Gathering

The first step of dataset generation is the collection of
data from the Internet. Since the malicious scripts are im-
mediately removed after detection from the Web applica-
tions, so it is very hard to collect live scripts. We have col-
lected attack scripts from [6] and the benign JavaScripts
from various Websites, which are using rich JavaScript
contents. Figure 6 and Figure 7 are the example of col-
lected attack and normal script respectively.

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 768

 Preprocessed Classified Data

 Optimal Feature Subset

FSA : Feature Selection Algorithm
FR : Feature Rankings
OFSG : Optimal Feature Subset Generation

FSA1 FSA2 FSAn

FR1 FR2 FRn

Rank Aggregation

OFSG

Figure 4: Optimal feature selection framework

4.1.2 Feature Extraction

After gathering the data, the second major phase is to
extract the features that are relevant to our problem.
After performing a thorough study of existing works [22]
and the gathered data we finally picked up fifteen features
as described in Table 3.

4.1.3 Modules

After extraction of the fifteen features a total of seven-
teen dimensional dataset (including the Sl. no. and class
label) is prepared. However, while attribute clustering
is performed only the first 15 features are considered as
shown in Figure 8. The values of the instances for the 16th

feature in most cases are found to be zero. The dataset
consists of 71 instances as of now and is flexible. That
is, at any point of time if we find a new attack script or
normal script we can add that instance to the existing
dataset.

Different procedures written in C and their functions
are described bellow.

1) extract script(): This function extract only the codes
included within the script begin tag < script > and
the script end tag < /script >. All the codes other
then this are discarded as they are not executed as
JavaScript. The function also calls all the remaining
methods.

2) compute length(): Calculates the total number of
characters in the script.

3) no of lines(): Calculates the total number of lines in
the script.

4) no of strings(): This function outputs the total num-
ber of lines in the script.

5) avg characters(): It calculates average number of
characters per line in the script.

6) percentage whitespace(): This method gives the per-
centage of whitespace characters with respect to the
total number of characters in the script.

7) avg string length(): It calculates average length of
the strings in terms of number of characters present
in the string.

8) no of comments(): This method gives the number of
comment lines present in the script.

9) avg comments per line(): It calculates the average
number of comments per line of the script.

10) no of words(): Calculates the total number of words
in the script.

11) percentage of not commented words(): This method
calculates the percentage of words that are not com-
mented over the total number of words present in the
script.

12) count hex octal(): It outputs the total number of
hexadecimal numbers and octal numbers present in
the script.

13) human readability(): It gives the output in boolian
form i.e., either ’Y’(Yes) or ’N’(No). If a script is
human readable then it gives the output as ’Y’, oth-
erwise ’N’. Human readability is determined with the
help of the following methods.

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 769

0 5 10 15 20 25 30

15
20

25
30

Minimum Path

Iteration

S
co

re
s

min = 13.429

Final Sample Distribution

Objective function scores

F
re

qu
en

cy

15 20 25 30 35 40

0
20

40
60

80
10

0

0
5

10
15

Rank Aggregation

Optimal List: 12 2 7 13 5 3 1 9 4 8 11 14 15 6 10

R
an

ks

12 2 7 13 5 3 1 9 4 8 11 14 15 6 10

Data CE Mean

Figure 5: Output of the rank aggregation algorithm with optimal feature subset

a. cal percent alphabetes(): Calculates the per-
centage of words where percentage of alphabets
is >70%.

b. cal percent vowels(): Calculates percentage of
words where percentage of vowels lies in the
range 20%-60%.

c. percent length(): Calculates the percentage of
words which are less than 15 characters long.

d. percent repetition(): Calculates the percentage
of words containing repetition of the same letter
less than 3 times.

14) methods called(): This function gives the total num-
ber of methods called in the script.

15) avg arg length(): Calculates the average argument
length to each method.

16) count unicode char(): Calculates the number of uni-
code characters present in the script.

4.1.4 Increase in the Population Density of the
Dataset

After collecting the attack and normal scripts, with the
help of the modules described in the previous subsection
we created a dataset consisting of 71 attack and normal
instances in the ratio 1:2 respectively. Now with the help
of a module written in C, we increase the number of in-
stances of the dataset to 1078 instances with the same
ratio 1:2, respectively. This dataset is used to perform all
the operations performed in the following sections.

4.1.5 Normalization of the Dataset

In many pragmatic scenarios, a dataset may consist of
attributes or features having values with different ranges.

It generally tends to create problem while the some of
the values of some attributes are relatively much larger
then that of the other attributes. This is because, larger
values have a greater impact on the proximity measures
like Euclidean distance. Since the base of our proposed
attribute clustering algorithm is kmeans, which uses Eu-
clidean distance measure, so it is very important for us to
normalize the dataset. Figure 8 displays a part of the orig-
inal dataset, whereas Figure 9 shows a part of the dataset
after normalization. We have used min-max normaliza-
tion to normalize the dataset. The formula for which is
given next.

Xn =
(X −Xmin)

(Xmax −Xmin).

Where, Xn = Normalized value between 0 and 1, X =
Original value, Xmax = Maximum value of the attribute,
Xmin = Minimum value of the attribute.

4.2 Results

In this section, we have shown the true positive rate, false
positive rate, and accuracy in identifying the groups of
attack and normal scripts. An ROC curve is plotted as
shown in Figure 10 to demonstrate the detection perfor-
mance.

4.2.1 ROC Curve

Receiver Operating Curve (ROC) for our dataset is the
curve of True Positive Rate (TPR) vs False Positive rate
(FPR) of the clusters given by different subset of the at-
tributes or features. Table 4 shows the value of the TPR,
FPR, and accuracy of the clusters given by the attribute
selection algorithm based on the feature subsets. The fea-
ture subsets contains the feature values according to the
rank given by the ensemble feature selection algorithm.

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 770

<script type="text/javascript">

 var _gaq = _gaq || [];
 _gaq.push(['_setAccount', 'UA-30187030-1']);
 _gaq.push(['_trackPageview']);

 (function() {
 var ga = document.createElement('script'); ga.type = 'text/javascript';
ga.async = true;
 ga.src = ('https:' == document.location.protocol ? 'https://ssl' :
'http://www') + '.google-analytics.com/ga.js';
 var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(ga, s);
 })();

</script>

Figure 6: Example of a benign JavaScript

<sc ript>
var t="";
var
arr="646f63756d656e742e777269746528273c696672616d65207372
633d22687474703a2f2f766e62
757974612e636f2e62652f666f72756d2e7068703f74703d363735656
1666563343331623166373222
2077696474683d223122206865696768743d223122206672616d656
26f726465723d2230223e3c2f6
96672616d653e2729";for(i=0;i<arr.length;i+=2)t+=String.fromCharCo
de(parseInt(arr[i]+arr[i+1],16));eval(t);</sc ript>

Figure 7: Example of an attack script

Steps involved in calculating the True Positive (TP)
and False Positive (FP) values of a cluster given by the
attribute clustering algorithm are as follows:

• The attribute rank subset given by rank aggregation
is taken and SD attrib clus() algorithm is applied on
the whole dataset according to the given feature rank.

• The cluster which is more compact is considered as
the attack cluster and the cluster instances are stored
in a matrix.

• Now from the actual labeled dataset the attack in-
stances are determined and intersection of these in-
stances with the previously stored cluster instances
are found. Thus we get the TP value. And the
instances, that are excluded are counted as the FP
value.

• The TPR and FPR are calculated from these TP
and FP values with the help of the following formulas.

True Positive Rate(TPR) =
∑

True Positive∑
Condition Positive

False Positive Rate(FPR) =
∑

False Positive∑
Condition Negative

Accuracy(ACC) =
∑

True Positive+
∑

True Negative∑
Total Instances

4.3 Comparison with Other Methods

In this section, we compare our method with other com-
peting methods of XSS detection.

• Like [22], our method is also established on feature
dataset generated based on the extracted features
from attack and normal scripts.

• Like [7, 29], we also evaluate our method in terms
of detection accuracy and the performance of our
method is highly satisfactory.

• Unlike [7, 22], our method uses unsupervised at-
tribute clustering technique to group the JavaScripts
into legitimate and malicious.

• Unlike most other methods [21, 33], our approach
attempts to balance the load between the client and
server.

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 771

Table 3: Description of extracted features

Sl
No.

Feature
Label

Feature Description

1 A Number of characters in the script
2 B Number of lines in the Script
3 C Number of strings in the script
4 D Average characters per line
5 E Percentage of whitespace in the script
6 F Average string length
7 G Number of comments in the script
8 H Average comments per line
9 I Total number of words
10 J Percentage of words that are not commented
11 K Number of octal numbers

12
Human readability in terms of yes or no. checking criteria are:

L a)Percentage of words which are >70% alphabetical >=45%
b)Percentage of words, where 20% < vowels<60% >=40%
c)Percentage of words which are less than 15 characters
long>=70%
d)Percentage of words containing< 3 repetition of the same letter
in a row>=80%

13 M Number of methods called
14 N Average argument length
15 O Number of unicode symbols
16 P Number of HEX numbers

Figure 8: A portion of the original dataset

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 772

Figure 9: A portion of the normalized dataset

Table 4: Accuracy of the classes based on the feature subset

Feature Subset True Positive
Rate(TPR)

False Positive
Rate(FPR)

Accuracy

12,2,7,13,5,3,1,9,4,8,11,14,15,6,10 0.24 0 0.7449
12,2,7,13,5,3,1,9,4,8,11,14,15,6 0.517 0.003 0.8358
12,2,7,13,5,3,1,9,4,8,11,14,15 0.978 0.006 0.9889

12,2,7,13,5,3,1,9,4,8,11,14 0.983 0.006 0.9907
12,2,7,13,5,3,1,9,4,8,11 0.983 0.006 0.9907

12,2,7,13,5,3,1,9,4,8 0.983 0.006 0.9907
12,2,7,13,5,3,1,9,4 0.983 0.007 0.9897
12,2,7,13,5,3,1,9 0.983 0.007 0.9897
12,2,7,13,5,3,1 0.983 0.007 0.9897
12,2,7,13,5,3 0.983 0.007 0.9897
12,2,7,13,5 0.983 0.007 0.9897
12,2,7,13 0.983 0.007 0.9897

12,2,7 0.983 0.008 0.9889
12,2 0.983 0.008 0.9889

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 773

Data: D = Dataset, Dai = ith attribute of D,
∀i = 1, 2, ..., n

K = No. of clusters
Result: CA = Attack cluster
Function SD attrib clus()
foreach attribute Dai ∈ D do

[indexMatrix, sumd] = kmeans(Dai
, K)

foreach Cluster Ci
k, k = 1, 2 do

CPi
k = sumd

No. of objects inCi
k

end
if CP i

k < CP i
k+1, k=1 then

foreach Object Oi
j ∈ Dai

do
if indexMatrix(Oi

j) == k then
Ci

A ← Oi
j

end
else

Ci
N ← Oi

j

end

end

end
else

foreach Object Oi
j ∈ Dai

do
if indexMatrix(Oi

j) == k+1 then
Ci

A ← Oi
j

end
else

Ci
N ← Oi

j

end

end

end

end
// Find the common objects of the attributes

in the order given by rank aggregation

method

CA = ∩Ci
A,∀i = 1, 2, ..., S, S ≤ n

Algorithm 1: Attribute clustering algorithm

0 1 2 3 4 5 6 7 8

x 10
−3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive Rate(FPR)

T
ru

e
po

si
tiv

e
R

at
e(

T
P

R
)

TPR vs FPR curve

Figure 10: ROC curve

5 Discussion and Conclusion

Based on the results we got from the attribute clustering
algorithm, proceeded by rank aggregation using cross en-
tropy monte carlo algorithm, shows us a way how we can
use unsupervised techniques in clustering the malicious
and benign scripts into two classes with high accuracy.
The computation overhead also decreases significantly in
the proxy as our proposed method distributes the task
between the client and the server. The detection mech-
anism in the proxy is easy to implement and requires a
little knowledge to detect an attack with high accuracy.

Acknowledgments

The authors would like to thank the Ministry of HRD,
Govt. of India for funding as a Centre of Excellence with
thrust area in Machine Learning Research and Big Data
Analytics for the period 2014-2019.

References

[1] E. Adi, “A design of a proxy inspired from human
immune system to detect SQL injection and cross-
site scripting,” Procedia Engineering, vol. 50, pp. 19–
28, 2012.

[2] E. Athanasopoulos, A. Krithinakis, and E. P.
Markatos, “Hunting cross-site scripting attacks in
the network,” in Third International Conference on
Advanced Computing (ICoAC’11), pp. 89–92, 2011.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna, “Saner: Com-
posing static and dynamic analysis to validate san-
itization in web applications,” in IEEE Symposium
on Security and Privacy (SP’08), pp. 387–401, 2008.

[4] D. K. Bhattacharyya and J. K. Kalita, Network
anomaly detection: A machine learning perspective,
CRC Press, 2013.

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 774

[5] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.
Kalita, “Survey on incremental approaches for net-
work anomaly detection,” International Journal of
Communication Networks and Information Security,
vol. 3, no. 3, pp. 226–239, 2011.

[6] Blwood, Multiple XSS Vulnerabilities in Tiki-
wiki 1.9.x, 2006. (http://www.securityfocus.com/
archive//435127)

[7] D. Canali, M. Cova, G. Vigna, and C. Kruegel,
“Prophiler of a fast filter for the large-scale detec-
tion of malicious web pages,” in Proceedings of the
20th International Conference on World Wide Web,
pp. 197–206, 2011.

[8] S. Christey, 2011 CWE/SANS Top 25 Most Dan-
gerous Software Errors, 2011. (http://cwe.mitre.
org/top25)

[9] S. Chun, C. Jing, H. ChangZhen, X. JingFeng,
W. Hao, and M. Raphael, “A xss attack detection
method based on skip list,” International Journal of
Security and Its Applications, vol. 10, no. 5, pp. 95–
106, 2008.

[10] J. Grossman, XSS Attacks: Cross-site scripting ex-
ploits and defense, Syngress, 2007.

[11] B. B. Gupta, S. Gupta, S. Gangwar, M. Kumar, and
P. K. Meena, “Cross-site scripting (XSS) abuse and
defense: exploitation on several testing bed environ-
ments and its defense,” Journal of Information Pri-
vacy and Security, vol. 11, no. 2, pp. 118–136, 2015.

[12] S. Gupta and B. B. Gupta, “XSS-SAFE: a server-side
approach to detect and mitigate cross-site scripting
(XSS) attacks in javascript code,” Arabian Journal
for Science and Engineering, vol. 41, no. 3, pp. 897–
920, 2016.

[13] M. A. Hall, Correlation-based Feature Selection for
Machine Learning, Doctoral Dissertation, The Uni-
versity of Waikato, 1999.

[14] M. A. Hall and L. A. Smith, “Feature selection for
machine learning: Comparing a correlation-based fil-
ter approach to the wrapper,” in Proceedings of the
Twelfth International Florida Artificial Intelligence
Research Society Conference, pp. 235–239, 1999.

[15] J. A. Hartigan and M. A. Wong, “Algorithm as
136: A k-means clustering algorithm,” Journal of the
Royal Statistical Society. Series C (Applied Statis-
tics), vol. 28, no. 1, pp. 100–108, 1979.

[16] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita,
“MIFS-ND: a mutual information-based feature se-
lection method,” Expert Systems with Applications,
vol. 41, no. 14, pp. 6371–6385, 2014.

[17] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita,
“Botnet in ddos attacks: trends and challenges,”
IEEE Communications Surveys & Tutorials, vol. 17,
no. 4, pp. 2242–2270, 2015.

[18] L. Huan and R. Setiono, “Chi2: feature selection and
discretization of numeric attributes,” in Proceedings
of Seventh International Conference on Tools with
Artificial Intelligence, pp. 388–391, 1995.

[19] T. Jim, N. Swamy, and M. Hicks, “Defeating script
injection attacks with browser-enforced embedded
policies,” in Proceedings of the 16th International
Conference on World Wide Web, pp. 601–610, New
York, NY, USA, 2007.

[20] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a
static analysis tool for detecting web application vul-
nerabilities,” in IEEE Symposium on Security and
Privacy, pp. 6–263, 2006.

[21] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic,
“Noxes: A client-side solution for mitigating cross-
site scripting attacks,” in Proceedings of the 2006
ACM Symposium on Applied Computing, pp. 330–
337, New York, NY, USA, 2006.

[22] P. Likarish, J. Eunjin, and J. Insoon, “Obfus-
cated malicious javascript detection using classifica-
tion techniques,” in 4th International Conference on
Malicious and Unwanted Software (MALWARE’09),
pp. 47–54, 2009.

[23] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and
P. Tramontana, “Identifying cross site scripting vul-
nerabilities in web applications,” in 26th Annual In-
ternational Telecommunications Energy Conference,
pp. 71–80, 2004.

[24] Y. Minamide, “Static approximation of dynami-
cally generated web pages,” in Proceedings of the
14th International Conference on World Wide Web,
pp. 432–441, New York, NY, USA, 2005.

[25] J. R. Quinlan, C4. 5: Programs for Machine Learn-
ing, Elsevier, 2014.

[26] D. Roobaert, G. Karakoulas, and N. V. Chawla, “In-
formation gain, correlation and support vector ma-
chines,” in Feature Extraction, pp. 463–470, 2006.

[27] S. Saha, “Consideration points detecting cross-site
scripting,” International Journal of Computer Sci-
ence and Information Security, vol. 4, no. 1 & 2,
Aug. 2009.

[28] M. I. P. Salas and E. Martins, “Security testing
methodology for vulnerabilities detection of XSS in
web services and ws-security,” Electron Notes in The-
oritical Computer Science, vol. 302, pp. 133–154,
2014.

[29] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Min-
ing sql injection and cross site scripting vulnerabil-
ities using hybrid program analysis,” in Proceedings
of International Conference on Software Engineer-
ing, pp. 642–651, Piscataway, NJ, USA, 2013.

[30] Y. Wang and F. Makedon, “Application of relief-
f feature filtering algorithm to selecting informa-
tive genes for cancer classification using microarray
data,” in IEEE Computational Systems Bioinformat-
ics Conference, pp. 497–498, 2004.

[31] G. Wassermann and Z. Su, “Static detection of
cross-site scripting vulnerabilities,” in Proceeding of
ACM/IEEE 30th International Conference on Soft-
ware Engineering, pp. 171–180, 2008.

[32] D. Wichers, OWASP, The Open Web Application Se-
curity Project, 2013. (http://www.owasp.org)

http://www.securityfocus.com/archive//435127
http://www.securityfocus.com/archive//435127
http://cwe.mitre.org/top25
http://cwe.mitre.org/top25
http://www.owasp.org

International Journal of Network Security, Vol.19, No.5, PP.761-775, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).14) 775

[33] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and
C. Kruegel, “SWAP: Mitigating XSS attacks using
a reverse proxy,” in Proceeding of 5th International
Workshop on Software Engineering for Secure Sys-
tems, IEEE Computer Society, 2009.

Biography

Swaswati Goswami obtained Master of Technology
degree in Information Technology from Tezpur Univer-
sity, India in the year 2012. Her research interests are
machine learning and network security.

Nazrul Hoque obtained Master of Technology degree
in Information Technology from Tezpur University, India
in the year 2012. Currently, he is a PhD candidate in
the Department of Computer Science and Engineering
at Tezpur University. His research interests are machine
learning and network security.

Dhruba K Bhattacharyya received his Ph.D. in Com-
puter Science from Tezpur University in 1999. He is a
Professor in the Computer Science & Engineering De-
partment at Tezpur University. His research areas in-
clude data mining, bioinformatics, network security, and
big data analytics. Prof. Bhattacharyya has published
220+ research papers in the leading international jour-
nals and conference proceedings. In addition, Dr Bhat-
tacharyya has written/edited 8 books. His book on
Network Anomaly Detection: A Machine Learning Per-
spective is now popular among the network security re-
searchers. Professor Bhattacharyya is Project Investi-
gator of several prestigious major research grants such
as Ministry of HRD’s Center of Excellence under FAST,
Center of High Performance Computing and UGC SAP
DRS II of Govt. of India.

	Introduction
	Motivation
	Contributions

	Background and Related Work
	Basics of XSS Attacks
	Persistent or Stored XSS Attack
	Non-Persistent or Reflected XSS Attack
	DOM-based XSS Attack

	Related Work

	Proposed Method
	Proposed Framework
	Algorithm for Attribute Clustering
	Complexity Analysis

	Experimental Results
	Dataset Preparation
	Data Gathering
	Feature Extraction
	Modules
	Increase in the Population Density of the Dataset
	Normalization of the Dataset

	Results
	ROC Curve

	Comparison with Other Methods

	Discussion and Conclusion
	REFERENCES

