
International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 711

An Anti-Phishing Password Authentication
Protocol

Pramote Kuacharoen
Department of Computer Science, Graduate School of Applied Statistics

National Institute of Development Administration

118 SeriThai Rd., Bangkapi, Bangkok 10240, Thailand

(Email: pramote@as.nida.ac.th)

(Received Aug. 31, 2016; revised and accepted Jan. 15 & Feb. 20, 2017)

Abstract

Password authentication is commonly used to authenti-
cate the user in web-based services such as internet bank-
ing due to its simplicity and convenience. Many users
have multiple accounts and use the same password. The
password is usually sent to the server over an HTTPS
connection. However, this common practice makes the
system vulnerable. An attacker can set up a phishing
site masquerading as the genuine site and attempts to
steal the user’s credentials. If the user’s credentials are
successfully stolen, all accounts are compromised. More-
over, since passwords are common, a break-in to a sys-
tem that is not well protected might cause a cascaded
break-in. This paper describes an authentication proto-
col which enables the user to securely use the same pass-
word for multiple servers, and protects against phishing
attacks. The protocol also allows multiple authentica-
tion sessions simultaneously while preventing replay at-
tacks. Furthermore, the protocol is also resilient against
denial-of-service attacks since no state is maintained on
the server during the authentication process.

Keywords: Anti-phishing; Authentication; Mutual Au-
thentication; Password

1 Introduction

Phishing is a technique that employs both social engineer-
ing and technical subterfuge to steal personal identifiable
information and financial account credentials. The crim-
inal creates a replica of an existing web page to deceive
the victims [3]. Usually, the criminal sends emails which
resemble emails from legitimate entities to potential vic-
tims. Unaware of criminal activities, the victims click the
link in the email to visit the website where they are asked
to provide personal information such as username, pass-
word, and credit card number. The criminal records this
information and uses it to impersonate the victims or to
commit financial fraud [15, 16].

Although the phishing site appears to be similar to the

legitimate site, the Uniform Resource Locator (URL) is
different, usually suspicious. The phishing site is short
lived so that it cannot be effectively blacklisted. An ex-
perimental phishing attack was performed at Indiana Uni-
versity targeting students aged 18 to 24 years old [9]. The
acquaintance data are harvested from social network web-
sites. The experiment spoofed an email message between
two friends. Experiments showed that 72% of students en-
tered their secure university credentials into the spoofed
site whose domain name was clearly distinct from Indiana
University.

When the user moves the pointer to hover over a hyper-
link, the URL is usually shown on the status bar. A user
with this knowledge makes an attempt to verify the des-
tination URL using this method as a safeguard against
phishing. However, a status bar can be easily spoofed.
The criminal can use a simple onclick event to change
the destination URL.

Many web browsers have anti-phishing features built
in. However, some users fail to notice the warning, do
not understand the warning, or ignore the warning [5].
In order to provide the anti-phishing features, the web
browsers must maintain the list of the phishing sites. As
aforementioned, phishing sites cannot be effectively black-
listed and the user is not protected until the phishing site
is included on the list.

Several large financial institutions, including Bank of
America and The Vanguard Group, attempt to combat
against phishing attacks by implementing a technique
called SiteKey which is the product of RSA Data Security.
SiteKey uses the following challenge-response technique:

1) The customer identifies himself by submitting the
username. If the username is valid, the site continues
to the next step. Otherwise, the site displays an error
message indicating that the username is not correct.

2) The site authenticates itself to the customer by dis-
playing an image and a phrase that the user has pre-
viously chosen. If the user does not recognize them,
the user should assume that the site is a phishing

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 712

site and should not proceed. If the user recognizes
the displayed information, the user may consider that
the site is authentic.

3) The user authenticates oneself by supplying the pass-
word. If the password is correct, the user is authen-
ticated.

In practice, SiteKey is ineffective [19, 24]. People do
not notice or do not care when the SiteKey is missing.
Moreover, SiteKey technique has a security design flaw.
The criminal can learn whether or not the username ex-
ists. The rationale of SiteKey is that the phishing site
does not have the customer’s SiteKey. However, the
phishing site can obtain the correct SiteKey from the gen-
uine site, and then displays it to the user.

The Anti-Phishing Working Group (APWG) reported
that phishing attack numbers declined 20 percent from
late 2012 to early 2013. This was due to a precipitous
drop in virtual server phishing attacks, where the crimi-
nal seizes control of a web server that hosts many unique
domains and then creates phishing pages for those do-
mains [7]. According to APWG, trends indicate phish-
ing levels returning to the levels seen prior to the record-
setting highs of 2015. Therefore, these criminal activities
are still prevalent and an effective anti-phishing attack
technique is needed.

The purpose of this research is to design and implement
an authentication protocol which is secure and protects
the user against phishing attacks. The following require-
ments are the design goals of the anti-phishing password
authentication protocol.

• The protocol must protect users against phishing at-
tacks.

• The protocol must allow users to safely use the same
password across many websites.

• The protocol must achieve user authentication with-
out reviewing the password to the server at any point.

• The protocol must be secure against known attacks.

This paper consists of five sections. Section 1 intro-
duces the motivation of the paper. Section 2 describes
background information and related work in the area of
phishing and password authentication. Section 3 presents
the design of the anti-phishing password authentication
protocol. Section 4 provides the security analysis of the
protocol. Finally, Section 5 concludes the paper.

2 Background and Related Work

This section provides background and related work
which includes phishing, password authentication, cryp-
tographic challenge-response authentication, and existing
anti-phishing password-based protocols.

2.1 Phishing

Phishing is the attempt to obtain sensitive information
such as usernames, passwords, and financial informa-
tion by masquerading as a trustworthy entity in elec-
tronic communication [14]. Phishers use social engineer-
ing schemes using spoofed emails purporting to be from
legitimate businesses and agencies. The schemes are de-
signed to lead victims to counterfeit websites and deceive
the victims into divulging sensitive information.

APWG publishes quarterly phishing attack trends re-
ports. Figure 1 shows the phishing trends. The total
number of unique phishing reports received has sharply
risen from year 2012 to year 2015. Phishing has been
increasingly threatening individuals.

�

������

������

������

������

�������

�������

�������

�������

���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
��
�
	�

�
�

�
��
�
��
�
�
�
��

����

����������	
���

Figure 1: Phishing trends

Phishers usually send emails impersonating trusted en-
tities luring victims to visit phishing sites. Phishing tar-
gets the user who has no knowledge about social engi-
neering attacks or internet security [8]. Figure 2 shows an
example phishing email which pretends to be from PNC
Bank asking its customer to sign in by clicking on the
link. The link displays the URL of PNC Bank. However,
when the victim clicks on the link, the phishing site is
shown. An unsuspecting customer who has an account
with PNC Bank would sign in as instructed in the email.
By doing so, the customer unknowingly gives the phisher
their account credentials.

For an HTML page, the displayed link and the actual
link can be different. When user moves a pointer over the
link, the status bar shows the actual URL. This may give
some confidence to the user who is familiar with browsing
the Web. However, a status bar can be programmed to
display whatever the phisher desires. A user with some
technical knowledge is likely to be a victim for a status bar
spoofing. When the user clicks the link, the actual link
shows on the browser’s address bar. The phisher tricks
the victim by using a site name similar to the real site
by misspelling the name. For example, the phisher may
use letter ‘a’ instead of letter ‘o’, ‘1’ instead of letter ‘l’,
or ‘0’ instead of letter ‘o’. When the user glances at the
address bar, the user assumes the website is legitimate.
The phisher may also employ a poorly written redirection
program from the real website to the phishing site. The

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 713

����������	�
���
���

��������
��
���

���������
���������������������� �!������������
������	��
��

�������
����������������
���
������
���� �!����"�����	�

���
�����
����
���
���
�������
��
���������
�#

�������������"�����������������������"�����
������������
�

$
������������
����
�������������%����
��&�����������
�

�����#''��� ��� �
�'

������
��������
������	�������
�����������������	��
�����

�������
��������������
������
�������������&�������� ������������

�
��������������
������
����
����������������� �

�

(������
���
��&��������������
�����

Figure 2: An example of phishing email

address bar will display the real website address briefly
and then it will display the phishing site address. This will
make the victim think that displayed website is redirected
from the trusted site and trust the displayed site.

Online security warnings have historically failed be-
cause users do not understand or believe them. Since
phishing is prevalent, new online security warnings have
been redesigned. It is difficult to automatically detect
phishing with accuracy. Therefore, anti-phishing tools
use warnings to alert the users to potential phishing sites,
rather than blocking them. There are two types of warn-
ings, namely, passive warning and active warning. A
passive warning indicates a potential danger by changing
colors, providing textual information, or by other means
without interrupting the user’s task. However, research
has shown that passive warnings are failing users because
users often fail to notice them or do not trust them. An
active warning, on the other hand, forces users to notice
the warning by interrupting them. Many popular web
browsers include active phishing warnings since research
has shown that passive warnings are often ignored.

Despite growing efforts to educate users and to create
better detection tools, users are still susceptible to phish-
ing attacks. Phishing can deceive users because the users
are willing to trust websites that appear to be designed
well and look familiar.

Many research papers have proposed methods of de-
tecting phishing sites based on URLs of web pages [1, 4,
10, 23]. After confirming that the website is probably
a phishing site, a security warning is issued to the user.
However, using phishing site detection methods does not
guarantee that the algorithms are always accurate.

2.2 Password Authentication

Password authentication is the simplest form of an au-
thentication model. The user presents the username and

the password to the authenticating entity [13, 20]. The
password authentication is commonly used in authenticat-
ing the user over the Internet. The server needs to store
the user’s password in order to authenticate the user [17].
The password must be protected. Storing the password in
clear text is inadvisable. This is because a compromised
user database file reveals all passwords. The attacker may
be able to obtain the password database through an SQL
injection attack [2, 12]. Instead, the hash value of the
password should be saved. A weakness of using the hash
value is that two users with the same password have an
identical hash value. Furthermore, the attacker can use
a dictionary attack against the entire user database. The
best way to protect a password is to employ salted pass-
word hashing. The server randomly generates a number
called salt and calculates the hash of the salt and the pass-
word. Therefore, two users with the same password have
different salted passwords. The server stores the salt and
the salted password along with other information. Upon
logging in, the user supplies the username and the pass-
word. The server computes the hash value of the salt
and the received password, and then compares the result-
ing value to the stored hash value. If the two values are
identical, the user is authenticated.

Sending a password in clear text is vulnerable to eaves-
dropping. Using an SSL connection helps protect the con-
versation during transit. However, it does not prevent
phishing attacks.

2.3 Cryptographic Challenge-Response
Authentication

In this type of authentication, the user and the system
share some secret [21]. For two-way authentication, both
the user and the system must convince each other that
they know the shared secret without transmitting the se-
cret in the clear text over the communication channel. To
accomplish this, the server encrypts the randomly gener-
ated number or nonce and sends it to the user as a chal-
lenge. The user must return a corresponding response
which is calculated from decrypting the challenge and en-
crypting the value derived from the decrypted value. This
proves that the user has the ability to decrypt the chal-
lenge. Therefore, the user knows the shared secret.

A drawback of the challenge-response authentication is
that it can be defeated by man-in-the-middle attacks. For
example, the user visits a phishing site and submits his
username. The phishing site forwards the user’s identity
to the genuine site impersonating the user. The server
sends a challenge in order to authenticate the user. The
attacker presents the challenge to the user to obtain the
correct response which is subsequently sent to the server.

2.4 Existing Anti-phishing Password-
based Protocols

Rose et al. present a method to improve password security
and to defend against password phishing [18]. The server

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 714

stores the hash of the user’s password and the domain
name. When the user enters the username and the pass-
word is prefixed with two escape characters, the browser
extension applies a Pseudo Random Function (PRF) to a
combination of the password and the domain name. The
username and the hash value are sent to the server. The
domain name is automatically obtained. If the user enters
the credentials on the phishing page, the phisher cannot
obtain the clear text password. Moreover, the hash value
is different from the one stored on the actual server since
the phishing site has a different domain name. Using do-
main name as salt has a drawback. The attacker may
compromise a server under the same domain and may
set up a phishing page. The correct salted password can
be captured. Since password and domain name remains
unchanged, the salted password is the same, making it
susceptible to replay attacks.

In [6], a protocol that allows a client to securely use
a single password across multiple servers and prevents
phishing attacks is proposed. The client can be authenti-
cated without revealing the password to the server at any
point. The protocol employs a one-time ticket technique.
The client sets the next authentication ticket. The ticket
consists of the hash of the random number, the password,
and the server name. The client identifies himself by send-
ing the identity. The server challenges with the previously
stored random number. Subsequently, the client com-
putes the ticket using the received number. The client
also randomly generates a number and uses it to create
the next authentication ticket. The client responds with
the current ticket, the next challenge random number,
and the hash value of the next authentication ticket. Al-
though the clear text password remains unchanged, the
ticket changes each time the client is authenticated. This
is equivalent to changing the password at the server ev-
ery time the user signs in, which makes the protocol sus-
ceptible to message modification attacks. Consider the
scenario where an attacker intercepts the response from
the client. The attacker then can create a ticket using his
password and replaces the hash value with the one gener-
ated from his ticket. The server has no way to verify the
authenticity of the hash value. Hence, the attacker can
log in.

3 Design of the Protocol

This section describes the design of the anti-phishing pass-
word authentication protocol. The design objectives and
the notions are explained. Then, this section discusses
the password storage and the authentication that are de-
signed to meet the objectives.

3.1 Design Objectives

The primary objective of this paper is to design an au-
thentication protocol which is secure and protects the user
against phishing attacks and other known attacks. The

following requirements are the design goals of the anti-
phishing password authentication protocol.

1) The protocol must protect users against phishing at-
tacks.

2) The protocol must allow users to safely use the same
password across many websites.

3) The protocol must achieve user authentication with-
out revealing the password to the server at any point.

4) The protocol must be secure against known attacks
such as password database attacks, server spoofing
attacks, and denied of service attacks.

5) The protocol must allow multiple authentication ses-
sions.

6) The protocol must be mutual authentication.

3.2 Notations

Table 1 shows notations which are used throughout this
paper.

Table 1: Notations and description

Notations Descriptions
C Client
S Server

ADS Server’s address, i.e., IP address
ADC Client’s address, i.e., IP address

N1, N2, N3 Nonce
HMAC(K,M) Keyed-hash message authentication

code function, where K is the secret
key and M is the message

Times Session valid time which consists of
the start time and the expiration
time

SAC Session authentication code
|| Concatenation operator
⊕ XOR operator

3.3 Password Storage

It is crucial that the user’s credentials are protected even
though the user database has been compromised. The at-
tacker should not gain knowledge from it. Therefore, the
password should not be stored or sent as clear text. Tradi-
tionally, for each user, the server stores the username, the
salt, and the hash value of the salt and the user’s pass-
word. This protects the user’s credentials and defends
against dictionary attacks and pre-computed rainbow ta-
ble attacks. However, both username and password are
sent to the server to be authenticated. For a valid user-
name, the server calculates the hash value of the salt and
the received password and compares the resulting value

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 715

with the one stored on the server. Since the actual pass-
word is transmitted to the server, the attacker can ob-
tain this information from a compromised server and can
use the user’s credentials to gain access to other servers.
Therefore, the user’s password should not be transmitted
as clear text.

If the password is hashed at the client machine and
sent to the server, the client-side hash logically becomes
the user’s password. Therefore, it is equivalent to storing
passwords in clear text. If the attacker obtained the hash
value, the attacker can use it to authenticate to the server.
Hence, the server must store a value which is derived from
the received value.

To achieve the design objectives, the authenticator
must be derived from the user’s password and must be
server specific. Table 2 shows the user database. Each row
consists of username, salt, and masked secret. The salt is
credential specific. In other words, each user is randomly
assigned a salt. This prevents a dictionary attack on the
entire database. The attacker must pick an individual to
attack. The masked secret is calculated by XORing the
user’s secret and the mask. The user’s secret is derived
from the username, the password, and the Fully Qualified
Domain Name (FQDN), i.e., Hash(username || password
|| FQDN). The mask is the hash value of the server’s se-
cret and the user’s salt, HMAC(KS || salt). The server’s
secret is not stored on disk. It is inputted when the server
starts. Therefore, a compromised database does not re-
veal the server’s secret or the user’s secret.

HMAC is a message authentication code based on a
cryptographic hash function [11]. The length of the au-
thentication code is fixed. Only the parties, who have the
knowledge of the secret key, can produce a valid message
authentication code. The advantage of using HMAC is
that the cryptographic hash function generally executes
more quickly in software than symmetric and asymmetric
ciphers [22].

Table 2: User database

��������

�

�

�

�

�

�

			

���

����

�

����

�

����

�

			

������
�����

�

��

�⊕��
����

�

������

�

�

�

��

�⊕��
����

�

������

�

�

�

��

�⊕��
����

�

������

�

�

			

3.4 The Protocol

In an insecure network environment, any client can con-
nect to a server. The obvious risk is user impersonation.
An attacker can pretend to be another user and obtain
unauthorized access. To counter this threat, the server
must be able to authenticate the user requesting the ser-
vice.

Figure 3 summarizes the basic authentication dialog.
The following is the brief description of the protocol.

1) The client identifies itself to the server by sending the
user’s ID, the address of the server, and a random
value N1.

2) The server replies back with received information, an-
other random value N2, and the start time and the
expiration time of the authentication session. More-
over, the server includes the server’s authenticator
and the Session Authentication Code (SAC).

3) The client responds with the user’s ID, server ad-
dress, N2, another random value N3, Times, the
client’s authenticator, and the session authentication
code.

�����������

�

		
�

�

		�

�

�����������

�

		
�

�

		�

�

		�

�

		
����		
������������

��

		��
�

�����������

�

		
�

�

		�

�

		�

�

	
����		
������������

�

		�
���

������������

�

�����
���

�

 ���

�

		
�

�

		�

�

		�

�

		
����!

������������

�

�����
���

�

 ���

�

		
�

�

		�

�

		�

�

		
����!

�
������
���

�

 ���

�

		
�

�

		�

�

		
����!

Figure 3: Summary of the authentication exchanges

When the user connects to a server to use a service,
the client software C in the user’s computer requests the
username and password, and then sends a message to the
server S that includes the user’s ID, the server’s address,
and the random nonce N1. The server first verifies if
the requested server’s address belongs to the server, and
checks its database to see if the user exists. If the user is in
the database, the server obtains the salt and the masked
secret of the user. The mask is generated from hashing
the server’s secret and the user’s salt. The resulting value
is then XORed with masked secret to obtain the user’s se-
cret. Next, the server randomly generates another nonce
N2 and sets the start time and the expiration time for the
authentication session.

The server constructs the response message which in-
cludes user’s ID, the server’s address, the received nonce
N1, the generated nonce N2, and the times. The server
authentication which is used to authenticate itself to the
client is computed using the HMAC algorithm with the
response message and the user’s secret. The session au-
thentication code for the session is also generated using
the HMAC algorithm with the server’s secret and the mes-
sage which includes the user’s ID, the client address, the
nonce N2, and the times. The server sends the response
message, the server authentication, and the session au-
thentication code. After replying, the server can discard
the calculated values.

When the client receives the response, the client veri-
fies that the response is corresponding to the request by
checking if the response message contains the requested

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 716

information. The server authenticator is then verified. A
valid server authenticator proves that the server knows
the user’s secret. Now that the client has the challenge
information, authenticating itself can be done next. The
client creates a response message which consists of the
user’s ID, the server address, the received nonce N2, the
nonce N3, and the times. The client also creates the client
authentication by using the HMAC algorithm with the re-
sponse message and the user’s secret key. Subsequently,
the client sends the response message, the client authen-
ticator, and the session authentication code to the server.

Upon receiving the response, the server checks to en-
sure that the response is intended for the server and has
not expired. If the user’s ID is in the database, the server
derives the user’s secret from the masked secret, the user’s
salt, and the server’s secret as previously described. Af-
terward, the server verifies the client authenticator. Suc-
cessful verification implies that the user knows the pass-
word which is a crucial component in creating the client
secret. The server then validates the session authentica-
tion code. A valid SAC is the SAC which has not expired
and has not been used. The server saves the SAC which
has been used to the user’s SAC list. Future sessions will
be checked against this list to ensure that the SACs are
used only once. To perform the validation task efficiently,
expired SACs are removed from the SAC list.

Table 3 summarizes the justification for each of the
elements in the protocol.

4 Security Analysis

This section analyzes the security of the proposed proto-
col which includes the security of passwords, security of
the server’s secret key, and security of the communication
protocol.

4.1 Security of Passwords

The obvious approach to password attack is to guess the
password. The two most common methods of guessing
passwords are brute-force attacks and dictionary attacks.
These two types of attacks can be performed online or
offline as described in the following section.

4.1.1 Online Brute-Force and Dictionary Attacks

In the brute-force approach, the attacker tries all possi-
ble passwords. On average, an attacker will have to try
half of all possible combinations before finding the correct
password. To defend against such an attack, the password
length policy must be enforced. The password must be
at least eight characters long. A longer password is a
better password. Moreover, for online password guessing,
the system should be configured to slow the attack by de-
laying between successive login attempts and limiting the
number of unsuccessful attempts before disabling the ac-
count for a period of time or indefinitely until the account
is reset.

The attacker impersonates the user and attempts to
log in on a server by trying all passwords in an exhaus-
tive list called a dictionary. An online dictionary attack
feeds a server with thousands of username and password
combinations. To protect against dictionary attacks, the
user must use a strong password which can be enforced by
access policy. Guidelines that are designed to make pass-
words less easily discovered by intelligent guessing and
cracking tools include using complex passwords with an
appropriate length. A complex password is a password
which uses several types of keyboard characters. As a
result, complex passwords are unlikely to be in the at-
tacker’s dictionary. The number of unsuccessful login at-
tempts should also be limited as aforementioned.

4.1.2 Offline Brute-Force and Dictionary Attacks

The attacker obtains the user database and attempts to
perform offline brute-force attacks or dictionary attacks.
Each entry in the user database consists of the username,
the salt, and the masked secret. The masked secret is
calculated from the user’s secret and the mask. However,
the mask is user specific and depends on the server’s se-
cret. Therefore, this makes it impossible to use lookup
tables and rainbow tables to crack the password.

4.2 Security of the Server’s Secret Key

The server’s secret key is used to create the user mask and
the session authentication code using the HMAC algo-
rithm. The user mask is not stored in the user database.
It is XORed with the user’s secret. If the attacker ob-
tains the user database, the mask is not readily available.
However, the attacker can register an account. Since the
attacker can compute his own secret key, the mask can
be obtained. Breaking the server’s secret key would only
compromise all users’ secrets on a specific server. How-
ever, if the attacker breaks the server’s secret key without
having the user database, the attacker will not be able to
impersonate other users. The security of the server’s se-
cret key depends entirely on the security of the HMAC
algorithm.

Attacks on HMAC can be grouped in two categories,
namely; brute-force attacks and cryptanalysis. The level
of effort for brute-force attack on the HMAC algorithm
has a similar level to that for symmetric encryption algo-
rithms. Cryptanalysis attacks on the HMAC algorithm.
The security of the HMAC depends in some way on the
cryptographic strength of the underlying hash function.
HMAC is considered secure. Therefore, it is computa-
tionally infeasible for the attacker to derive the server’s
secret key.

4.3 Security of the Communication Pro-
tocol

The authentication exchanges are done over the HTTPS
protocol. However, the proposed authentication protocol

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 717

Table 3: Rationale for the elements of the protocol

Message 1 Client requests an authentication session
IDC Tells the server’s identity of the user from this client
ADS The perceived server’s address by the client, i.e., the IP address
N1 A random value to be repeated in message 2 to assure that the response is fresh and

has not been replayed by the attacker
Message 2 Server returns a session and authenticates itself to the client

IDC Indicates the rightful owner of the session
ADS The server’s address
N1 Nonce from message 1
N2 A random value to ensure that the response is fresh. It is also used to generate the

ticket authentication code
Times Provides time sensitive authentication

AuthenticatorS Proves that the server knows the client’s secret and the information has not been mod-
ified

SAC The session authentication code to be repeated in message 3 to ensure that the session
is authentic and is used only once within the time limit

Message 3 Client authenticates itself to the server
IDC Indicates the rightful owner of the ticket
ADS The client’s perceived server address which allows the server to have many addresses
N2 Nonce from message 2 to prevent a replay
N3 A random value to ensure that response is fresh. It is also used to generate the session

authentication code
Times The value from message 2 to provide a time period of the session

AuthenicatorC Proves that the user knows the password and the information has not been modified
SAC The value from message 2 is used to verify that the message is authentic

is also analyzed when the authentication exchanges are
done over an insecure channel.

4.3.1 Eavesdropping Attacks

Since the authentication exchanges are performed over
the HTTPS protocol, the eavesdropper cannot obtain
the authentication messages. Hence, the attacker can-
not learn any information. Without a secure connection,
the authentication exchanges may be eavesdropped and
the attacker is able to obtain messages. The attacker
cannot learn the password because it is not sent to the
server. However, non-secret values including the ID of
the user, server’s address, nonce, and times are revealed.
Learning these values does not make the protocol vulner-
able. The remaining values are the server’s authenticator,
the client’s authentication, and the session authentication
code. These values are generated using HMAC. As previ-
ously discussed, HMAC is secure. Therefore, the protocol
is secure against eavesdropping attacks.

4.3.2 Message Replay Attacks

The SSL/TLS communication is protected against replay
attacks using MAC which is computed using the secret
and the sequence number. Therefore, the replayed mes-
sage is detected as a duplicate. Replaying the entire ses-
sion is not possible since the master secret is generated
using the pre-master secret, the client and the server’s

random data. Even without SSL, the protocol prevents
the replay attacks. When the user has been authenti-
cated, an attacker may be able intercept the message in
Step 3 and establishes another session. Since unexpired
SACs are saved, the replayed message will contain a used
SAC. Therefore, the attacker’s session will not be authen-
ticated. Hence, the protocol protects against replay at-
tacks.

4.3.3 Message Modification Attacks

For this type of attack, an attacker attempts to modify
a message transmitted between the client and the server
to discover the client’s password or to gain unauthorized
access. Modifying an SSL data stream will cause an error
in the packet. The attacker will not gain knowledge of the
user’s password or unauthorized access. For an insecure
channel, the message exchanges in Step 2 and Step 3 are
protected by the authenticator and the session authenti-
cation code. Without the knowledge of the password and
the server’s key, the verification will fail.

4.3.4 Denial of Service Attacks

This paper limits the scope of the denial of service at-
tacks to the level of authentication, not the underneath
layers. The proposed authentication is stateless which
means that the server does not need to remember any
challenge values. There is no extra resource reserved for

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 718

the user. The server can securely and correctly verify
the user in Step 3. The server challenge information is
implicitly calculated into the server authentication code.

4.3.5 Phishing Attacks

In phishing attacks, the attackers make an attempt to
obtain sensitive information such as user credentials and
credit card details. Phishing is typically carried out by
social engineering techniques such as email spoofing and
instant messaging to deceive users. The victims receive
fraudulent messages which appear to come from a trust-
worthy entity. The message usually directs the victim to
an authentic-looking website which lures the victim to en-
ter sensitive information. The proposed method protects
the user against phishing attacks. Since the attacker does
not have knowledge of the user’s credentials, it cannot
create a valid server authenticator. The address of the
attacker is different from the address of the server. Veri-
fication will not be successful.

4.3.6 Man in the Middle Attacks

In this type of attack, the traffic between the client and
the server goes through the attacker. The attacker is ca-
pable of capturing the traffic, modifying it, and replaying
the modified traffic. This may be in the form of active
phishing where the attacker entices the victim to enter
confidential information on the impersonated website and
the attacker actively modifies the information and sup-
plies it to the server. In Step 1, the server’s address will
be the attacker’s address. This is because the server’s ad-
dress is automatically obtained. The attacker will modify
it to the real server’s address. In Step 2, all values in
clear text can be altered. However, the server authenti-
cator and session authentication code cannot be modified
without the client’s secret key and the server’s secret key,
respectively. Therefore, when the user verifies the server
authenticator, the verification process results in failure.

5 Conclusions

Password-based authentication is still widely used. How-
ever, it may be vulnerable to phishing attacks. The
proposed protocol attempts to address this issue by im-
plementing mutual authentication which both client and
server must prove that they know the shared secret. A
two-factor authentication which includes the knowledge
factor and location factor is also used. The proposed pro-
tocol also applies a challenge-response authentication in
which both server nonce and client nonce are used. This
ensures that previous authentications cannot be reused
in replay attacks. Moreover, the protocol utilizes times-
tamps to ensure exact timeliness. Finally, the server can
be implemented in a stateless manner during the authen-
tication.

In order to protect the user against phishing attacks,
when the user initiates the login process, the user’s secret

is dynamically derived from the username, the password,
and FQDN. If the user is on the phishing site, the user’s
secret is generated incorrectly. As a result, the verifica-
tion process would safely fail. The attacker is not able to
obtain the user’s credentials or perform a transaction on
behalf of the user. Therefore, the proposed anti-phishing
password authentication protocol automatically protects
users from attackers who try to obtain the user’s pass-
word or make transactions against the user’s interest as
illustrated in the security analysis.

Acknowledgments

This study was supported by the National Institute of
Development Administration (NIDA), Thailand. The au-
thor gratefully acknowledges the anonymous reviewers for
their valuable comments.

References

[1] A. A. Ahmed and N. A. Abdullah, “Real time de-
tection of phishing websites,” in 2016 IEEE 7th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON’16), pp. 1–6,
Oct. 2016.

[2] M. Štampar, “Inferential sql injection attacks,” In-
ternational Journal of Network Security, vol. 18,
no. 2, pp. 316–325, 2016.

[3] J. Chen and C. Guo, “Online detection and pre-
vention of phishing attacks,” in Proceedings of The
First International Conference on Communications
and Networking in China, pp. 1–7, Oct. 2006.

[4] A. Y. Daeef, R. B. Ahmad, Y. Yacob, and N. Y. Ph-
ing, “Wide scope and fast websites phishing detec-
tion using urls lexical features,” in 2016 3rd Interna-
tional Conference on Electronic Design (ICED’16),
pp. 410–415, Aug. 2016.

[5] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been
warned: An empirical study of the effectiveness of
web browser phishing warnings,” in Proceedings of
the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI’08), pp. 1065–1074, New
York, NY, USA, 2008.

[6] M. G. Gouda, A. X. Liu, L. M. Leung, and M. A.
Alam, “Spp: An anti-phishing single password pro-
tocol,” Computer Networks, vol. 51, pp. 3715–3726,
Sept. 2007.

[7] Anti-Phishing Working Group, Phishing Ac-
tivity Trends Report, Dec. 2016. (http://www.
antiphishing.org/resources/apwg-reports/)

[8] S. Gupta, A. Singhal, and A. Kapoor, “A literature
survey on social engineering attacks: Phishing at-
tack,” in Proceedings of the International Confer-
ence on Computing, Communication and Automa-
tion (ICCCA’16), pp. 537–540, Apr. 2016.

[9] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer, “Social phishing,” Communication of
ACM, vol. 50, pp. 94–100, Oct. 2007.

International Journal of Network Security, Vol.19, No.5, PP.711-719, Sept. 2017 (DOI: 10.6633/IJNS.201709.19(5).08) 719

[10] A. K. Jain and B. B. Gupta, “Comparative analy-
sis of features based machine learning approaches for
phishing detection,” in 2016 3rd International Con-
ference on Computing for Sustainable Global Devel-
opment (INDIACom’16), pp. 2125–2130, Mar. 2016.

[11] H. Krawczyk, M. Bellare, and R. Canetti, Hmac:
Keyed-hashing for Message Authentication, Tech-
nical Report RFC 2104, Internet Engineering Task
Force (IETF), Feb. 1997.

[12] P. Kuacharoen, “A practical customer privacy pro-
tection on shared servers,” in Proceedings of the
IEEE International Conference on Information The-
ory and Information Security, pp. 525–529, Dec.
2010.

[13] I. Liao, C. Lee, and M. Hwang, “A password au-
thentication scheme over insecure networks,” Jour-
nal of Computer and System Sciences, vol. 72, no. 4,
pp. 727–740, 2006.

[14] A. S. Martino and X. Perramon, “Phishing secrets:
History, effects, and countermeasures,” International
Journal of Network Security, vol. 11, no. 3, pp. 163–
171, 2010.

[15] A. A. Orunsolu, A. S. Sodiya, A. T. Akinwale, B.
I. Olajuwon, M. A. Alaran, O. O. Bamgboye, and
O. A. Afolabi, “An Empirical Evaluation of Secu-
rity tips in Phishing Prevention: A Case Study of
Nigerian Banks,” International Journal of Electron-
ics and Information Engineering, vol. 6, no. 1, pp.
25–39, 2017.

[16] A. A. Orunsolu, A. S. Sodiya, A. T. Akinwale, B. I.
Olajuwon, “An Anti-Phishing kit Scheme for Secure
Web Transactions,” International Journal of Elec-
tronics and Information Engineering, vol. 6, no. 2,
pp. 72–86, 2017.

[17] E. O. Osei, J. B. Hayfron-Acquah, “Cloud computing
login authentication redesign,” International Journal
of Electronics and Information Engineering, vol. 1,
no. 1, pp. 1–8, 2014.

[18] B. Ross, C. Jackson, N. Miyake, D. Boneh, and
J. C. Mitchell, “Stronger password authentication
using browser extensions,” in Proceedings of the
14th Conference on USENIX Security Symposium
(SSYM’05), vol. 14, pp. 2–2, Berkeley, CA, USA,
2005.

[19] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fis-
cher, “The emperor’s new security indicators,” in
Proceedings of the IEEE Symposium on Security and
Privacy (SP’07), pp. 51–65, May 2007.

[20] R. Shirey, Internet Security Glossary, Technical
Report RFC 2828, Internet Engineering Task Force
(IETF), May 2000.

[21] W. Stallings, Cryptography and Network Security:
Principles and Practice (7ed), Hoboken, NJ: Pear-
son, 2016.

[22] P. Subpratatsavee and P. Kuacharoen, Transaction
Authentication Using HMAC-Based One-Time Pass-
word and QR Code, pp. 93–98, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2015.

[23] Y. Xue, Y. Li, Y. Yao, X. Zhao, J. Liu, and R. Zhang,
“Phishing sites detection based on url correlation,”
in 2016 4th International Conference on Cloud Com-
puting and Intelligence Systems (CCIS’16), pp. 244–
248, Aug. 2016.

[24] J. Youll, Fraud Vulnerabilities in Sitekey Security at
Bank of America, July 18, 2006. (http://cr-labs.
com/publications/SiteKey-20060718.pdf)

Biography

Pramote Kuacharoen received his B.S. and M.E. de-
grees in computer and systems engineering from Rens-
selaer Polytechnic Institute (RPI) in 1995 and 1996, re-
spectively. He also received his M.S. and Ph.D. degrees in
electrical and computer engineering from the Georgia In-
stitute of Technology in 2001 and 2004, respectively. He
joined the Department of Computer Science at National
Institute of Development Administration in 2004. His re-
search interests include computer and network security,
information security, computer networks, embedded sys-
tems, and mobile applications design and development.

