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Abstract

Network intrusion is a critical challenge in information
and communication systems amongst other forms of fraud
perpetrated over the Internet. Despite the various tradi-
tional techniques proposed to prevent this intrusion, the
threat persists. These days, intrusion detection systems
(IDS) are faced with detecting attacks in large streams
of connections due to the sporadic increase in network
traffics. Although machine learning (ML) has been intro-
duced in IDS to deal with finding patterns in big data,
the irrelevant features in the data tend to degrade both
the speed and accuracy of detection of attacks. Also, it
increases the computational resource needed during train-
ing and testing of IDS models. Therefore, in this paper,
we seek to find the optimal feature set using discretized
differential evolution (DDE) and C4.5 ML algorithm from
NSL-KDD standard intrusion dataset. The result ob-
tained shows a significant improvement in detection ac-
curacy, a reduction in training and testing time using the
reduced feature set. The method also buttresses the fact
that differential evolution (DE) is not limited to optimiza-
tion of continuous problems but work well for discrete op-
timization.

Keywords: C4.5; Differential Evolution; Machine Learn-
ing; Network Intrusion Detection; NSL-KDD

1 Introduction

Asides other challenges faced by computer network sys-
tems, network intrusion remains one of the unresolved
issues. It has drawn the attention of researchers due to
its continuous threat to the sustenance of businesses. In-
trusion is described as any form of activity which tends to
breach the availability, confidentiality or security of net-
works [13, 16]. The goal of IDS is to identify normal con-
nections from both those using computer resources with-

out authorization or abusing the privileges given to them.
However, IDS are faced with a greater challenge as the
network traffic grows [3, 21].

According to [4] over 25 billion devices will be con-
nected by 2020 which will lead to more traffic as services
are moved to the cloud due to ease of management and
reduced running cost. Therefore, to sustain this techno-
logical advancement, there is a need for swift action in
solving this network threat. IDS is categorized into two
namely “Misuse” and “Anomaly” Detection [24]. While
misuse detection deals with identifying known patterns
of intrusion by comparing it with previous signatures in
the database, anomaly detection identifies patterns that
deviate from the standard pattern. This work focuses on
anomaly detection because attackers tend to change their
method of intrusion when discovered thereby making mis-
use detectors useless.

To detect anomaly in networks, several methods have
been proposed among which ML based IDS have shown to
be more efficient. Despite its advantage over other meth-
ods, it still suffers from high false positive rate (FPR),
false negative rate (FNR), expensive computational cost
and slow classification during training and testing. These
downsides defeat the purpose of IDS since it is expected
to be fast and accurate. Many works attribute this defi-
ciency to irrelevant features in the dataset and have pro-
posed various feature reduction techniques as the solu-
tion. Some nature inspired (NI) algorithms have shown
to be effective in searching for an optimal set of fea-
tures. These include Genetic Algorithm (GA) [26], Par-
ticle Swarm Optimization (PSO) [17], Ant Colony Opti-
mization (ACO) [33], etc. but little has been done using
Differential Evolution (DE). Hence, this work hybridizes
DDE and C4.5 ML algorithm for finding an optimal set
of feature.
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2 Related Works

To address the issue of network intrusion, various steps
has been taken. Some work focused on finding the best
parameter settings for the classifier while others addressed
removing irrelevant features from the dataset.

Due to unavailability of a standard labelled dataset,
most research on IDS has used DARPA dataset known
as KDDCUP’99 [19]. But investigation shows that
the dataset has some fundamental issue which places a
shadow of doubt on the usefulness of models designed
with it [18]. Some of the problems are:

1) Redundant records in the dataset which causes the
classifier to see less frequent records as noise. This
leads to misclassification.

2) Duplication of records which made some models have
better detection rates on the reoccurring data.

3) The above leads to having too large dataset which
leads to excessive computational time. Therefore,
most works randomly select a subset of the dataset
which gives no basis to compare different models or
performance of different feature set. Also, this leaves
no basis for comparing the speed of IDS.

NSL-KDD [20] provided by [32] is a refined subset of
the KDDCUP’99 dataset which solves the issues listed
above. It was validated by testing it on some ML algo-
rithms using their default parameters without a reduction
in feature set. This serves as a benchmark to subsequent
models. For binary classification (“Normal” or “Attack”),
the following accuracies were obtained from the dataset.

This refined dataset has been validated using 7 ML
algorithms on WEKA tool [14] without tuning the pa-
rameters of the learners. The resulting classification ac-
curacy per classifier are as follows; NB-Tree: 82.67%, J48:
81.05%, Random Forest (RF): 81.59%, Multi-Layer Per-
ceptron (MLP): 77.41%, Naive Bayes (NB): 76.56% and
Support vector machine (SVM): 69.52%.

Using this dataset, a various number approach is be-
ing taken to either increase the classification accuracy or
reduce the time needed during training and testing IDS.
In some case, both objectives are achieved. One approach
is to find optimal parameter setting of the classifier, and
another is to tactically reduce the feature used to achieve
faster training and testing time.

Garg and Kumar [13] reviewed various selection and
classification techniques. The work tested the perfor-
mance of combining two to three feature selection meth-
ods using Boolean AND operation. Out of 10 techniques
tested, the combination of Symmetric and Gain Ratio
for feature selection using 15 features and IBK classifier
yielded the highest accuracy. However, no reason was
given on why and how random data was selected from
the dataset. Hence, the result can not be replicated.

Aziz et al. [5] also compared the performance of
correlation-based feature selection (CFS), sequential
floating selection (SFS), principal component analysis

(PCA), information gain and rough sets in selecting ap-
propriate features. SFS methods performed best using 26
features.

Al-Jarrah et al. [2] proposed two novel feature selec-
tion techniques: RandomForest-Forward Selection Rank-
ing (RF-FSR) and RandomForest-Backward Elimination
Ranking (RF-BER). Although the 15 features selected us-
ing RF-FSR achieved higher classification accuracy, it was
only tested using cross-validation which does not guaran-
tee its usability as reflected in [22].

Gaikwad and Thool [12] proposed Bagging ensemble
classifier method on NSL-KDD dataset using the Rep-
Tree algorithm as the base class. The method utilized a
reduced feature set of 29 features to achieve an accuracy
of 81.2988% on the test set and 99.6761% using 10-fold
cross-validation on the training set. Also, [27] compared
the performance of selected ML algorithms where Bagging
ensemble selection algorithm performed best with 97.85%
accuracy after cross-validation. Ingre and Yadav [15] per-
formed an analysis of NSL-KDD dataset using Artificial
Neural Network (ANN) for both binary class classifica-
tion (normal and attack) and five class classification (nor-
mal, DoS, U2R, R2L, and Probe). The method achieved
81.2% and 79.9% accuracies showing binary classification
performs better than multiclass. Pervez and Farid [22]
proposed an SVM-based feature selection method which
achieved 91% accuracy using three features and 99% with
41 features on all the training set; the setback is that
its classification accuracy when tested with an unseen
dataset give 82.37%. Deshmukh et al. [10] approached in-
trusion detection by normalizing, discretized and selecting
feature before training three classifiers (NB-Tree, NB, and
AD Tree). The output showed NB algorithm performed
efficiently regarding effectiveness, elegance, simplicity and
robustness when compared to others on the training set.
Since [10] did not provide this result when further eval-
uated on the test set, it is uncertain whether the model
would yield high detection rate as results from previously
proposed methods show that a training model may give
a high accuracy, but does not guarantee the same when
tested with new attacks.

Lately, nature-inspired (NI) algorithm was introduced
to solving either feature selection or parameter optimiza-
tion. Benaicha et al. [6], considered GA in detecting some
attacks in NSL-KDD dataset using nine selected features,
the focus was on detecting some DoS attacks (Neptune,
smurf, teardrop, pod, back). The result was quite impres-
sive but did not address other DoS attacks in test data
and other attacks in NSL-KDD.

Likewise, [7] proposed an IDS which used GA, infor-
mation gain (IG), mutual correlation and cardinality of
features to achieve higher accuracy. The IG based fea-
ture selection was able to increase the accuracy to 87.54%
using nine features. It was also limited to detecting Nep-
tune, Satan, and Smurf attacks which are under the denial
of service (DoS). In [5] network intrusion was approached
by reviewing GA with different feature selection meth-
ods. Correlation-based feature selection techniques such
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as IG, sequential floating, rough set and principal com-
ponent analysis (PCA) for feature extraction were used
on NSL-KDD dataset. Sequential-floating backward se-
lection showed to be more effective with higher detection
rates.

Stein et al. [28] proposed a model which considered de-
cision tree classifier for network intrusion detection with
GA-based feature selection. Their work was focused on
identifying features which could separate each category of
attacks (DoS, Probe, U2R, and R2L) from normal con-
nections in a network. This led to creating four different
models which were yet to be integrated as one.

Despite the superiority of DE in solving various opti-
mization [9], there is a limited usage in its application
to intrusion detection. Elsayed et al. [11] proposed DE
for classification of attack but applied flexible neural tree
(FNT) [8] for feature selection. Here, we propose a hy-
bridization of DDE and C4.5 for selecting optimal fea-
tures.

3 Problem Definition

Though some IDS adopts the working principle of ML
for classification of connections in a network, it still faces
a critical challenge which limits its use in some real life
environment. Some systems proposed are either slow or
raises false alarms, e.g., misclassification of normal con-
nection as intrusive which could frustrate the experience
of client or classification of intrusive connection as normal
leading to a significant loss. Also, the fundamental issues
about KDDCUP’99 dataset [18] give doubt on the accu-
racy presented by most works. For an IDS to be effective,
the classification accuracy must be high, and detection
rate must be fast without the usage of excessive com-
putational resources. To achieve this goal, there is the
need for removing irrelevant features from network con-
nections during classification. Hence, the major problem
is how to select the best set of feature for the right ML al-
gorithm without loss of relevant information. Several fea-
ture reduction methods have been proposed including the
use of other computational intelligence techniques such
fuzzy systems, neural networks (NN) and NI algorithms.
Among the various NI algorithms, GA show to be the fa-
vorite optimization technical several works has been done
while little or no work has been done using DE for finding
features for IDS.
Generally, GA concentrates more on exploring the search
space than exploiting the environment of a solution. It is
however noted that exploiting a weak solution using DE
could yield a better solution than the best in the pop-
ulation for discrete optimization problems which in turn
reduces the number of generations. Hence, we utilize DE
for finding the optimal set of features where the selection
criteria are based on the classification accuracy of the fea-
ture set. We also emphasize the need for using NSL-KDD
dataset [32] during modelling which solves the fundamen-
tal issues of the KDDCUP’99 dataset.

4 Methodology

This section explains various concepts such as C4.5 Deci-
sion Trees (DT), DE and how they are harnessed in our
proposed technique to search for the optimal feature set.

4.1 Decision Trees (C4.5)

DT designed by [23] are flow-chart-like structures which
follow an IF-THEN rule have proved to be fast and effi-
cient. It is an improvement of the ID3 algorithm which
is a top-down recursive divide and conquer approach. It
seeks to divide the entire dataset by first breaking the
values of a feature(or Attribute) into ranges. To do this
efficiently at each node, C4.5 calculates the gain ratio of
each attribute and selects the one with highest the gain
ratio. The expected information, Entropy, Information
gain and gain ratio are calculated tho ensure the best
split is achieved which can be seen as follows.

Let S be the sample data to be split which consist of
X1, · · ·Xj attributes where the jth represents the distinct
class labels( Ci, · · ·Cm)

H(S) = −
m∑
i=1

Pilog2(Pi), (1)

where, H is the expected information that is needed to
classify a given sample data. Pi is the probability that an
instance in sample S belongs to class Ci which is calcu-
lated as the sum of all instances in S which are of class
Ci divided by the total instance in S (|Ci,s|/|S|).

Assuming the range of values of X1 is subdivided into v
distinct values {x1, x2, · · · , xv} and used to divide S into
{S1, S2, · · · , Sv} where Sj contains instances in D that
corresponds to xi of X1. Hence the entropy which is the
expected information needed to classify an instance from
S based on splitting by X1 in order to arrive at an exact
classification can be given as:

infoX1
(S) =

v∑
j=1

|Sj |
|S|
×H(Sj). (2)

It is noted that
|Sj |
|S| is the weight of the J th partition

and the smaller the value of infoX1
(S), the greater the

possibility that all instances in the partition belong to the
same class.

Now, information gain is the expected reduction in en-
tropy caused by partitioning the samples according to the
attribute X1. That is, the difference between splitting S
based on the proportion of classes and partitioning on X1

which is given as:

Gain(X1) = H(S)− infoX1(S). (3)

Gain Ratio is used to reduce a bias towards multi-valued
attributes by taking the number and size of branches into
account when choosing an attribute.

GainRatio(X1) = Gain(X1)/SplitInfo(X1). (4)
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Some other advantages of C4.5 can be extracted from [1].
Various DT classifiers including C4.5 adopts a greedy ap-
proach as it considers the immediate consequence of se-
lecting a feature to split on at the current node without
estimating the full depth future implication. Hence, a
need to devise a method such that features with a high
gain ratio at the initial split but more misclassification
cost at the end is removed.

4.2 Differential Evolution

DE [30] which is also a population-based search technique
as GA is the main optimization technique explored in this
work. The sequence of operating is given as initialization,
mutation, recombination/crossover and selection [25]. Al-
though DE was originally designed for continuous prob-
lems, we see how to adapt its concept on the discrete
problem through representing the solutions like that of
GA. Also, using similar operators of GA but in the se-
quence of DE as shown in Figure 1. The details are as
follows.

• Initialization: An initial population of chromo-
somes is generated for the first generation: XG =
{x1,G, x2,G, x3,G, · · · , xi,G} where each chromosome
xi,G is called the target vector .

• Mutation: The mutation is different from that of
GA. Here, for each xi,G, a donor vector vi,G+1 is
generated.

vi,G+1 = xr1,G + F.(xr2,G − xr3,G), (5)

where xr1,G, xr2,G, xr3,G are randomly chosen from
the population excluding the target vector. F is a
user defined mutation or constant factor (F ∈
[0, 2]) which controls the amplification of the differ-
ential variation (xr2,G − xr3,G).

• Crossover: The mutant vector is mixed with the
target vector to produce a trial vector ui,G+1 as
follows:

ui,G+1 =

{
vj,i,G+1 if randj,i ≤ CR or j = Irand

xj,i,G if randj,i > CR and j 6= Irand

i = 1, 2, · · · , N ; j = 1, 2, · · · , D, where N is the pop-
ulation size and D is the dimension of xi. CR is the
crossover constant ([0, 1]). Irand ensures vi,G+1 6=
xi,G.

• Selection: The trial vector ui,G+1 and target vector
xi,G are evaluated using the objective function. A
comparison is then made between the two. The one
with lower value is moved to the new generation.

xi,G+1 =

{
ui,G+1 if f(ui,G+1) ≤ f(xi,G)

xi,G otherwise

Start

initialize

mutation

crossover
go to next
generation

selection

Termination
condition

met?

Stop

no

yes

Figure 1: Differential evolution

4.3 Proposed Method

The proposed method models a DDE [31] strategy for
finding the optimal set of features as follows.

4.3.1 Initialization of Population

Since the optimization problem deals with whether or not
a feature is used, the solutions are expected are binary
strings of 1 and 0 where a gene position having 0 means
the feature is not used. However for the DE operators to
have more effect, we initially encode the 41 positions as
random numbers in the range of 0 and 1. Table 1 gives a
picture of how a solution is represented.

Table 1: Chromosome

0.5 0.1 0.9 0.7 0.55 0.41 0.1 0.3

4.3.2 Mutation

To generate the mutant vector vi for a target vector xi,G,
we do the following:

vi,G+1 = m
⊕

F.(xr,G) (6)

where: m = {a, a, a, · · · | |m| = |xr,G| , 0 < a < 1} in this
case, a = 0.3 and F = 0.4 which is a scalar value.

xr,G is a random chromosome such that xi,G 6= xr,G.
While F is the amplification factor which is preset, m
gives some stability since the element of xr,G are random
numbers in the range of 0 and 1.
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4.3.3 Crossover

The mutant vector is mixed with the target vector to
produce a trial vector ui,G+1 as follows:

ui,G+1 =

{
vj,i,G+1 if randj,i ≤ CR or j = Irand

xj,i,G if randj,i > CR and j 6= Irand

i = 1, 2, · · · , N ; j = 1, 2, · · · , D, where N = 10 is the
population size and D is the dimension of xi. CR is the
crossover constant ([0, 1]) which is set at 0.5.

4.3.4 Selection

The following test is done in parallel with fitness evalu-
ation in the next section to select the candidate for the
next generation.

xi,G+1 =


xi,G if ui,G+1 = {0, 0, 0, · · · } or {1, 1, 1, · · · }
ui,G+1 if f(ui,G+1) ≤ f(xi,G)

xi,G otherwise

If the first condition is met, it leads to an outright reject of
the trial vector because it means none or all the features
are selected but the goal is to find optimal features. The
second selects the trial vector if the fitness is less than the
target vector since we are minimizing the misclassification
rate.

4.3.5 Fitness Evaluation

The fitness of each chromosome is evaluated by convert-
ing the genes to 0’s and 1’s based threshold values and
mapping the gene position to the features in the dataset.
Taking note that every gene whose value is 0 indicates
the feature is not used for classification while the reverse
is the case where the value is 1. This reduces the dataset
column-wise before been passed to WEKA tool where
classification is done using the C4.5 algorithm. The accu-
racy after training and testing becomes the fitness value
which is calculated as follows:

accuracy =
correctly classified instance

total test set

misclassification rate = 1− accuracy.

4.3.6 Algorithm for Feature Selection

The algorithm 1 shows how features were selected.

4.3.7 Performance Metric Used For The Pro-
posed Method

There are standard performance metrics used in evaluat-
ing of an ML algorithm which can either be done through
the command line or graphically using the WEKA tool.
In this work, the following metrics are verified after ob-
taining the optimal feature set from the search technique:

Algorithm 1 Feature selection using discrete DE

1: Initialize Population
2: Initialize m, F, CR,Generation G and conversion

threshold tr
3: for i ← 1 to G do
4: for each chromosome do
5: Set target vector (xi,G) = chromosome
6: Randomly select xr,G‖xr,G 6= xi,G

7: Mutate to get the trial mutant vector vi,G+1

8: crossover each allele of vi,G+1 and xi,G with
9: a Probability of CR to get ui,G+1

10: Selection
11: if All element of ui,G+1 0’s or 1’s then
12: Add target vector to new population
13: else
14: Convert alleles to 0 or 1 based tr
15: Evaluate f(ui,G+1) and (xi,G)
16: if f(ui,G+1) ¡ (xi,G) then
17: Add initial trial vector before
18: conversion to new population
19: else
20: Add initial target vector before
21: conversion to new population
22: end if
23: end if
24: end for
25: end for
26: map the genes of the chromosome to its actual feature

name

• Sensitivity or True positive rate (TPR): This
is the ratio of positive class (attack connections) that
are correctly identified to the total positive class (P).

True positive rate =
True positives (TP )

P
.

• True negative rate (TNR) or specificity : It
estimates the ratio of negative class (normal connec-
tions) that are correctly identified to the total nega-
tive class (N).

True negative rate =
True negative (TN)

N
.

• Precision is the measure of exactness, i.e., the per-
centage of instances classified as an attack, out of the
total number of cases classified as attacks.

Precision =
TP

TP + FP
,

where: FP (false positives) are normal which are
wrongly classified as attacks while the counterpart
called false negatives (FN) are attack connections
wrongly classified as normal.

• Recall shows the measure of completeness. It is
calculated just like true positive rate.
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• error or misclassification rate is calculated as
1 - accuracy. It can also be computed as

missclassification rate =
FP + FN

P + N
.

• Receiver Operating Characteristics (ROC)
Curve is a plot that shows the trade-off between
TPR and the rate of false positives (FPR). It is a vi-
sual representation of the rate at which the proposed
model can recognize normal connections versus mis-
classification of attacks as normal for various sections
of the dataset. Also, it leaves an area under the
curve (AUC) which also determines how well the
classifier performs. The closer the area is to 1.0, the
better the classifier.

5 Experimental Setting

The implementation of the proposed method was written
mainly with Python 2.7 programming language and an
ML library known as WEKA, version 3.8.0 which has sev-
eral learning algorithms including C4.5. With respect to
the hardware used, a personal computer having a random
access memory of 4GB RAM, storage size 500GB with
Processor type Intel(R) Core(TM) i3 CPU @2.53GHz
speed was used. Since WEKA is written in Java, its in-
tegration with python is made possible using java virtual
machine wrapper for Python.

6 Dataset

The KDDCup’99 dataset contains historical data pre-
pared by [29] for evaluating IDSs. It has been a com-
mon dataset used for training and testing models of ML
algorithms, hence used as a benchmark. The dataset com-
prises of a training and test set. The Training set contains
22 different types of attacks which are mixed with normal
connections while the test set contains both the 22 attacks
and 17 news attack which total to 39 attacks. The records
in the dataset consist of 41 attributes (features). Due to
the inherent challenges of the dataset, NSL-KDD dataset
which is an extract from the original KDDCUP’99 dataset
is used. It contains about 125973 instances of TCP/IP
connections which can be utilized for training and 22544
instances for testing designed models. The instances in
the dataset are data connections as they flow from source
to destination. For experimental purpose, each instance
is given a “label” to identify it as either an “attack” or
“normal” connection. The values of the features can also
be divided based on their type: numeric or symbolic. One
of the advantages of NSL-KDD dataset is that the quan-
tity is reasonable enough to be trained as a whole by most
algorithm as compared to KDDCUP’99 where small por-
tions of the dataset are used for training and testing [32].
Table 2 shows the list of features and their types.

Also, both the 22 attacks in the training set and 39
attacks in the test set can be further categorized into four

Table 2: Total list of features in NSL-KDD dataset

No. Feature Type

1 Duration Numeric

2 protocol type Symbolic

3 Service Symbolic

4 flag Symbolic

5 src bytes Numeric

6 dst bytes Numeric

7 land Numeric

8 wrong fragment Numeric

9 urgent Numeric

10 hot Numeric

11 num failed logins Numeric

12 logged in Numeric

13 num compromised Numeric

14 root shell Numeric

15 su attempted Numeric

16 num root Numeric

17 num file creations Numeric

18 num shells Numeric

19 num access files Numeric

20 num outbound cmds Numeric

21 is host login Numeric

22 is guest login Numeric

23 count Numeric

24 srv count Numeric

25 serror rate Numeric

26 srv serror rate Numeric

27 rerror rate Numeric

28 srv rerror rate Numeric

29 same srv rate Numeric

30 diff srv rate Numeric

31 srv diff host rate Numeric

32 dst host count Numeric

33 dst host srv count Numeric

34 dst host same srv rate Numeric

35 dst host diff srv rate Numeric

36 dst host same src port rate Numeric

37 dst host srv diff host rate Numeric

38 dst host serror rate Numeric
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39 dst host srv serror rate Numeric

40 dst host rerror rate Numeric

41 dst host srv rerror rate Numeric

broader groups which are Dos, Probe, U2R and R2L as
described below also in Tables 3 and 4:

• Denial of Service(DoS): An attack which creates
excessive computational request to the responding
system such that there are no more resources on the
destination side to respond to a request from legiti-
mate users which is the goal of the attacker.

• Probe attacks: The attacker gets sensitive infor-
mation about a network by scanning data without
access permission with the aim of breaking its secu-
rity control.

• Remote-to-Local (R2L): uses the vulnerability of
a system to get a normal user account from a remote
location to gain local access to a system.

• User-to-Root(U2R): It is when an attacker uses
means such as social engineering, password sniffing
to get the password of a normal user of a system,
from there he can exploit some vulnerability of the
system to gain root access.

Table 3: Categories of attacks in NSL-KDD training and
test dataset

Category Actual Attacks
in Training

Additional At-
tacks in Test
set

DoS Neptune, smurf,
teardrop,
pod, land, back

apache2, mail-
bomb,
processtable, udp-
storm

Probing satan, ipsweep,
nmap, portsweep

mscan, saint

R2L imap, warezmaster,
phf,
multihop,
guess passwd,spy,
warezclient,
ftp write

httptunnel, named,
sendmail, snmpge-
tattack,
xlock, xsnoop

U2R loadmodule,
buffer overflow,
rootkit, perl

ps, snmpguess,
sqlattack,
worm, xterm

7 Results and Discussion

This section provides experimental results of the proposed
feature selection search technique. It uses the standard

Table 4: Categories of attacks in NSL-KDD training and
test dataset

Training Dataset Testing dataset

Attack Class Quantity Attack Class Quantity

Normal 67343 Normal 9711

DoS 54927 DoS 7458

Probe 11656 Probe 2421

R2l 995 R2L 2754

U2R 52 U2R 200

Total 125973 Total 22544

ML metric to evaluate the strength of the resulting classi-
fier. These metric includes classification rate, FPR, TPR,
precision, recall, F-measure and Auc. Also, it is compared
to recent ML techniques to see how well it performs.

The performance of the classifier is evaluated both
on the training set and more importantly the test set
provided by NSL-KDD. Table 5 shows a detailed per-
formance of the proposed feature set on the C4.5 algo-
rithm. Comparing the result of Table 5 with Table 6
where Bagging ensembles was proposed by [12], it is clear
that our method performs better both regarding accuracy
and FPR. Also, Table 8 presents results from [22] which
indicate the proposed model is better when matched.
Likewise, It performs better in terms of accuracy than
both multi and binary classification using ANN proposed
by [15] as shown in Table 7.

Furthermore, the area under the curve (AUC) after
feature selection in Figure 3 shows an appreciable increase
(Auc = 0.9172) compared to Figure 2 (Auc = 0.84) which
shows the classifier is balanced in its classification.

Table 5: Performance of proposed model on NSL-KDD
dataset

Datasets Training
(100%)

Testing

Classification rate 99.81% 88.73%
Error rate 0.1873% 11.27%
TP Rate (Weighted
Avg.)

0.998 0.89

FP Rate (Weighted
Avg.)

0.002 0.093

Precision
(Weighted Avg.)

0.998 0.90

Recall (Weighted
Avg.)

0.998 0.89

F-Measure
(Weighted Avg.)

0.998 0.89
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Table 6: Performance on NSL-KDD dataset [12]

Performance
Metric

On Training
Set

On Test
Set

Classifier Accuracy 99.6761% 81.2988%
False Positive Rate 0.003 0.148

Table 7: Performance on NSL-KDD dataset [15]

Classifier
Method

Detection
Accuracy

FPR
(attack)

SOM 75.49 5.77
binary 81.2 4.23
five class 79.9 -

Table 8: Performance on NSL-KDD dataset [22]

Datasets Training
(100%)

Testing

Classification rate 99.01% 82.37%
Error rate 0.98% 17.62%
TP Rate (Weighted Avg.) 0.99 0.82
FP Rate (Weighted Avg.) 0.007 0.15
Precision (Weighted Avg.) 0.99 0.74
Recall (Weighted Avg.) 0.99 0.82
F-Measure (Weighted
Avg.)

0.99 0.77

Figure 2: ROC before feature selection

We can also see the effect of the feature reduction in
the training time of C4.5, as shown in Figure 4, which
shows a 76% decrease in the training time.

In general, the achievements of this classifier is at-
tributed to the choice of a feature set. The DDE al-
gorithm helped in obtaining the right set of features as

Figure 3: ROC after feature selection

Table 9: List of features used

No. Feature

1 Duration

2 Service

3 src bytes

4 land

5 hot

6 num compromised

7 root shell

8 is guest login

9 serror rate

10 rerror rate

11 srv rerror rate

12 dst host count

13 dst host srv count

14 dst host same srv rate

15 dst host srv serror rate

16 dst host rerror rate

shown in Table 9. It was observed that the feature used
by C4.5 as the root node of the tree, before and after
the proposed feature selection technique was “src bytes”
which tags the feature as the most important for their
initial split. On the other hand, the “service” feature
contributed most in making the final split. Also, despite
the reduction of features, the important basic TCP fea-
tures (1 - 4), content-based features (4 - 8), time-related
traffic features (9 - 11), and host-based traffic features (12
- 16) were captured without loss in accuracy.

8 Conclusion

This work proposed an efficient feature selection tech-
nique for NID using DDE. Evaluation of the proposed
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Figure 4: Comparison of 41 vs 16 features training times

method is done to both on the training and test set to
rate the resulting classifier compared to other existing
classifiers using standard ML performance metric. The
computational result shows that this technique is able to
identify 16 features capable of classifying the connections
in the NSL-KDD dataset with high accuracy, low error
and FPR. While it achieves 99.92% classification accu-
racy on the training set using 10-fold cross-validation, it
is able to classify new attacks from in the test set with
88.73% accuracy. Aside the result above, the reduced fea-
ture set helps in reducing both the training and testing
time used by the classifier (C4.5). Hence, the proposed
method is greatly encouraged.

In future, we intend to extract connections from live
networks having these set of features but with recent
forms of attack to further test the model, because other
datasets which have been provided by some authors do
no have the exact features as in the NSL-KDD dataset.
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