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Abstract

Provable security is a reduction that breaking the scheme
is usually reduced to solving some basic hard problems,
thus the foundation of the scheme’s security is the as-
sumption that it is hard to solve the based problems.
Due to most existing schemes are founded on single as-
sumption, some encryption schemes, whose security are
based on multiple assumptions, have been proposed. Re-
cently, Su and Tsai constructed a knapsack-type encryp-
tion scheme based on hybrid-model, and proved it should
be more secure than schemes based on single assump-
tion. In this paper, we find that this scheme actually
cannot reach the security as claimed. By launching the
known message attack, we show Su and Tsai’s encryption
scheme cannot provide confidentiality, for the adversary
could decrypt any ciphertext in this cryptosystem if one
of the assumptions does not hold.
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1 Introduction

Provable security was first introduced by Goldwasser and
Micali [4] in the particular context of asymmetric encryp-
tion. Its main idea comes from proofs by contradiction in
Mathematics, which is a reduction as follows [14]. At first,
take some goal for a scheme, such as achieving privacy
via encryption. Then, make a formal adversarial model
according to the adversary’s ability, and define what it
means for a scheme to be secure.

With this in hand, a particular scheme, based on some
particular atomic primitive, can be analyzed from the
point of view of meeting the definition. Eventually, one
shows that the scheme works via a reduction. The reduc-
tion shows that the only way to defeat the scheme is to

break the underlying atomic primitive [1, 7]. Therefore,
the atomic primitive, which may be some basic math-
ematical problem, is the foundation of the security for
intended scheme.

Since the concept of provable security was proposed, a
large number of works have been made, including many
delicate encryption designed and proved in formal secu-
rity model [6, 8]. However, the security of most existing
schemes is founded on just one cryptographic assumption,
such as factoring, discrete logarithm (DL) problem [11],
elliptic curve discrete logarithm problem (ECDLP) [12],
etc. Though these assumptions appear reliable now, it is
possible that efficient algorithms will be sooner or later
developed to break one or more of them. It is unlikely
that multiple cryptographic assumptions would simulta-
neously become easy to be solved. Thus, several crypto-
graphic systems’ security is reduced to solving multiple
hard problems at the same time.

In 1994, Harn [5] first developed a public key cryp-
tosystem based on multiple cryptographic assumptions,
intractability of factoring [3] and DL problems [10]. Re-
cently, Su and Tsai [13] presented an encryption scheme
based on the linearly shift knapsack and elliptic curve
cryptosystem, and claimed that it is secure based on the
hardness of the linearly shifting knapsack problem and
ECDLP, for one possible hope to break the proposed sys-
tem might be to solve both of the problems.

In this paper, we cryptanalyze Su and Tsai’s knapsack-
type encryption scheme, and find it is not really secure as
claimed. Concretely, with one pair of message and cipher-
text in hands, the adversary could decrypt any ciphertext
in this cryptosystem, if one of the assumptions, i.e. the
linearly shifting knapsack problem is hard, does not hold,
which consequently breaks its security based on multiple
assumptions.

The rest of this paper is organized as follows. Some
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preliminary works are given in Section 2. Then, Su and
Tsai’s knapsack-type encryption scheme is recalled and
our attack on its security is described in Section 3. Fi-
nally, some conclusions are drawn in Section 4.

2 Preliminaries

In this section, we briefly review some basic concepts used
in this paper, including bilinear pairings, the knapsack
problem, the linearly shift knapsack algorithm and the
computational knapsack Diffie-Hellman problem.

2.1 Bilinear Pairings

Let G and GT be groups of prime order q and P be a
generator of G. The map e : G × G → GT is said to
be an admissible bilinear pairing if the following three
conditions hold true:

1) Bilinearity: for all a, b ∈ Zq, we have e(aP, bP ) =
e(P, P )ab.

2) Non-degeneracy: e(P, P ) 6= 1GT
.

3) Computability: e is efficiently computable.

It is noted that the map e is symmetric since
e(aP, bP ) = e(P, P )ab = e(bP, aP ) and we refer reader
to [2] for more details on the construction of such pair-
ings.

2.2 Knapsack Problem

The knapsack problem is a typical problem of combina-
torial optimization, and 0/1 knapsack problem is one of
the most basic cases, which is presented as follows [13].

• Problem instance:
K = (k1, k2, · · · , kn, t), where k1, k2, · · · , kn and t are
positive integers. k1, k2, · · · , kn are called sizes and t
is called the target sum.

• Question:
Is there a 0-1 vector S = (x1, x2, · · · , xn) such that
n∑

i=1

xiki = t?

It is easy to solve the knapsack problem when
(k1, k2, · · · , kn) is a superincreasing sequence, in which
the next term of the sequence is greater than the sum
of all preceding terms. However, it is assumed that the
knapsack problem for the general case cannot be solved
in probabilistic polynomial time (PPT).

2.3 Linearly Shift Knapsack Cryptosys-
tem

Based on Laih et al’s method [9], Su and Tsai [13] pro-
posed the high density knapsack algorithm and the lin-
early shift knapsack algorithm described as follows, which
are used to generate the system parameters of their en-
cryption scheme.

• High density knapsack algorithm:

Step 1: Let a = (a1, a2, · · · , an) be a superincreas-
ing sequence, and select two integers w,m sat-

isfying gcd(w,m) = 1, where m >
n∑

i=1

ai.

Step 2: Calculate the original enciphering keys bi ≡
ai × w mod m for all i.

Step 3: Compute the high density sequence b′ =
(b′1, b

′
2, · · · , b′n), where b′i ≡ bi mod w, then

b′i < w for all i.

Step 4: Calculate c = (c1, c2, · · · , cn), where ci =
bbi/wc, then 0 ≤ ci ≤ v, and compute the de-
ciphering keys a′i = ai − ci, where v = bm/wc
(here bxc is a floor function, representing the
largest integer value smaller than x).

• Linearly shift knapsack algorithm:

Step 5: As high density knapsack algorithm, cal-
culate a high density knapsack sequence b′ =
(b′1, b

′
2, · · · , b′n).

Step 6: Choose a random binary sequence t =
(t1, t2, · · · , tn), and an integer k with 0 <
k < min{b′i} for ti = 1. Then b′i are lin-
early shifted by performing ei = b′i − kti and
e = (e1, e2, · · · , en) which is published as the
public enciphering key.

3 Chosen Plaintext Attack on Su
and Tsai’s Encryption Scheme

To analyze the security of Su and Tsai’s encryption
scheme [13], we first recall their descriptions as follows.

System setup:
The receiver Alice selects the domain parameters
which are comprised of:

• The field order q.

• Two coefficients a, b ∈ Fq that define the equa-
tion of the elliptic curve E over Fq.

• The number of points in E(Fq), denoted as
]E(Fq).

• Two field elements xP and yP in Fq that define
a finite point P = (xP , yP ). P has a prime order
q′ and is called the base point.

• A one-way hash function f().

• Parameters (w,m, k, rA, a) as his private keys,
where m < q′, rA ∈ Z∗q′ .

• A random binary sequence t.

• Public keys e = (e1, e2, · · · , en) and QA = rAP .
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Encryption:
To encrypt the message x to Alice, Bob picks up his
secret key rB , publishes his public key QB = rBP
and computes the ciphertext pair message x using
Alice’s public keys e = (e1, e2, · · · , en) and QA. The
encryption phase is as follows:

• Bob encodes the plaintext message

x = (x1, · · · , xn),

where xi = 0 or 1, for i = 1, 2, · · · , n.

• Produces the ciphertext

E(x) = ((k1, k2) + rBQA),

where k1 =
∑n

i=1 xiei, k2 = f(QA, QB).

• Sends E(x) = ((k1, k2) + rBQA) to Alice.

Decryption:
To receive the ciphertext E(x), Alice computes with
his secret key rA and Bob’s public information QB .
To decrypt the knapsack value, Alice multiplies the
Bob’s public point using his secret key rA and sub-
tracts the result from E(x):

D(E(x)) = (k1, k2) + rBQA − rAQB .

Before computing the knapsack value, Alice needs to

verify whether k2 is sent from Bob by checking k2
?
=

f(QA, QB) and computing k1 which should be the plain-
text point, corresponding to the message bit is 1.

Once Alice, knowing the private key w−1, can remove

k1 =
n∑

i=1

xiei from the ciphertext, and hence retrieve the

plaintext information x:
Since

s× w−1 ≡

(
n∑

i=1

b′ixi

)
× w−1 mod m

≡
n∑

i=1

(ei + kti)xi × w−1

≡ k1 × w−1 + kw−1 ×
n∑

i=1

tixi mod m

and 0 6
n∑

i=1

tixi 6
n∑

i=1

ti 6 n, Alice can obtain the

correct s × w−1 mod m at most y + 1 6 n + 1 times
and get x from s × w−1 by his superincreasing sequence

a = (a1, a2, · · · , an), for s× w−1 =
n∑

i=1

aixi. The correct-

ness can be easily verified through normal enciphering
procedures with the corresponding retrieved x by check-

ing
n∑

i=1

xiei
?
= k1, as it is assumed that the system is

one-to-one.
Su and Tsai [13] heuristically analyzed the security of

their encryption scheme, and claimed that, one possible

hope to break their cryptosystem might be to solve the
linearly shifting knapsack problem and the elliptic curve
cryptography system simultaneously, which is computa-
tionally infeasible for the opponents.

However, we will show that, if one adversary could only
solve the linearly shifting knapsack problem but not the
ECDLP, it might endanger the security of their scheme,
which means it’s not really secure based on hybrid-model
assumption. Su and Tsai [13] defined the security of a
cryptosystem that is evaluated by the amount of time
needed to break it, where breaking a cryptosystem means
finding the private key used to encrypt a message. How-
ever, it is also a fatal destruction for some flawed encryp-
tion schemes that any adversary can obtain the plaintext
or parts of plaintext from ciphertext without the help of
the private key. So what is a secure encryption scheme?
It is not an easy question to answer. In fact, a widely
accepted security property for encryption is the cipher-
text indistinguishability [8], which is very important for
maintaining the confidentiality of encrypted communica-
tions. Intuitively, if a cryptosystem possesses the property
of indistinguishability, then an adversary will be unable
to distinguish pairs of ciphertexts based on the message
they encrypt. Furthermore, according to the adversary’s
capability, the security property for encryption can be
divided into indistinguishability under chosen plaintext
attack(IND-CPA), chosen ciphertext attack(IND-CCA1)
and adaptive chosen ciphertext attack(IND-CCA2). IND-
CPA is considered a basic requirement for most provably
secure public key cryptosystems, though some schemes
also provide stronger security that are IND-CCA1 and
IND-CCA2. In the following, we show that Su and Tsai’s
scheme cannot provide the property of IND-CPA, to say
nothing of IND-CCA1 or IND-CCA2. More exactly, with
an assumed algorithm that can solve the linearly shifting
knapsack problem, the adversary can decrypt any cipher-
text from Bob to Alice if he successfully gets a correspond-
ing ciphertext to his chosen message, which contradicts Su
and Tsai’s claim.

Once the adversary got the ciphertext for some message
x = (x1, · · · , xn), denoted as σ, he could calculate

rBQA = σ − (k1, k2),

where k1 =
n∑

i=1

xiei, k2 = f(QA, QB). Then, for arbitrary

ciphertext σ∗ from Bob to Alice, the adversary could com-
pute

D(E(x∗)) = σ∗ − rBQA = (k∗1 , k
∗
2)

without any part of Alice or Bob’s secret key rA or rB ,
where x∗ = (x∗1, · · · , x∗n) is the intended plaintext and

k∗1 =
n∑

i=1

x∗i ei is its corresponding knapsack sum. Conse-

quently, the adversary could get the plaintext x∗ from k∗1
according to the assumed algorithm of solving the linearly
shifting knapsack problem.

During the whole attacking process above, no algo-
rithm concerning the ECDLP is needed, but the value
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related to Alice’s secret key rA is leaked in a sense. There-
fore, their proposal is actually not a secure encryption
scheme that couldn’t be broken unless the linearly shift-
ing knapsack problem and the ECDLP were solved simul-
taneously. In other words, its security is only based on
the hardness of the linearly shifting knapsack problem.

4 Conclusions

We have made the cryptanalysis of Su and Tsai’s
knapsack-type encryption scheme based on hybrid-model
problems, and launched a chosen plaintext attack to show
it does not satisfy the enhanced security depends on
the computational complexity of multiple assumptions.
Therefore, to the best of our knowledge, it remains on its
way to construct really secure encryption scheme based
on hybrid-model problems.
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