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Abstract

Most group key agreement protocols make use of modu-
lar exponential operations which require extensive com-
puting resources in devices. Thus, they are unsuitable
for resource- constrained devices such as mobile phones,
smart cards and intelligent watches. This paper proposes
a group key agreement protocol based on braid groups
which requires only multiplication operations. The pro-
posed protocol is a scalable one and needs only two rounds
for setting a secure group communication. To prevent a
man-in-the-middle attack, exchanged messages are sim-
ply authenticated by using users’ long-term public and
private keys instead of signatures. Authentication proofs
are also made by using well-known BAN logic. The proto-
col is designed for dynamic group communication in which
member join, member leave, group merge and group par-
tition are discussed. The proposed algorithms take ad-
vantage of precomputed values achieved in previous ses-
sions to update keys in subsequent session. This makes
the scheme generates fewer communicating messages and
lessens user devices’ computation. Comparisons of secu-
rity and complexity among several two-round protocols
are also discussed in this article.

Keywords: Authenticated group key agreement, BAN au-
thentication logic, braid groups

1 Introduction

Group communication has been widely studied in re-
cent times because it has many commercial applications.
These include, amongst others, audio-video conference,
pay-per-view, audio-video broadcasting, stock quote ser-
vices, collaborate tasks, and so on. Many of these ap-
plications require security services such as, data confi-
dentiality, data integrity and data authentication, dur-
ing transmission. Group key management can be used
for generating group session key in order to provide se-
cure communication. There are two main types of group
key management protocols: group key distribution and
group key agreement. In group key distribution scheme,

the group session key is generated and distributed by a
central trusted party via secure channel. The main dis-
advantage of this scheme is that it needs both a trust
authority as well as the availability of secure channels.
Furthermore, the scheme suffers from security risks when
there is a single point of failure. A group key agreement
scheme, by contrast, allows all authorized group members
to work together to establish a group session key. These
schemes [1, 3, 5, 6, 9, 12, 15, 16, 18, 21] have been studied
widely in recent years because they are considered to be
scalable.

Most group key agreement protocols are based on
Diffie-Hellman as well as Elliptic Curve two-party key
exchange protocol and they require exponential opera-
tions [3, 7, 8, 9, 12, 14, 15, 16, 18]. However, there are
studies based on braid groups which require only multi-
plication operations [1, 6, 10, 11, 13, 19, 20]. For instance,
Lee et al. [13] has proposed an authenticated group key
agreement protocol for designated groups based on braid
groups. In authenticated group key protocol, each mem-
ber is assured that no users outside the group can find
out the session key. The key disadvantage of this work is
that the number of rounds needed in the work is linear
to the number of group members. In each round, some
calculated values have to be sent from user i to user i+ 1
for further calculation. Therefore the scheme can suffer
from long delays at some participants in the group. In
a recent paper [1], Aneksrup and Hiranvanichakorn pro-
posed a dynamic group key agreement based on braid
groups and a key tree structure. In a dynamic group,
parties may join and leave the group any given number
of times. This scheme needs O(n) rounds for n-parties
group initialization, constant rounds in the case that the
user n is the group director for join operation, and O(n)
rounds in worst case for leave operation. However, an
O(n)-round protocol is considered not to be scalable and
suffers from long network delays. To get around these
problems, some researchers have turned to constant-round
protocols. Nevertheless, those works are still based on ex-
ponential operation cryptosystems [7, 8, 12, 14, 21].

In the paper by Hwang et al. [8], a framework for ex-
tending a two-party key exchange protocol to a contrib-
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utory group key one has been proposed by using a ring
structure of participants. Hwang et al. applied their work
to Diffie-Hellman key exchange, resulting in a two-round
group key agreement protocol. However, Lee et al. [14]
pointed out that Hwang et al.’s scheme has some flaws
when applied to a dynamic group. Lee et al. also intro-
duced an improvement to the algorithm to get rid of the
flaws. Nonetheless, it can be shown in this paper that Lee
et al.’s algorithm as well as several ring-structure proto-
cols still suffer some flaws when they are applied in dy-
namic environment.

In this paper, an authenticated group key agreement
protocol using braid group cryptography is proposed. The
proposed protocol needs only two rounds and uses a ring
structure of participants. Authentication between com-
municating users can be simply done by using users’ long-
term private and public keys instead of digital signature
scheme. The protocol is a dynamic case in which mem-
ber join, member leave, group merge and group partition
are discussed. In the protocol, precomputed values in
previous sessions are used for updating session keys in
subsequent session. This can generate fewer exchanged
messages and lessen users’ computation than previously
proposed protocols. In addition, an authentication proof
using BAN authentication logic [4, 17] is given in this ar-
ticle. The proof for the proposed group key agreement
is different from the authentication proof given in Lee et
al [14]. Security and performance analysis of the proposed
protocol are also discussed. Finally, comparisons among
ring-structure protocols are illustrated.

The rest of this paper is organized as follows. Section 2
provides some preliminaries of braid group cryptography.
A provably authenticated key exchange protocol based
on braid groups is described in Section 3. In Section 4,
some reviews of previous group key agreement protocols
and their security analysis are given. The proposed au-
thenticated group key agreement protocol for dynamic
group is described in Section 5. Section 6 offers a security
analysis of the proposed protocol showing the authentica-
tion proof. In Section 7, security analysis of the protocol
against some well-known attacks and some comparisons
among ring-structure protocols are provided. The conclu-
sion is given in Section 8.

2 Preliminaries

This section gives a brief description of braid groups, some
hard problems in braid groups as well as a well-known key
exchange protocol proposed by Ko et al. [11]. For more
information on braid groups, please refer to papers [2, 10,
11].

The n-braid group Bn is the group generated by gen-
erators σ1, · · · , σn−1 with the relations,

1) σiσjσi = σjσiσj where |i − j| = 1, e.g. σ3σ2σ3 =
σ2σ3σ2;

2) σiσj = σjσi where |i− j| > 2, e.g. σ5σ3 = σ3σ5.

Each element of the group Bn is called an n-braid.
There are a number of mathematically hard problems
in braid groups, one of the most famous of which is the
Generalized Conjugacy Search Problem (GCSP). GCSP
states that two braids x and y are conjugate if there exists
a braid a such that y = axa−1, where a−1 is the inverse
of a. For m < n, Bm which is a subgroup of Bn generated
by σ1, · · · , σm−1, the hardness of GCSP is as follows.

• Given (x, y) ∈ Bn×Bn such that y = bxb−1 for some
b ∈ Bm, m ≤ n.

• The objective is to find a ∈ Bm such that y = axa−1.

It is considered to be the case that, for sufficiently large
braids, it is easy to compute y from b and x. However,
exponential time is needed to compute a, even when y
and x are known.

In paper [11], Ko et al. has also stated that for a, b
∈ Bn, it is hard to guess a or b from ab.

GCSP is applied in several cryptographic protocols [1,
6, 10, 11, 13, 19, 20]. There are also several attempts
to solve GCSP in braid groups. In a paper [10], Ko et
al. has stated that the attacks on braid cryptosystems
were successful because the current ways of random key
generation almost always result in weaker instances of the
conjugacy problem. They then proposed several ways of
generating secure keys for braid cryptography.

2.1 Ko-Lee Key Agreement Protocol

Ko et al. has proposed a well-known key agreement pro-
tocol based on GCSP. The protocol includes the following
steps.

1) Preparation step: When A(lice) and B(ob) want to
establish a shared key, an appropriate pair of integers
(l, r) and a sufficiently complicated (l+ r) braid x ∈
Bl+r are selected and published as system parame-
ters.

2) Key agreement implementation:

(a) A chooses a random secret braid a ∈ LBl, where
LBl is a subgroup of Bl+r and generated by σ1,
· · · , σl−1. A then sends y1 = axa−1 to B. The
braid y1 is considered to be A′s public key.

(b) B chooses a random secret braid b ∈ LBr where
LBr is a subgroup of Bl+r and generated by σl+1,
· · · , σl+r−1. B then sends y2 = bxb−1 to A. The
braid y2 is also considered to be B′s public key.
By the commutative property of braid groups,
we have ab = ba.

(c) Upon receiving y2, A computes the shared key,
kAB = ay2a

−1 = abxb−1a−1.

(d) B can also compute kAB = by1b
−1 =

baxa−1b−1 = abxb−1a−1.
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In the above scheme, even if E(ve) sees the message
axa−1 (and bxb−1), she needs exponential time to com-
pute a (and b). Therefore, it is very hard for her to find
out the shared key.

3 Provably Authenticated Key
Exchange Protocol

As the public keys of A and B described in Subsection 2.1
are not authenticated, the key exchange scheme is vulner-
able to man-in-the-middle attack. If E(ve) substitutes A
(or B)’s public key with her public key, then the protocol
fails.

This section describes an authenticated key exchange
protocol in which each party’s public key is authenticated
and sent to the other party. By using the authenticated
public key, a secure scheme for key exchange can be ob-
tained. This proposed protocol is based on the scheme
described in paper [13]. A formal proof of the correct-
ness of the proposed scheme based on BAN authentica-
tion logic [4] is also given here. The notations used in this
protocol are listed in Table 1.

Table 1: Notations

Notations Description
x ∈ Bl+r A sufficiently complicated (l + r)-

braid;
αA ∈ LBl A long-term private key of A, where

LBl is a sub group of Bl+r and gen-
erated by σ1, · · · , σl−1;

αB ∈ LBr A long-term private key of B, where
LBr is a sub group of Bl+r and gen-
erated by σl+1, · · · , σl+r−1;

PA = αAxα
−1
A A long-term public key of A;

PB = αBxα
−1
B A long-term public key of B;

βA ∈ LBl A session private key of A;
βB ∈ LBr A session private key of B;

pA = βAxβ
−1
A A session public key of A;

pB = βBxβ
−1
B A session public key of B;

KAB A long-term common secret shared
by A and B;

kAB A shared session key of A and B.

The steps of the protocol are as follows.

(a) A uses αA and PB to compute

KAB = αA PB α−1A

= αA αB x α−1B α−1A .

(b) B uses αB and PA to compute

KAB = αB PA α−1B

= αB αA x α−1A α−1B .

= αA αB x α−1B α−1A .

(c) A computes authenticated public key ApA =
KAB(βAxβ

−1
A )K−1AB and sends it to B.

(d) Upon receiving ApA, B uses KAB which he has
computed in step (b) to get pA = βAxβ

−1
A . B

can then compute the shared session key kAB =
βBβAxβ

−1
A β−1B = βAβBxβ

−1
B β−1A .

(e) In a similar way to Steps (c) and (d), when A receives
ApB = KAB(βBxβ

−1
B )K−1AB from B, she can also com-

pute the shared session key, kAB = βAβBxβ
−1
B β−1A .

According to the described scheme, E(ve) may intercept
both ApA and ApB but she can substitute neither pA
nor pB with her public key because she does not know
KAB . Therefore, the proposed scheme is considered to be
immune to man-in-the-middle attack.

3.1 Proof of Authenticated Public Key

In the authenticated two-party key exchange scheme de-
scribed above, each user has to believe the session public
key received from the other party. Therefore, a proof of
authenticated public key, which B has received from A,
is done using BAN logic [4]. The notations used in this
paper follow those of BAN logic.

In the above protocol, A sends an authenticated public
key to B, i.e. A → B : KAB(pA)K−1AB . The message
can be transformed into the idealized form as A → B :
{pA}KAB

.
The goal is to prove that B believes pA. To analyze the

protocol, the following assumptions are made. B believes

A
KAB

� B, B believes fresh (pA), B believes A controls
(pA). The steps of the proof are as follows:

1) B believes A
KAB

� B and B sees {pA}KAB
,then B

believes A said pA.

2) B believes fresh (pA) and B believes A said pA, then
B believes A believes pA.

3) B believes A controls pA and B believes A believes
pA,then B believes pA.

In the similar way, we can obtain the proof that A also
believes pB .

4 Security Analysis of Some
Group Key Agreement Pro-
tocols

In the paper [1], an authenticated group key agreement
protocol based on braid groups has been proposed. How-
ever, the number of rounds needed in the paper is linear
to the number of group members. In each round some
calculated values have to be sent from user i to user i+ 1
for further calculation. Therefore, the scheme can suffer
from some long delays at some participants in the group.
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In the paper [8], Hwang et al. has proposed a group key
exchange scheme which needs only two rounds. The pro-
tocol is supposed to be scalable. However, in paper [14],
Lee et al. has shown that Hwang et al.’s scheme does not
provide forward and backward secrecy in dynamic envi-
ronment. Lee et al. also gives an improvement of the
scheme to remedy the problems.

In the following subsections, a brief description of Lee
et al.’s scheme and a demonstration that the scheme does
not preserve backward secrecy is given. Here, backward
secrecy means that a new member should not be able
to decrypt the multicast data sent before his joining,
and forward secrecy means that a former member should
not be able to decrypt the multicast data sent after his
leaving [5]. In addition, security analysis of other two
works [7, 12] using ring structure of participants is also
discussed.

4.1 Lee et al.’s Scheme

In Lee et al.’s scheme [14], when users U1, · · · , Ui, · · · ,
Un want to establish a secure communication, each mem-
ber Ui performs the secure Diffie-Hellman two-party key
exchange with his/her neighbors Ui−1 and Ui+1 and then
negotiates the shared keys kUi−1Ui

and kUiUi+1
as shown

in Figure 1. It should be noted that, kUnU1
is negotiated

by Un and U1. Each user Ui then computes a value Zi

= kUi−1Ui ⊕ kUiUi+1 and broadcasts this value to other
members. Note that, Zn is computed as kUn−1Un

⊕ kUnU1
.

Upon receiving all Zj , where j 6= i from other members,
each user Ui can compute the other members’ shared keys
inductively as follows:

kUi+1Ui+2
= Zi+1 ⊕ kUiUi+1,

kUi+2Ui+3
= Zi+2 ⊕ kUi+1Ui+2,

...
...

kUnU1
= Zn ⊕ kUn−1Un,

kU1U2
= Z1 ⊕ kUnU1,

...
...

kUi−2Ui−1
= Zi−2 ⊕ kUi−3Ui−2,

.

Each user Ui can then compute group shared key sk
as sk = H0 (kU1U2

q kU2U3
· · · q kUn−1Un

q kUnU1
), where

H0() is a public one-way hash function from {1,0}∗ to
{1,0}q, where q is a security parameter.

The above scheme needs only two rounds to achieve
the group shared key. However, when a new member
joins the group, the scheme experiences a number of is-
sues. In the protocol, when a new member Un+1 joins
the group, he/she has to perform a two-party key ex-
change with his neighbors Un and U1 to obtain kUnUn+1

and kUn+1U1
. Then new Zn, Zn+1 and Z1 of users Un,

Un+1 and U1 are computed as Zn = kUn−1Un
⊕ kUnUn+1

,
Zn+1 = kUnUn+1

⊕ kUn+1U1
and Z1 = kUn+1U1

⊕ kU1U2
,

respectively. All users then broadcast their computed Z
values. Upon receiving all Z values, each user computes

kU1U2
, kU2U3

, · · · , kUn−1Un
, kUnUn+1

, kUn+1U1
. Finally

each user can compute the new session key as sk = H0

(kU1U2q kU2U3 · · · q kUn−1Un q kUnUn+1 q kUn+1U1).
The flaw in this scheme is that a new member can

use the calculated kU1U2 , kU2U3 , · · · , kUn−1Un which are
the same as in the previous session and the value of the
previous Zn denoted by (Zn)p which he/she saw in the
previous session to compute kUnU1

= (Zn)p ⊕ kUn−1Un

of the previous session. Therefore, the new member can
compute the shared key in the previous session as well.

A simple way to remedy the flaw is to make each mem-
ber of the new group start the scheme from the beginning
step of two-party key exchange with his/her neighbors
when a new member joins the group. This should be
done in the same way as the leave protocol described in
Lee et al.’s work [14]. However, this can generate a lot of
exchanged and broadcast messages in the network. This
problem also arises when several groups want to merge
together. To prevent such problems, a scheme which gen-
erates fewer messages and lessen users’ computation is
given in Section 5.

4.2 Dutta and Barua’ Scheme

In the join algorithm of this scheme [7], a seed x = H(sk),
where sk is the group key of n users in the previous session
and H() is a hash function, is used for generating the new
group key in the join session. A ring of U1, U2, Un and a
new user Un+1 is formed. In this ring, U1 uses x1, U2 uses
x, Un uses xn and Un+1 uses xn+1 as their private keys to
perform key exchange and compute new group key. This
scheme is vulnerable to known session key attack because
an adversary who knows the group key in the previous
session (in the case that he/she calls Function reveal() as
described in paper [3]) can compute x and then shared
keys between U2 and his/her neighbors. The adversary
can eventually compute the new group key.

In the leave algorithm, the remaining members in the
group form a new ring. Only left-right neighbors of the
leaving users choose new session private keys, and perform
key exchange in order to establish new shared keys. Other
members in the ring use their precomputed shared keys
obtained in the previous session. These members of the
new ring then use their shared keys to compute the new
session group key. Since the leaving users also know these
precomputed shared keys in the previous session, they can
compute the new group key. Thus this scheme cannot
preserve forward secrecy.

4.3 Kumar and Tripathi’ Scheme

In the join algorithm of this scheme [12], a ring of U1,
Un and Un+1 is formed to compute a shared key K. U1

then encrypts K by using the previous session group key
SK and broadcasts the encrypted message to all other
members of the old group. Upon receiving this K valve,
all members compute the new group key as SKnew =
H(SK ‖ K). Therefore, this scheme is vulnerable to
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Figure 1: The structure of Lee et al.’s group key agreement

known session key attack because an adversary who knows
the group key in the previous session can recover K and
then compute the new group key.

Similarly to Dutta and Barua’ leave algorithm, Kumar
and Tripathi’ one also takes advantage of some users’ pre-
computed shared keys obtained in the previous session to
compute the new session group key. Since the leaving
users also know these precomputed shared keys in the
previous session, they can compute the new group key.
Thus this scheme does not preserve forward secrecy.

5 Authenticated Group Key
Agreement Based on Braid
Groups

In this section, the authenticated key exchange scheme
described in Section 3 is extended so that it can be used
in an authenticated group key agreement.

Suppose there are n subgroups Bl1 , Bl2 , · · · , Bln of
l-braid group Bl, where l = l1 + l2 + · · · + ln. Let
U1 · · ·Ui · · ·Un be n users participating in the group com-
munication protocol. Two complicated braids x and x1
∈ Bl are published as system parameters. A long-term
private key of each Ui is αUi

∈ Bli and the computed
long-term public key is PUi = αUixα

−1
Ui

.

5.1 Group Initialization

Let U1 · · ·Ui · · ·Um, where m ⊂ n, be m users wishing
to establish a secure group communication. These users
are arranged in a predefined order of a ring. Each user Ui

performs the secure authenticated two-party key exchange
with his/her neighbors Ui−1 and Ui+1. Note that Um

performs key exchange with Um−1 and U1.

As described in Section 3, Ui and Ui+1 can compute a
shared secret KUiUi+1 = αUiαUi+1 x α−1Ui+1

α−1Ui
by using

their long-term private and public keys. The steps of
group initialization are as follows.

1) Ui chooses xi,i+1 ∈ Bli∪Bli+1
and session private key

βUi
∈ Bli , and computes a session public key pU i =

βUi xi,i+1 β
−1
Ui

.

2) Ui sends xi,i+1 and an authenticated public key
KUiUi+1

x1 (βUi
xi,i+1 β−1Ui

) K−1UiUi+1
to Ui+1. It

is noted that x1 is used for making KUiUi+1
x1

(βUi
xi,i+1 β−1Ui

) K−1UiUi+1
and x1 (βUi

xi,i+1 β−1Ui
)

at the same length in order to be immune to
Length−based attack [10].

3) Ui+1 uses x1 and the shared secret KUiUi+1
to verify

the message, and then obtains Ui’s session public key
βUi

xi,i+1 β
−1
Ui

.

4) Ui+1 computes the shared key kUiUi+1 =

βUi+1
βUi

xi,i+1β
−1
Ui
β−1Ui+1

by using his/her session
private key βUi+1

∈ Bli+1
.

5) In the same way as described above, Ui+1 sends
an authenticated public key KUiUi+1 x1 (βUi+1xi,i+1

β−1Ui+1
) K−1UiUi+1

to Ui. Upon receiving Ui+1’s authen-
ticated public key, Ui can compute the shared key
kUiUi+1

= βUi
βUi+1

xi,i+1β
−1
Ui+1

β−1Ui
, since βUi+1

βUi
=

βUi
βUi+1

.

6) In the same way, Ui and Ui−1 can also compute the
shared key kUi−1Ui

= βUi
βUi−1

xi−1,iβ
−1
Ui−1

β−1Ui
, where

xi−1,i ∈ Bli−1
∪ Bli , and βUi−1

∈ Bli−1
is Ui−1’s

session private key.

7) Each user Ui computes a value ZUi =
(kUi−1Ui

)−1kUiUi+1
and broadcasts the value to other

members. Note that ZUm
= (kUm−1Um

)−1kUmU1
.

8) When each user Ui obtains all ZUj , where 1 ≤ j ≤
m and j 6= i, from other members, he/she checks
whether the received ZUj

values come from the ex-
isting group members by computing

Z0 = ZU1
ZU2
· · ·ZUm

= (kUmU1
)−1kU1U2

(kU1U2
)−1kU2U3

· · ·
(kUm−2Um−1

)−1kUm−1Um
(kUm−1Um

)−1kUmU1
.

If all ZUj
come from the existing group members,

then the value Z0 is equal to the identity braid.
When a user finds out that Z0 is not the iden-
tity braid, he/ she will broadcast an error message.
Upon receiving the error message, each user halts the
scheme.
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9) If Z0 is the identity braid, each user Ui which has
kUi−1Ui and kUiUi+1 , begins to compute the shared
keys of other members as follows:

kUi+1Ui+2 = kUiUi+1ZUi+1

= kUiUi+1
(kUiUi+1

)−1kUi+1Ui+2

kUi+2Ui+3
= kUi+1Ui+2

ZUi+2

= kUi+1Ui+2(kUi+1Ui+2)−1kUi+2Ui+3

.

.

kUi−2Ui−1
= kUi−3Ui−2

ZUi−2

= kUi−3Ui−2
(kUi−3Ui−2

)−1kUi−2Ui−1
.

10) After collecting all shared keys, each user computes
a seed sd = kU1U2

kU2U3
· · · kUm−1Um

and the group
session key skG = (sd)x(sd)−1. Note that sd ∈ Bl1∪
Bl2 ∪ · · · ∪ Blm and skG ∈ Bl.

Complexity: The group initialization needs two rounds.
In the first round, O(m) unicast messages are sent for key
exchange. Each user computes O(1) braid multiplication.
In the second round, O(m) broadcast messages are used
for sending shared keys. Each user has to compute O(m)
braid multiplication in order to achieve the seed and the
common group key.

5.2 Member Join

When a new user Um+1 wants to join the group, a user
in the existing group can present himself/herself as the
group representative Ur and performs key exchange with
user Um+1 in order to construct a new group key.

Let αUr
∈ Blr and PUr

= αUr
xα−1Ur

∈ Bl be the
long-term private key and public key of Ur. In addition
αUm+1

∈ Blm+1
and PUm+1

= αUm+1
xα−1Um+1

be the keys
of Um+1. Note that Users Ur and Um+1 can establish a
shared secret KUrUm+1 = αUrαUm+1xα

−1
Um+1

α−1Ur
with each

other. The steps needed to establish a new group key are
as follows.

(a) User Ur chooses a braid xG,m+1 ∈ Bl1∪
Bl2∪ · · · Blm∪ Blm+1 and sends it to-
gether with the authenticated blind seed
KUrUm+1

x1(sd)xG,m+1(sd)−1K−1UrUm+1
to Um+1.

It is noted that sd is the seed obtained in the
previous session.

(b) Upon receiving the authenticated blind seed, Um+1

uses KUrUm+1 and x1 to recover (sd)xG,m+1(sd)−1.
and computes the seed of the new group as

sdnG = βUm+1
(sd)xG,m+1(sd)−1β−1Um+1

,

where βUm+1
∈ Blm+1

is user Um+1’s session private
key. Um+1 then computes the new group key sknG
=(sdnG)x(sdnG)−1.

(c) In a similar way, Ur can compute the seed of the new
group sdnG = (sd)βUm+1

xG,m+1β
−1
Um+1

(sd)−1 by using

the value KUrUm+1
x1(βUm+1

xG,m+1β
−1
Um+1

) K−1UrUm+1

received from Um+1. Then Ur uses the seed to com-
pute the new group key sknG.

(d) Ur broadcasts (sd)x1sdnG x−11 (sd)−1 to all members
of the previous group.

(e) Upon receiving the broadcast value, each user of the
previous group uses the previous seed sd and x1 to
recover the new seed sdnG and then computes the
new group key sknG.

In the case that many users, e.g. Um+1, Um+2 and
Um+3 want to join the group simultaneously, Ur can use
the seed sd of the old group to establish an intermediate
group with Um+1, Um+2 and Um+3 by adopting the group
initialization described in Subsection 5.1. After comput-
ing the new seed sdnG, Ur can use the scheme described
above to send the new seed to other members of the old
group.

Complexity: When there are m
′

users want to join the
group, this algorithm needs three rounds. In the first
round, O(m

′
) unicast messages are sent for key exchange.

Each user computes O(1) braid multiplication. In the sec-
ond round, O(m

′
) broadcast messages are used for send-

ing users’ shared keys. Each of m
′
+1 users has to com-

pute O(m
′
) braid multiplication in order to achieve the

new seed and group key. In the third round, one broadcast
message is sent from the representative to other members
in the old group. Each member computes O(1) braid mul-
tiplication in order to achieve the new seed.

5.3 Member Leave

When a member leaves a group of m members, each re-
maining member can choose a new session private key
and starts the protocol with his/her neighbors from the
step containing the two-party key exchange, to construct
a new session key for m−1 members in the way described
in Subsection 5.1. By performing such scheme, forward se-
crecy is preserved. However, this scheme generates many
messages in the network. A scheme which can reduce
communicating messages is described below.

Let us consider a scenario where there are 6 members in
the existing group, and user U4 wants to leave the group.
The steps of the leave algorithm are as follows.

(a) U3 performs an authenticated two-party key exchange
with user U5 to obtain a shared key kU3U5 = βU3βU5

x3,5 β
−1
U5
β−1U3

, where x3,5 ∈ Bl3∪ Bl5 , and βU3
, βU5

are
U3 and U5 session private keys, respectively.

(b) U3 and U5 computes a new seed sdnG = kU3U5

sd(kU3U5)−1 where sd is the seed of the old group.
They then compute the new group key sknG
=(sdnG)x(sdnG)−1.
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(c) U3 then uses authenticated messages (KU3Ui) (sd)
x1sdnGx

−1
1 (sd)−1 (KU3Ui)

−1 to send the seed to the
remaining members Ui in the group, where KU3Ui

=
αU3

αUi
xα−1Ui

α−1U3
, i= 1,2,6.

(d) Upon receiving the authenticated message, Ui uses
KU3Ui , sd and x1 to recover sdnG.

In the case that m
′

users leave the group simultane-
ously, left-right neighbors of the leaving users form an
intermediate group in order to compute a shared secret
among them. They then use this secret and the seed ob-
tained in the previous session to compute the new seed,
and send the authenticated seed to the remaining mem-
bers in the group.
Complexity: The leave algorithm needs three rounds in
case that there are m

′
users leave a group of m users.

In the first round, O(m∗) unicast messages, where m∗ is
min(m −m′ , m′), are sent for establishing key exchange
between the left-right neighbors of the leaving users. In
the second round, O(m∗) broadcast messages are sent and
each participating user computes O(m∗) braid multiplica-
tion in order to achieve the new seed and group key. In
the third round, O(m − m

′
) unicast messages are used

for sending the new seed to the remaining members in
the group. Upon receiving the message, each user has to
compute O(1) braid multiplication in order to recover the
seed and compute the new group key.

5.4 Group Merge

The join protocol described in Subsection 5.2 can be ex-
tended for merging two or more groups together. The
idea is that the representative of each group uses the ex-
isting seed to perform two-party key exchange with each
other to establish a new seed and group key. Then the
representative of each group sends the new seed to other
members of the group. In this subsection, an example
of the merging scheme for two groups G1 and G2 is de-
scribed.

For simplicity, let U1 · · · UrG1
· · · Um be members of

G1 and Um+1 · · · UrG2
· · · Un be members of G2. UrG1

and UrG2
are users who claim to be representatives of

group G1 and G2, respectively. Let sdG1 ∈ Bl1 ∪ Bl2 ∪
· · ·∪Blm and sdG2 ∈ Blm+1∪Blm+2∪· · ·∪Bln be the seeds
of G1 and G2, respectively. The steps of the protocol are
as follows.

(a) UrG1
and UrG2

compute a shared secret KUrG1UrG2
∈

Bl by using their long-term private and public keys
as described in Section 3.

(b) UrG1
chooses a braid xG1,G2 ∈ Bl1 ∪Bl2 ∪ · · · ∪Blm ∪

Blm+1
∪· · ·∪Bln−1

∪Bln and sends it together with the
authenticated blind seed KUrG1UrG2

x1 (sdG1) xG1,G2

(sdG1)−1 (K−1UrG1UrG2
) to UrG2.

(c) Upon receiving the authenticated blind seed, UrG2

computes the new seed sdnG = (sdG2) (sdG1) xG1,G2

(sdG1)−1 (sdG2)−1 and the new group key sknG =
(sdnG) x (sdnG)−1.

(d) UrG2 sends the new seed to the remaining members of
G2 by using the method described in Subsection 5.2.

(e) In a similar way, UrG1
computes the new seed and

common group key by using the authenticated blind
seed received from G2 and sends the new seed to the
remaining members of G1.

Everyone in the merging group can now securely com-
municate by using the new session group key with back-
ward secrecy.
Complexity: When there are J groups which want to
merge together, this algorithm needs three rounds. In the
first round, O(J) unicast messages are sent by group rep-
resentatives for key exchange. Each representative com-
putes O(1) braid multiplication in order to obtain shared
keys. In the second round, O(J) broadcast messages are
used for sending shared keys. Each group representa-
tive has to compute O(J) braid multiplication in order
to achieve the new seed and group key. In the third
round, one broadcast message is sent from each group rep-
resentative to the remaining members in the group. The
remaining members of each group computes O(1) braid
multiplication in order to recover the new seed.

5.5 Group Partition

A group can be partitioned into two or more groups.
Group partition scheme can be done by letting all mem-
bers of each new group work together to establish a new
group key, by adopting the group initialization scheme de-
scribed in Subsection 5.1 and using a new session private
key for each user.

In this subsection, the extension of the leave protocol
for group partition is described. For simplicity, we con-
sider a scenario in which there are 10 members in the
existing group, The group are then partitioned into two
groups. The first one has seven users, i.e. U1, U2, U5,
U6, U7, U9 and U10. Users U3, U4 and U8 are members
of the second group. Let us consider the scenario of the
first group which U3, U4 and U8 leave the group. The
left-right neighbors of the leaving users, i.e. U2, U5, U7

and U9 then choose new session private keys and work to-
gether to establish an intermediate seed sdiG by using the
group initialization scheme. Each user of the intermediate
group then computes a new seed sdnG = sdiG sd(sdiG)−1,
where sd is the seed obtained in the previous session. U5

which is the right-handed neighbor of the leaving user U4

then sends the authenticated seed, as described in 5.3, to
U6 which is the remaining group member on the right-
handed side of U5. U9 also sends the authenticated seed
to U10 and U1 which are the remaining group members on
the right-handed side of U9. As the leaving users do not
know sdiG, they cannot compute sdnG. Therefore this
scheme can preserve forward secrecy. U3, U4 and U8 can
also compute the new seed and shared key of their group
by using the same approach.
Complexity: Suppose a group of m users is partitioned
into J groups, each new group has mj members, where
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j =1 to J . The partition algorithm needs three rounds
for each group. In the first round, O(m∗j ) unicast mes-
sages, where m∗j is min(m − mj ,mj), are sent for two-
party key exchange between participating users in each
group. In the second round, O(m∗j ) broadcast messages
are sent, and each participating user in each group com-
putes O(m∗j ) braid multiplication in order to achieve the
new seed and group key. In the third round, O(mj) uni-
cast messages are used for sending the new seed to the
remaining members in each group. Upon receiving the
message, each user has to compute O(1) braid multiplica-
tion in order to recover the seed and compute the group
key.

6 Authentication Proof of the
Group Key Agreement

In this section, an authentication proof of the proposed
group-key-agreement protocol is shown using BAN Logic.
This proof is different from the authentication proof given
in Lee et al′s work [14]. The notations used in this work
follow those in paper [4]. As described in Subsection 5.1,
each user Ui can compute a shared secret (key) with

his/her neighbors, i.e. Ui believes Ui

kUiUi+1

� Ui+1 and

Ui believes Ui

kUi−1Ui

� Ui−1.

Further, when each user Ui receives all Z values from
other members, he/she uses these values to compute
kU1U2

, kU2U3
, · · · , kUm−1

Um
and uses them to compute

the session seed and group key.

The aim of this proof is to thus show that Ui can believe
kU1U2

because it is the shared secret (key) between U1 and
U2 in the existing group, and Ui can believe kU2U3

because
it is the shared secret (key) between U2 and U3, and so
on. Ui can then use these values to compute the seed and
group key. This means that the aim of the proof is to
show that the following statement is satisfied under the
proposed group-key-agreement protocol:

Ui believes ( U1

kU1U2

� U2, U2

kU2U3

� U3, · · · , Ui+1
kUi+1Ui+2

� Ui+2, · · · , Um−1

kUm−1Um

� Um).

At the group initialization stage, each user Ui receives
the broadcast messages Z from other members of the
group. These messages can be transformed into the ide-
alized forms as follows:

Ui+1 → Ui : {Ni+1, Ui+1

kUi+1Ui+2

� Ui+2}kUiUi+1
.

Ui+2 → Ui : {Ni+2, Ui+2

kUi+2Ui+3

� Ui+3}kUi+1Ui+2
.

Ui+3 → Ui : {Ni+3, Ui+3

kUi+3Ui+4

� Ui+4}kUi+2Ui+3
.

.

.

Ui−1 → Ui : {Ni−1, Ui−1

kUi−1Ui

� Ui}kUi−2Ui−1
.

In this form N1, N2, · · · , Ni+1, Ni+2, · · · , Nm are
nonces.
To analyze the protocol, the following assumptions are
made.

Ui believes fresh (N1, N2, · · · , Ni+1, Ni+2, · · · , Nm)

Ui believes Ui+1 controls Ui+1

kUi+1Ui+2

� Ui+2,

Ui believes Ui+2 controls Ui+2

kUi+2Ui+3

� Ui+3,

.

.

Ui believes Ui−1 controls Ui−1

kUi−1Ui

� Ui.

The main steps for the proof are as follows:

1) Ui believes Ui

kUiUi+1

� Ui+1 and Ui sees

{ Ni+1, Ui+1

kUi+1Ui+2

� Ui+2} kUiUi+1
, then Ui believes

Ui+1 said (Ni+1, Ui+1

kUi+1Ui+2

� Ui+2 ).

2) Ui believes fresh (Ni+1) and Ui believes Ui+1 said

(Ni+1, Ui+1

kUi+1Ui+2

� Ui+2 ), then Ui believes Ui+1

believes (Ni+1, Ui+1

kUi+1Ui+2

� Ui+2 ).

The conjunction can be broken and this yields the
result that

Ui believes Ui+1 believes Ui+1

kUi+1Ui+2

� Ui+2.

3) Ui believes Ui+1 controls Ui+1

kUi+1Ui+2

� Ui+2 and

Ui believes Ui+1 believes Ui+1

kUi+1Ui+2

� Ui+2,

then Ui believes Ui+1

kUi+1Ui+2

� Ui+2.

The above conclusion means that Ui can be-
lieve kUi+1Ui+2 which may be used by Ui+2 to send a
message. This can be written in the form

Ui believes Ui

kUi+1Ui+2

� Ui+2.

4) Ui believes Ui

kUi+1Ui+2

� Ui+2 and Ui sees

{ Ni+2, Ui+2

kUi+2Ui+3

� Ui+3} kUi+1Ui+2
, then Ui be-

lieves Ui+2 said (Ni+2, Ui+2

kUi+2Ui+3

� Ui+3).

5) Ui believes fresh (Ni+2) and Ui believes Ui+2 said

(Ni+2, Ui+2

kUi+2Ui+3

� Ui+3,then Ui believes Ui+2 be-

lieves (Ni+2, Ui+2

kUi+2Ui+3

� Ui+3).
The conjunction can be broken and this yields the

result that Ui believes Ui+2 believes Ui+2

kUi+2Ui+3

�
Ui+3.
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6) Ui believes Ui+2 controls Ui+2

kUi+2Ui+3

� Ui+3 and Ui

believes Ui+2 believes Ui+2

kUi+2Ui+3

� Ui+3, then Ui

believes Ui+2

kUi+2Ui+3

� Ui+3. The above conclusion
means that Ui can believe kUi+2Ui+3

which may be
used by Ui+3 to send a message. This can be writ-

ten in the form Ui believes Ui

kUi+2Ui+3

� Ui+3. By
repeating the steps above, we obtain the following

result. Ui believes ( U1

kU1U2

� U2, U2

kU2U3

� U3, · · · ,

Ui+3

kUi+3Ui+4

� Ui+4, · · · , Um−1

kUm−1Um

� Um).

Therefore we have shown that the statement is satisfied
under the proposed protocol, and Ui can use these shared
keys to compute the session seed and group key.

In the member join protocol described in Subsec-
tion 5.2, the new group key is obtained by allowing Ur

to perform an authenticated key exchange, using the seed
obtained in the previous session, with the new member us-
ing his/her private key. Ur then broadcasts the new seed
to other members of the former group using the old seed
which is known only to members of the group. Therefore,
all members of the former group believe received seed and
use the seed to compute the new group key. This is similar
to the merge protocol.

As for leave protocol, the left-handed neighbor of the
leaving member sends the new seed to each member of
the new group by authenticating and hiding the new seed
in a secret known to only him/herself and each member.
Therefore, each member of the new group believes the
received seed and uses it to compute the new group key.

7 Security Analysis

In this section, security analysis of the proposed proto-
col is first discussed. Comparisons among ring-structure
based protocols are then illustrated. In papers [7, 12],
the proposed group- key-agreement protocols were ana-
lyzed by applying the toy game [3]. However, they still
suffer some flaws because the communicating messages
flowing in each session are not well analyzed. Here, we
will emphasize on analyzing the messages exchanged in
each session. As group initialization of the ring-structure
protocols has been well discussed by Hwang et al. [8] as
well as Dutta and Barua [7], security analysis of the algo-
rithm is omitted. Here, we will discuss on join and leave
algorithms. Merge and partition algorithms will not be
discussed as they have similar features as join and leave
algorithms respectively.

7.1 Analysis of Join Algorithm

As for single join, two types of massages are
used. The first is exchanged messages between
the representative of the existing group and the
new user in order to compute the new seed.

These are KUrUm+1x1(sd)xG,m+1(sd)−1K−1UrUm+1
and

KUrUm+1
x1(βUm+1

xG,m+1β
−1
Um+1

) K−1UrUm+1
. The second

is the message (sd)x1sdnG x−11 (sd)−1 sent by the repre-
sentative to the remaining members of the group. The
new user can analyze (sd)xG,m+1(sd)−1 and (sd)x1sdnG
x−11 (sd)−1. However, he/she cannot compute sd though
he/she knows x1, xG,m+1 and sdnG, because of the hard-
ness of GCSP. Therefore the algorithm does preserve
backward secrecy.

If an adversary can know the group key of the previ-
ous session, i.e.(sd)x(sd)−1, he/she still cannot compute
sd because of the hardness of GCSP. Therefore he/she
cannot compute the new seed. The algorithm is thus im-
mune to known session key attack.

If an adversary can know the long-term private keys
of the representative and/ or of the new user, he/she can
compute KUrUm+1

and can see x1(sd)xG,m+1(sd)−1 How-
ever, he/she cannot compute for sd. Therefore the algo-
rithm preserves perfect forward secrecy.

7.2 Analysis of Leave Algorithm

In the single−leave algorithm, authenticated public keys
are exchanged between the left neighbor Ult, and the right
one Urt of the leaving user in order to compute new shared
key kUltUrt between them. The new seed of the group is
computed as sdnG = kUltUrt sd(kUltUrt)

−1, where sd is
the seed of the old group. Ult then sends the new seed to
each remaining member of the group by using the mes-
sage (KUltUi

) (sd) x1sdnG x−11 (sd)−1 (KUltUi
)−1, where

KUltUi = αUlt
αUi xα

−1
Ui

α−1Ult
.

Each remaining member of the group uses KUltUi , sd
and x1 to extract the new seed. Although the leaving user
knows sd and x1, he /she cannot compute sdnG because
he/she knows neither kUltUrt

nor KUltUi
. Therefore the

algorithm does preserve forward secrecy.

If an adversary can know the group key (sd)x(sd)−1

in the previous session, he/she still cannot compute sd
because of the hardness of GCSP. Therefore the algorithm
is immune to known session key attack.

If an adversary can know the long-term private keys of
Ult and/or Ui, he/she can compute KUltUi

, and can see
(sd) x1 sdnG x−11 (sd)−1. However, he/she can compute
neither sd nor sdnG. Therefore the algorithm preserves
perfect forward secrecy.

7.3 Comparisons among Ring-Structure
based Protocols

Table 2 illustrates comparisons of security and complexity
among several ring-structure based protocols. According
to the comparisons, we can see that the proposed protocol
outperforms other protocols.
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Table 2: Comparison table

Protocol
Authentication

Group Operation Comment NoU NoB NoOTechniques NoR

Hwang et al. [8] Not mentioned * Initialization Yes O(m) O(m) O(m)

Dutta&Barua [7]
Initialization Yes O(m) O(m) O(m)

Signatures 1 Join C2 * * *
Leave C4 * * *

Lee et al. [14]
Initialization Yes O(m) O(m) O(m)

Not mentioned * Join C3 * * *
Leave Yes O(m) O(m) O(m)

Kumar&Tripathi [12]
Initialization Yes O(m) O(m) O(m)

Signatures 1 Join C2 * * *
Leave C4 * * *

Zhu [21]

Initialization Yes O(m) O(m) O(m)

Join Yes O(m
′
)

m
′

= 1
O(m) O(m)

Long-term keys 4
&Session keys

Leave Yes O(m
′
)

m
′

= 1
O(m) O(m)

Proposed Protocol

Initialization Yes O(m) O(m) O(m)

Join Yes O(m
′
) O(m

′
) O(m

′
)

Long-term keys 1 Leave Yes O(m−m′) O(m∗) O(m∗)
Merge Yes O(J) O(J) O(J)

Partition Yes O(mj) O(m∗j ) O(m∗j )

NoR: number of rounds.
NoU: number of unicast messages.
NoB: number of broadcast messages.
NoO: number of operations.
C2: the protocol is vulnerable to known session key attack.
C3: the protocol does not preserve backward secrecy.
C4: the protocol does not preserve forward secrecy.
* : it is not discussed because this algorithm has some flaws or it is not mentioned.

Join: a group of m users becomes a group of m+m
′

users

Leave: m
′

users leave from a group of m users. m∗ = min(m
′
,m−m′)

Merge: J groups merge into one group
Partition: one group of m users becomes J groups, each group has mj users, m∗j = min(mj ,m−mj).

In the protocol, NoU, NoB and NoO are considered for each group
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8 Conclusion

In this paper, braid group cryptography which requires
only multiplication operations is adopted to establish a
session group key. In order to prevent a man-in-the-
middle attack, exchanged messages are authenticated us-
ing long-term private and public keys of group mem-
bers. The proposed scheme is a scalable one. It needs
only two rounds for initializing a group. In dynamic
case, the scheme needs three rounds but with only few
users involved. According to the comparisons among ring-
structure based protocols, our protocol outperforms sev-
eral protocols. An authentication proof is also shown in
this paper using the well-known BAN logic. Although the
proposed protocol is based on braid group cryptography,
the framework can be applied to several cryptosystems in-
cluding Diffie-Hellman, Elliptic Curve and chaotic maps.
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