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Abstract

Verifiable computation (VC) allows a computationally
weak client to outsource evaluation of a function on many
inputs to a powerful but untrusted server. In this paper,
we propose an algorithm of verifiable outsourcing com-
putation with single server on modular exponentiation,
which has wide applications in public key cryptosystems.
We also extend the algorithm to verifiable outsourcing
of simultaneous modular exponentiations. The proposed
two algorithms improve checkability based on one server
compare with the previous ones, where the outsourcer can
detect the failure with probability close to 1 if the server
misbehaves. The experiments show that our algorithms
are the implementations of secure and verifiable outsourc-
ing for single modular exponentiation and simultaneous
modular exponentiations.

Keywords: Checkability, modular exponentiation, single
server, verifiable outsourcing computation

1 Introduction

Outsourcing computation allows a computation-limited
client to outsource the operations on the private data to a
powerful server [5]. The rise of cloud computing in recent
years has made outsourcing of storage and computation
reality [20, 21]. Outsourcing computation will provide an
ideal way of freeing up the resources of the client as one
of the advantages of cloud computing model [18, 22]. By
outsourcing work load to the cloud server, cloud users can
use unlimited resources provided by cloud to complete the
high cost of computing.

Despite of the tremendous benefits, outsourcing com-
putation also brings an unprecedented security chal-
lenge [4, 12]. First of all, due to the opaque of cloud
server’s internal operational details, there are various ma-
licious motives. It makes the server cannot be completely
trusted. For instance, cloud server may be Jerry-rigged
in a computation task in order to save resources if clients

cannot judge the correctness of the output. Secondly,
there may be malicious attacks from external or inter-
nal of server such as some software bugs. All of these
can make the server return computationally invalid re-
sults [5]. Therefore private security and content security
of the cloud environment are important problems in our
research.

In general, an effective secure outsourcing scheme
should have the following properties:

1) The client’s data is private for the server;

2) The client can verify the correctness of the output
returned by the server.

3) The client can carry out the computation correctly
using substantially less effort than computing the re-
sult on its own [5, 14, 17].

Dijk et al. [7] proposed outsourcing algorithms of
variable-exponent fixed-base and fixed-exponent variable-
base exponentiations in a model with one untrusted
server. In these algorithms, no variable parts are pub-
lic before sending to the only untrusted server. They also
considered an algorithm of outsourcing variable-exponent
variable-base exponentiations. However, in this algo-
rithm, the outsourced base is known to the server. Ma, Li
and Zhang [13] described securely outsourcing algorithms
of two types of exponentiations in two non-collusion un-
trusted servers. Hohenberger and Lysyanskaya [11] pre-
sented outsource-secure algorithms of variable-exponent
variable-base exponentiations in one-malicious model of
two untrusted servers. Chen et al. [5] also proposed out-
sourcing algorithm of modular exponentiation based on
two servers, and improved the checkability and efficiency
for the outsourcer. Wang et al. [19] constructed an effi-
cient algorithm for batch modular exponentiation based
on an untrusted server, but the outsourcer need to exe-
cute one modular exponentiation itself when verifying the
outsourced result and the checkability is only 1/(n + 1),
where n is the number of modular exponentiations.
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In this paper, we first propose a secure verifiable out-
sourcing algorithm of single modular exponentiation with
single server. We also present another outsourcing algo-
rithm for simultaneous modular exponentiations. In the
proposed algorithms, the outsourcer could detect any fail-
ure with probability close to 1 if the server returns the
fault result. The experiments show that the proposed
algorithms improve checkability without decreasing effi-
ciency for the outsourcer compare with the previous ones.

The organization of this paper is described as follows:
in Section 2, the definitions and security requirements of
our algorithms are given. A verify outsourcing algorithm
of modular exponentiation is proposed in Section 3. In
the following section, we present another outsourcing al-
gorithm for simultaneous modular exponentiations by us-
ing single server. The performance evaluation of the pro-
posed algorithms is given in Section 5. We conclude the
paper in Section 6.

2 Definitions and Security Re-
quirements

In this section, we review definitions and security require-
ments of outsource-secure algorithms which have been
used in [5, 11, 19].

An algorithm Alg includes a trusted part T and an un-
trusted program U which is invoked by T. We use TU to
denote the work that executed by T and U. An adversary
A is simulated by a pair of algorithms A=(E,U’), where
E denotes the adversarial environment and generates ad-
versarial inputs for Alg, and U ′ represents an adversarial
software written by E. The security model is shown in
Figure 1.

Definition 1. (Algorithm with outsource-I/O) An
outsourcing algorithm Alg takes five inputs and generates
three outputs. The first three inputs are generated by an
honesty party, and the last two inputs are produced by an
adversary environment E. The first input is called the
honest, secret input, which is private for both E and U ′;
the second input is honest and protected, which may be
known by E, but is private for U ′; the third one is called
honest and unprotected input, which is public for both E
and U . The last two inputs are maliciously chosen by E,
and thus they are known for E. One of them is adversarial
and protected, which is protected from U ′; the other one
is public for E, and we call it the adversarial, unprotected
input. Similarly, the first output is secret and unknown
for both E and U ′; the second one is protected, which
means it may be public for E, but protected from U ′; the
last output is unprotected, which are public for both E and
U ′.

As presented in [11], we assume that the two adver-
saries E, U ′ can only make direct communication before
the execution of TU, and in other cases, they are not
be able to communicate directly and must pass message

through the outsourcer T. The reason is explained as fol-
lows. In the real world, we assume E is a malicious manu-
facture, and U ′ is a malicious software produced by E. It is
obvious that U ′ is controlled by E and they can exchange
the messages directly before it is sold to T. However, E
cannot send instructions to U ′ directly once T begins to
invoke U ′ as the outsourcing program. During the exe-
cution of TU, E can only establish an indirect commu-
nication channel with U ′ through the unprotected inputs
and outputs of Alg, which means that all messages they
communicate with each other must pass through T.

The following outsource-security definition ensures
that both E and U ′ cannot learn nothing about the pri-
vate inputs and outputs of TU, even if T uses the mali-
cious software U ′ written by E.

Definition 2. (Outsource-security) Let Alg be an al-
gorithm as defined above. A pair of algorithms (T,U) is
called to be outsource-security if the following conditions
holds.

1) Correctness: TU is a correct execution of Alg.

2) Security: For any probabilistic polynomial-time
(PPT) adversary A=(E,U’), there exist two PPT
simulators (S1,S2) such that the results of real and
ideal experiment are computationally indistinguish-
able.

Pair One: EV iewreal ∼ EV iewideal, which means that
the malicious environment E cannot learn anything in-
teresting about the secret inputs and outputs during the
execution of TU. Both of the real process and the ideal
process proceed in rounds. The notation “←” denotes the
outputs of the procedure in the right hand side.

• The i-th round of real process consists of the follow-
ing steps. The three honest inputs (xhs, xhp, xhu) are
chosen by an honest stateful process I where the en-
vironment E cannot access. Then E chooses estatei,
xi
ap, xi

au, stopi based on its view from the last round

and honest inputs (xi
hs, x

i
hp, x

i
hu) given to TU, where

estatei is a random number as reminding what it
did next time it is invoked, xi

ap, xi
au are two ad-

versarial inputs, and stopi is the Boolean variable
which denotes whether round i is the last round.
Next, the algorithm TU′ is implemented on the in-

puts (tstatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au), and generates

a new state tstatei for T , and secret, protected, un-
protected outputs yi

s, yi
p, yi

u, where tstatei−1 is T ’s
previously saved state. The oracle U ′ saves its cur-
rent state ustatei based on its previously saved state
ustatei−1.

– (istatei, xi
hs, x

i
hp, x

i
hu)← I(1k, istatei−1);

– (estatei, ji, xi
ap, x

i
au, stopi) ← E(1k, EV iewi−1real,

xihp, x
i
hu);

– (tstatei,ustatei, yi
s, y

i
p, y

i
u) ← TU

′ustatei−1

(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, xiap, x
i
au).
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Figure 1: Security model

Thus, the view that the adversarial environment
E gets in the i-th round of the real process is
EViewi

real = (estatei, yi
p, y

i
u) and the overall view

is the view in the last round, i.e., EViewreal =
EViewi

real if stopi = TRUE.

• The i-th round of ideal process consists of the fol-
lowing steps. In i-th round, the stateful simulator S1

knows nothing about the secret input xi
hs, but is given

the protected and unprotected outputs that gener-
ated by Alg. Finally, S1 outputs some values, either
(yi

p, y
i
u) or (Yi

p,Y
i
u) captured by using a Boolean in-

dicator indi. In the whole process, S1 is allowed to
access oracle U ′ and U ′ saves its state as in the real
experiment.

– (istatei, xi
hs, x

i
hp, x

i
hu)← I(1k, istatei−1).

– (estate
i
, ji, xi

ap, x
i
au, stopi) ← E(1

k
, EViewi−1

ideal,

xi
hp, xi

hu).

– (astatei, yi
s, y

i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp,

xj
i

hu, xi
ap, xi

au).

– (sstatei,ustatei,Yi
p,Y

i
u, indi) ← S

U′(ustatei−1)
1

(sstatei−1, xji

hp, xj
i

hu, xi
ap, xi

au, yip, y
i
u).

– (z
i
p, z

i
u) = indi(Yi

p,Y
i
u) + (1− indi)(yi

p, y
i
u).

Thus, the view that E obtains in the i-th round of
the real process is EViewi

ideal = (estatei, zip, z
i
u) and

the overall view is the view in the last round, i.e.,
EViewideal = EViewi

ideal if stopi = TRUE.

Pair Two: UViewreal ∼ UViewideal, which means that
the untrusted software U ′ written by E cannot get any-
thing interesting about the inputs and outputs during the
execution of TU.

• On the basis of the real process described in Pair
One, the view of the untrusted software U ′ in the
real process is UViewreal = ustatei if stopi = TRUE.

• The i-th round of ideal process consists of the fol-
lowing steps. In i-th round, the stateful simulator S2

is given the unprotected outputs that generated by
Alg.

– (istatei, xi
hs, x

i
hp, x

i
hu)← I(1k, istatei−1).

– (estate
i
, ji, xi

ap, x
i
au, stopi) ← E(1

k
, estatei−1,

xi
hp, xi

hu, yi−1
p , yi−1u ).

– (astatei, yi
s, y

i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp,

xj
i

hu, xi
ap, xi

au).

– (sstatei,ustatei)← S
U′(ustatei−1)
2 (sstatei−1, xj

i

hu,
xi
au).

Thus, the view of the untrusted software U ′ in i-th
round of the ideal process is UViewi

ideal = (ustatei)
and the overall view is the view in the last round,
which means UViewideal = UViewi

ideal if stopi =
TRUE.

Finally, we give the following definition if TU is a cor-
rect implementation of Alg.

Definition 3. (α-efficient, secure outsourcing) A
pair of algorithms (T,U) is called α-efficient if the run-
ning time of T is less than an α-multiplicative factor of
that of Alg for any inputs x.

Definition 4. (β-checkable, secure outsourcing) A
pair of algorithms (T,U) is called β-checkable if T detects
the error with probability no less than β when U ′ deviates
from its advertised functionality during the execution of
TU
′
(x) for any inputs x.

Definition 5. ((α, β)-outsource-security) A pair of
algorithms (T,U) is said to be an (α, β)-outsource-secure
execution of Alg if it is both α-efficient and β-checkable.
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3 Outsourcing Algorithm of Mod-
ular Exponentiation with Single
Server

Similar to [5], a subroutine named Rand is invoked in
our algorithm. The output is a random pair of the form
(b, gb mod p), and the input is a prime p and a base g ∈
Z∗p, where b ∈ Zq. To implement this subroutine, we can
use a trusted server to generate a table of random for T
and T retrieves a new pair in the table when an invocation
is needed. We call this table-lookup method. Another
method is generating those random pairs by using EBPV
generator [15, 19].

The inputs of single server exponentiation (SgExp) in-
clude a base u and a power a, where a ∈ Z∗q and u ∈ Z∗p,
and uq = 1 mod p. Both a and u are secret for the server
U . The output of SgExp is ua mod p where p and q are
two large primes and q|p− 1.

3.1 Outsourcing Algorithm

Here we propose our algorithm SgExp for secure outsourc-
ing of exponentiations. One important security require-
ment for SgExp is that an adversary can get any useful
information about the inputs and outputs of SgExp. Sim-
ilar to [5] and [11], U(x, y) → yx express that we invoke
the server to compute one time. And (x, y) are the inputs
while yx mod p are the outputs.

1) First, T invokes the subroutine Rand four times to
create four blinding pairs (α, gα), (β, gβ), (ε, gε),
(θ, gθ). We denote A = gα mod p, B = gβ mod p,
C = gε mod p, D = gθ mod p.

2) The first logical divisions are

ua = (Aw)a = gaαwa = gβgγwa mod p,

where w = u/A mod p and γ = (aα− β) mod q.

In order to verify the correct of the consequence, we
do the second divisions by using another two blinding
pairs (ε, gε) and (θ, gθ) as follows:

ua = (Cv)a = gaεva = gθgτva mod p,

where v = u/C mod p and τ = (aε− θ) mod q.

3) T randomly selects i, j and j 6= i. Let a1 = a − 2i,
a2 = a− 2j , 2i < a, 2j < a.

4) T runs Rand to obtain eight pairs (t1, g
t1),

(t2, g
t2), (s1, g

s1), (s2, g
s2), (s3, g

s3), (s4, g
s4),

(s5, g
s5), (s6, g

s6). T then randomly chooses
m1, · · · ,mi−1,mi+1, · · · ,mj−1, mj+1, · · · ,mn ∈ Z∗p.

5) Next, T queries U in random order as:

U(
γ

t1
, gt1) → gγ ,

U(a1, wg
s1) → R11 = wa1gs1a1 ,

U(
s1a1 − s2

s3
, gs3) → R12 = gs1a1−s2 ,

U(
τ

t2
, gt2) → gτ ,

U(a2, vg
s4) → R21 = va2gs4a2 ,

U(
s4a2 − s5

s6
, gs6) → R22 = gs4a2−s5 ,

U(2,m1) → m[1] = m2
1,

U(4,m1) → m[2] = m4
2,

· · ·
U(2i, w) → m[i] = w2i ,

· · ·
U(2j , v−1) → m[j] = v−2

j

,

· · ·
U(2n,mn) → m[n] = m2n

n .

Note 1. Considering both the client and the server
computing devices are stored in binary, so we don’t
think the binary conversion cost computing time.

6) T computes:

wa1 = R11(R12g
s2)−1,

va2 = R21(R22g
s5)−1,

and then checks that whether U produces the correct
outputs, i.e.,

Bgγwa1m[i]m[j] mod p = Dgτva2 mod p. (1)

If not, T outputs “error”, otherwise, T computes:

ua = Bgγwa1m[i] mod p.

3.2 Security Analysis

Lemma 1. (Correctness): In a single untrusted model,
the algorithm (T,U ′) presented in Section 3.1 is a correct
implementation of SgExp.

Proof. As described in Section 3.1, we know that R11 =
wa1gs1a1 ,R12 = gs1a1−s2 . So, R11(R12gs2)−1 = wa1 . In

addition, wa = wa1+2i = wa1w2i = wa1m[i]. Therefore,

ua = gβgγwa mod p

= gβgγwa1m[i].

Similarly, T compute:

va2 = R21(R22g
s5)−1,

ua = gθgτvz mod p

= gθgτva2m[j]−1.

Theorem 1. (Security): In single untrusted program
model, the algorithms (T,U) are an outsource-secure im-
plementation of SgExp, where the inputs (a, u) may be
honest, secret; honest, protected; or adversarial, pro-
tected.
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Proof. Firstly, we show Pair One EViewreal ∼ EViewideal

holds, which means the adversarial environment E leans
nothing during the execution of (T,U ′).

If the input (a, u) is honest, protected or adversarial,
protected, the simulator S1 behaves same as in the real
execution. Thus, it needs only to consider the case where
(a, u) is an honest, secret input.

So, suppose (a, u) is an honest, secret input. The simu-
lator S1 in the ideal experiment behaves as follows. When
receiving the input in the i-th round, S1 ignores it and in-
stead submits 6 random queries with the form (aj,uj) and
n random queries with the form (2k,u′j)(k ∈ 1, 2, · · · ,n)

to U’. Then S1 tests 6 outputs (u
aj
j ) and 2 random out-

puts (u′
2k

j ) from U’. If an error is detected, S1 outputs

Yi
p = “error”, Yi

u = “φ”, indi=1. If no error is checked,
S1 verifies the remaining outputs. If all checks pass, S1

outputs Yi
p“φ”, Yi

u = “φ”, indi = 0; else, S1 chooses a

random element r ∈ Z∗p, and outputs Yi
p = “r”, Yi

u = “φ”,

indi = 1. In either condition, S1 saves its own states and
those of U ′.

As same as [11], we need to show that the input dis-
tribution to U ′ in the real experiment is computationally
distinguished from that in the ideal one. In the ideal
experiment, the inputs are all chosen randomly and uni-
formly distributed. While in the real experiment, each
part of all queries that T makes to U ′ is generated by
invoking the subroutine Rand and thus computationally
indistinguishable from random. Thus, we have three pos-
sible cases to consider. If U ′ behaves honest in the i-th
round, EViewi

real ∼ EViewi
ideal, because the outputs of

SgExp in the ideal experiment are not replaced. If U ′

misbehaves in the i-th round, it will be caught by both
T and S1 with probability 1− 1/n2, and then the exper-
iment outputs “error”; otherwise, the outputs of SgExp
are corrupted by U ′. In the real experiment, the outputs
generated by U ′ is multiplied together with random values
produced by invoking Rand, thus the corrupted outputs
of SgExp look random to E. While in the ideal experi-
ment, the outputs of U ′ are replaced by a random value r.
So, we conclude that EViewi

real ∼ EViewi
ideal also holds

even if U ′ is dishonest in the i-th round. In all, by the
hybrid argument we have EViewreal ∼ EViewideal.

Secondly, we show Pair Two UViewreal ∼ UViewideal

holds, that is to say, the adversarial software U ′ leans
nothing during the execution of (T,U ′).

In the ideal experiment, the simulator S2 behaves as
follows. On receiving the inputs in the i-th round, S2

ignore them but submits 6 random queries of the form
(aj,uj) and n random queries of the form (2k,u′j) (k ∈
{1, 2, · · · , n}) to U’, and then S2 saves its own states and
that of U’. Since all three kinds of inputs are unknown
to U’, the simulator S2 is applicable to all those cases.
As we know, E can easily distinguish the real and ideal
experiments since the outputs of the ideal experiment are
never corrupted, but he cannot send the information to U ′

since they cannot communicate each other during the ex-

ecution of TU. In addition, the input distribution to U ′ in
the real experiment is computationally indistinguishable
from that in the ideal experiment randomly chosen by S2.
Thus, UViewi

real ∼ UViewi
ideal holds for each round i. In

all, we conclude that UViewreal ∼ UViewideal.

Theorem 2. In one untrusted model, the algorithm (T,
U) presented in Section 3.1 is an (O((log2 n)/n), 1 −
1/n2)-outsource-secure implementation of SgExp, where
m is the bit length of a.

Proof. In order to compute ua mod p, SgExp requires 12
calls to Rand, 22 modular multiplication and 8 modular
inverse. It takes O(1) or O(log2 n) modular multiplication
by using table-lookup method or the EBPV generator,
where n is the bit of q. As we know, it takes roughly
1.5n modular multiplication to compute ua mod p by the
square-and-multiply method. Therefore, the algorithm
(T,U) is an O((log2 n)/n)-efficient execution of SgExp.

On the other side, U cannot cheat the outsourcer to
accept an error result unless that he knows i and j. Since
i and j are randomly chosen from 1, 2, · · · ,n, the out-
sourcer can verify an outsourcing result with probability
1− 1/n2.

3.3 Comparison

We make a comparison between our scheme SgExp and
the schemes in [5, 19] in Table 1, where n is the bit length
of q.

Note that the scheme [19] needs one modular exponen-
tiation operation and has no advantage for single mod-
ular exponentiation. The proposed scheme is superior
in checkability, and it is more efficient than that of the
scheme in [19]. Our scheme only uses one server but the
scheme in [5] is based on two untrusted server though we
need more modular multiplications and modular inver-
sions for the outsourcer and more queries to U. Therefore,
the proposed scheme improves the checkability based on
only one server.

4 Outsourcing Algorithm of Si-
multaneous Modular Exponen-
tiations

We also extend our scheme to an outsourcing algo-
rithm of simultaneous modular exponentiations (Sm-
Exp) ua

1ub
2 mod p which has important applications in

many cryptographic schemes such as trapdoor commit-
ment [3, 8, 9, 16] and chameleon hashing [1, 2, 6, 10].

4.1 Outsourcing Algorithm

There are two bases u1,u2 ∈ Z∗p and two powers a,b ∈ Z∗q.

We need to compute ua
1ub

2 mod p.
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Table 1: Comparison of outsourcing single exponentiation

GExp[8] Exp[1] SgExp
Rand 7 5 12

Modular Multiplications 12 7 22
Modular Exponentiation 1 0 0

Modular Inversions 4 3 9
Queries to U 4 6 n+6

Privacy
√ √ √

Checkability 1/2 2/3 1− 1/n2

The number of servers Single server Two servers Single server

Figure 2: Simulation for SgExp algorithm

1) First, T invokes the subroutine Rand four times to
create four blinding pairs (α, gα), (β, gβ), (ε, gε),
(θ, gθ). We denote:

A = gα mod p,

B = gβ mod p,

C = gε mod p,

D = gθ mod p.

2) The first logical divisions are represented as below:

ua1u
b
2 = (Aw1)a(Aw2)b

= gβgγwa1w
b
2,

where w1 = u1/A, w2 = u2/A, and γ = α(b + a)−β.
Similarly, T executes the second divisions as follows:

ua1u
b
2 = (Cv1)a(Cv2)b

= gθgτva1v
b
2,

where v1 = u1/C, v2 = u2/C, and τ = ε(a + b)− θ.

3) T randomly selects k, h, i, j and k < h < i < j. Let
a1 = a− 2k, a2 = a− 2h,b1 = b− 2i,b2 = b− 2j.

4) T runs Rand for ten times to obtain ten
pairs (t1, g

t1), (t2, g
t2), (s1, g

s1), (s2, g
s2),

(s3, g
s3), (s4, g

s4), (s5, g
s5), (s6, g

s6), (s7, g
s7),

(s8, g
s8). T randomly generated n-4 integers

m1,m2, · · · ,mk−1,mk+1, · · · ,mh−1,mh+1, · · ·mi−1,
mi+1, · · · ,mj−1,mj+1, · · · ,mn ∈ Z∗p.

5) T queries U in random order as:

U(
γ

t1
, gt1) → gγ ,

U(a1, w1g
s1) → R11 = wa11 g

s1a1 ,

U(a1, w1g
s1) → R11 = wa11 g

s1a1 ,

U(
s1a1 − s2

s3
, gs3) → R12 = gs1a1−s2 ,

U(b1, w2g
s1) → R21 = wb12 g

s1b1 ,

U(
s1b1 − s2

s4
, gs4) → R22 = gs1b1−s2 ,

U(
τ

t2
, gt2) → gτ ,

U(a2, v1g
s5) → R31 = va21 gs5a2 ,

U(
s5a2 − s6

s7
, gs7) → R32 = gs5a2−s6 ,

U(b2, v2g
s1) → R41 = vb22 g

s1b2 ,

U(
s5a2 − s6

s8
, gs8) → R42 = gs5a2−s6 ,

U(2,m1) → m[1] = m2
1,

U(4,m1) → m[2] = m4
2,

· · ·
U(2k, w1) → m[k] = w2k

1 ,

· · ·
U(2h, v−11 ) → m[h] = v−2

h

1 ,

· · ·
U(2i, w2) → m[i] = w2i

2 ,

· · ·
U(2j , v2) → m[j] = v2

j

2 ,

· · ·
U(2n,mn) → m[n] = m2n

n .
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Figure 3: Simulation for SmExp algorithm

6) T computes:

wa11 = R11(R12g
s2)−1,

wb12 = R21(R22g
s2)−1,

va21 = R31(R32g
s6)−1,

vb22 = R41(R42g
s6)−1.

7) Finally, T checks whether U produces the correct
outputs, i.e.,

Bgγwa11 w
b1
2 m[k]m[i]m[h] = Dgτva21 vb22 m[j] mod p.

If not, T outputs “error”, otherwise, T computes:

ua1u
b
2 = Bgγwa11 w

b1
2 m[k]m[i] mod p.

4.2 Security Analysis

Lemma 2. (Correctness): In a single untrusted pro-
gram model, the algorithm (T, U) presented in Section 4.1
is a correct implementation of SmExp.

As described in Section 4.1, we know that

R11 = wa11 g
s1a1 ,

R12 = gs1a1−s2 ,

R21 = wb12 g
s1b1 ,

R22 = gs1b1−s2 .

So,

R11(R12g
s2)−1 = wa1

1 ,

R21(R22g
s2)−1 = wb1

2 .

In addition,

wa1 = wa1+2k

1

= wa11 w
2k

1

= wa11 m[k],

wb2 = wb1+2i

2

= wb12 w
2i

2

= wb11 m[i].

Therefore,

ua1u
b
2 = gβgγwa1w

b
2 mod p

= gβgγwa11 w
b1
2 m[k]m[i] mod p.

Similarly, we compute:

va21 = R31(R32g
s2)−1,

vb22 = R41(R42g
s2)−1,

ua1u
b
2 = gθgτva1v

b
2 mod p

= Dgτva11 vb12 m[j]m[h]−1 mod p.

As same as Theorems 1 and 2, we can easily prove the
following theorems.

Theorem 3. (Security): In one untrusted model,
the algorithm (T,U) presented in Section 4.1 is an
outsource-secure implementation of SmExp, where the in-
puts (a,b; u1u2) may be honest, secret; honest, protected;
or adversarial, protected.

Theorem 4. In one untrusted model, the algorithm
(T,U) presented in Section 4.1 is an (O((log2 n)/n),
1 − 1/n4)-outsource-secure execution of SmExp, where n
is the bit length of q.

Proof. As Theorem 2, the algorithm (T, U) presented in
Section 4.1 is an O((log2 n)/n)-efficient implementation
of SmExp. On the other hand, U cannot cheat the out-
sourcer to accept an error result unless that he knows k,
h, i and j. Since k, h, i and j are randomly chosen from
{1, 2, · · · ,n}, the outsourcer can verify an outsourcing re-
sult with probability 1− 1/n4.

4.3 Efficiency

We also make a comparison among the proposed SmExp
algorithm and other outsourcing algorithms of simultane-
ous exponentiation. The comparison is given in Table 2.

Note that the proposed SmExp algorithm is more ef-
ficient then the GExp algorithm since no modular expo-
nentiation is needed. For the outsourcer, the SmExp algo-
rithm improves the checkability based on only one server
though it needs more modular multiplications and mod-
ular inversions.

5 Performance Evaluation

The experimental evaluation of the proposed outsourcing
algorithms will be provided in this section. Our exper-
iment is simulated on two Windows machines with In-
tel(R) Core(TM) i5-3470 CPU running at 3.20 GHz and
4G memory (local user), and Intel(R) Core(TM) i7-3770
CPU running at GHz and 16G memory (cloud server),
respectively. We choose C++ as the programming lan-
guage. The Multiple Precision Integers and Rational Li-
brary (MPIR) are used in our experiments.
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Table 2: Comparison of outsourcing simultaneous exponentiation

GExp[8] SExp[1] SmExp
Rand 8 5 14

Modular Multiplications 17 10 38
Modular Exponentiation 1 0 0

Modular Inversions 4 4 11
Queries to U 6 8 n+10

Privacy
√ √ √

Checkability 1/3 2/3 1− 1/n4

Security Model Single server Two servers Single server

The parameters of p and q are same to Federal Informa-
tion Processing Standards for DSA (FIPS-186-2). That
is, p is a 512-bit prime and q|p− 1 is a 160-bit prime.

p = 8df2a494492276aa3d25759bb06869cbeac0d83a

fb8d0cf7cbb8324f0d7882e5d0762fc5b7210eaf

c2e9adac32ab7aac49693dfbf83724c2ec0736ee

31c80291.

q = c773218c737ec8ee993b4f2ded30f48edace915f.

In Figure 2 and Figure 3, we provide the simulation of
SgExp and SmExp algorithm, which means that the fault
can be found with probability close to 1 if the server mis-
behaves. It is obvious that the time cost for the outsourcer
T is much smaller than that for directly computing single
modular exponentiation and simultaneously modular ex-
ponentiations since that a number of computations have
been delegated to the server. Therefore, the proposed
SgExp and SmExp algorithm are the implementations of
secure and verifiable outsourcing for single modular expo-
nentiation and simultaneously modular exponentiations.

In addition, we provide the evaluation time of the out-
sourcer for single modular exponentiation and simultane-
ously modular exponentiations proposed in [5, 19] and our
paper. We show the result in Table 3. From Table 3, we
conclude that for the outsourcer, the proposed SgExp and
SmExp algorithm are more efficient than GExp proposed
in [19]. The proposed algorithms improve the checkability
based on one server though more time is needed than Exp
and SExp of [5].

6 Conclusions

In this paper, we first propose an outsourcing algorithm
for single modular exponentiation based on one server,
and then extend the algorithm to secure outsourcing of
simultaneous modular exponentiations. In the proposed
two algorithms, the outsourcer can verify the outsourc-
ing result efficiently and detect the error with probability
close to 1. Our algorithms are superior in checkability
and more efficient than that of the previous ones based
on one untrusted server.
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