
International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 430

Metamorphic Framework for Key Management
and Authentication in Resource-Constrained

Wireless Networks

Raghav V. Sampangi, and Srinivas Sampalli
(Corresponding author: Raghav V. Sampangi)

Faculty of Computer Science, Dalhousie University

6050 University Ave, PO Box 15000, Halifax, NS B3H 4R2, Canada

(Email: raghav.vs@ieee.org)

(Received Mar. 1, 2016; revised and accepted May 12 & June 10, 2016)

Abstract

The advent of the Internet of Things (IoT) has prior-
itized development in unique identification and sensing
technologies, which facilitate IoT’s automated and in-
telligent vision. Data security is critical to the success
of such applications, more so with the communication
over a wireless channel. However, IoT devices are re-
source limited and lack the ability to perform sophisti-
cated computations without impacting their longevity re-
quirements, or increasing the cost. This encourages cre-
ation of ‘lightweight’ security solutions for such low re-
source devices. We propose a new reconfigurable (or,
metamorphic) framework for key management and au-
thentication in this paper. Our framework deploys mul-
tiple lightweight algorithms and chooses one of them for
each message exchange. We evaluate our work using as-
sessment of key sequences, hardware resource utilization
assessment and security analysis.

Keywords: Authentication, key management, reconfig-
urable security framework, resource-constrained wireless
networks

1 Introduction

Several present day applications, including those in the
military and healthcare, are built on the foundation of
emerging wireless technologies. In particular, they employ
radio frequency identification (RFID) and wireless body
area networks (WBAN) as they facilitate unique identifi-
cation and remote health monitoring. These technologies
help with remote monitoring of military personnel, as-
set tracking in hostile territories and remote health mon-
itoring of patients, among other applications. Advances
in these technologies and in the capabilities of backend
monitoring technologies such as cloud servers have further
supported their use as central entities of the automated

vision of the Internet of Things (IoT).

In RFID systems, electronic circuits called RFID tags
store a unique identifier that helps uniquely identify any
object, while details about such objects are stored in the
backend server. These tags could be passive (without an
on-chip power source) or active (with a power source).
While the former are energized by the electromagnetic
signals transmitted by an RFID reader (or interrogator)
and respond to the reader queries, the latter can either
respond to queries by the reader or initiate communi-
cations by themselves. A third category of tags, called
semi-passive tags, have an on-chip power source, but still
require the reader to initiate communication [12]. The
lack of an on-chip power source imposes restrictions on
the amount and type of computations that a passive tag
can perform, making it resource-constrained. In WBAN
systems, the on-body sensors that record data communi-
cate with the hospital monitoring station through an on-
body WBAN hub, and typically through a mobile device
configured to be a personal server [17]. WBAN sensors
could be required to stay on an individual for a long du-
ration of time, depending on the application (especially
in remote healthcare). This would require optimization
techniques to ensure that the sensors can function for a
longer time without frequent maintenance. One way to
accomplish this is to configure the sensor nodes to ‘sleep’
and be woken up by the hub prior to communication [15].
This is similar to the function of passive RFID tags, and is
also the main reason why WBAN sensors remain resource-
constrained.

The restrictions on computational abilities of these de-
vices necessitates a trade-off between cost, security and
available resources. This further implies that data se-
curity solutions that can be deployed might be limited in
their sophistication. Data security and privacy are critical
in such applications, since the data can be uniquely iden-
tified with a specific individual [33]. Furthermore, with
mode of communication being wireless, the communica-

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 431

tion can be ‘snooped on’. A straightforward approach is
to deploy cryptographic algorithms that are customized
for application in low resource applications [20]. How-
ever, with most of the algorithms published and available
in the public domain, the unpredictability and hence the
security of an approach comes down to the strength of its
keys.

We set out to determine whether it was possible to cre-
ate a framework that would constitute multiple algorithms
for key management and authentication, and would en-
able dynamic choice of one of the deployed algorithms for
each message communication – all this without any ex-
plicit communication phase for key exchange and agree-
ment of the algorithm being used. We wanted to explore
the possibility of deploying such a set up in the context of
resource-constrained wireless networks. In this paper, we
discuss our metamorphic framework to accomplish such
a functionality. Our approach (Section 3) is designed to
support multiple algorithms for key management (and au-
thentication), while facilitating context sensitive and de-
terministic choices of one of the available algorithms to
accomplish several security goals. Although our frame-
work is designed to be generic, applicable to all symmetric
cryptosystems especially in resource-constrained wireless
networks, we discuss a use case for the framework. The
use case (Section 4) considers deploying two algorithms
in the framework, namely — GeM2 key management and
authentication mechanism based on gene mutation and
transfer (Protocol B in [34]), and Butterfly1 (Butterfly
key generation and encryption scheme [35]). To evaluate
the framework with this use case, we consider key se-
quence assessment, hardware complexity assessment and
security analysis (discussed in Section 5).

2 Related Work

The term resource-constrained wireless networks encom-
passes a wide variety of technologies and applications that
are disparate, and have varying requirements. Such re-
quirements could include resource (memory and compu-
tational ability) requirements, data storage requirements,
but have a common security requirement. Since much of
the resource-constrained wireless networks such as RFID
systems, WBAN systems, Vehicular Ad-hoc Networks
(VANETs) and the like, are created as autonomous sys-
tems to facilitate one independent activity in our lives,
they are all in some way related to peoples’ personal data.
This places an emphasis on protecting data being commu-
nicated in such systems, thereby preserving the privacy of
the individual(s) in question. We discuss some of the ex-
isting work in two resource-constrained systems, namely,
RFID systems and WBAN applications.

Conventional systems rely on the following broad tech-
niques for security — either on using shared secret
keys and complex substitution/permutation functions as
with symmetric cryptosystems, or on longer key-pairs
and complex mathematical functions as with asymmet-

ric cryptosystems [28]. However, restrictions in resource-
constrained wireless networks limits the size of keys that
can be used and the type of operations that can be
performed, while ensuring security, longevity and keep-
ing costs low. Each fundamental element of security,
thus, needs to be customized and adapted for applica-
tion in resource-constrained wireless networks. In this
section, we discuss some of the mechanisms to accomplish
key management and authentication resource-constrained
wireless networks.

Pseudorandom number generators (PRNGs) are a pop-
ular choice for cryptographic algorithms for key gener-
ation in resource-constrained wireless networks. This
is primarily due to their ability to generate unique se-
quences with different seeds. They can also gener-
ate sequences with large periods without repeating se-
quences [4]. Such algorithms have also been considered for
deployment in RFID applications for key sequence gener-
ation [25, 26, 29]. Their work ranges from including non-
linear filter functions to ensure dispersion of bits in the
pseudorandom sequence to varying feedback polynomials
to generate pseudorandom sequences. It must be noted
however, that PRNG-based techniques help accomplish
only key generation and management, requiring them to
be combined with other techniques such as hash-based or
trusted-third party-based approaches for authentication.

Hash and key-ed hash algorithms are typically used
with key generation systems, such as the ones discussed
above, to accomplish authentication. One such ap-
proach [10] suggests the use of the new SHA-3 algorithm
(Keccak algorithm) [3]. In their work, a combination of
pseudorandom numbers, encryption keys and the RFID
tag ID are used to compute message digests, and the
encrypted key is updated on successful mutual authen-
tication. Hashing algorithms are also employed by Ha-
keem et al. [13] for authentication in their proposal, where
they use timestamps for key generation. Their work re-
lies on two separate timestamps, one each generated at
the server/reader and the tag. Their work also employs a
linear feedback shift register (LFSR) to update keys. The
first part of the protocol depends on each entity authen-
ticating the other based on the difference in timestamps
between the previous acknowledged timestamp and the
current timestamp, and the XOR value of this timestamp
difference with the secret tag key, kt. Tag authentication
by the server involves the tag sending a hash of its ID
and the upper half of the secret key, K. Key updates at
the server and the tag involves updating two secret keys
and the timestamp, where the keys are updated using the
previous values as seeds to the LFSR, while the current
timestamp becomes the new stored timestamp value at
the tag.

Hashes, especially keyed hashes, in particular are popu-
lar ways of accomplishing authentication in symmetric al-
gorithms. Dong et al.’s work on RFID authentication [10]
employs the new SHA-3 standard (Keccak algorithm) [3]
to compute the message digests using a concatenation of
pseudorandom numbers, keys and the tag ID. Pseudoran-

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 432

dom numbers are updated with each communication and
are sent in the open, along with the hash containing an
internally updated key. The key is updated on success-
ful mutual authentication of the entities. The authors
discuss various cases of operation, accounting for loss
of tag acknowledgement messages and de-synchronization
attempts. Hashing algorithms are also employed by Ha-
keem et al. [13] for authentication in their proposal, where
they use timestamps for key generation.

Shi et al.’s work [36] exploits physical characteristics
for security and (one-way) authentication in WBANs.
Rather than having the sensors depending on cryptog-
raphy for authentication, their work, BANA, considers
using physical layer characteristics unique to the sensors;
specifically, the variation in received signal strength (RSS)
in the communication channel. The WBAN controller
unit authenticates the on-body sensor nodes based on
expected variations in received signal strengths of their
individual responses and based on a threshold on the re-
sponse time. The authors claim that attackers would ex-
perience “larger fluctuations due to multipath effect and
Doppler spread than on-body sensors”, making it a feasi-
ble authentication scheme. Mutual authentication among
sensors or between sensors and the controller unit does
seem to impact the limited resources, especially sensor
battery life, in the long run, since BANA expects all sen-
sors to compute the average RSS variations and authenti-
cate other entities. This is mainly because authentication
is an independent functionality in these sensors, which are
required to include separate deployments of key manage-
ment and encryption algorithms. Although the design of
BANA is innovative in using physical channel character-
istics for authentication, the need for separate implemen-
tation for key management implementation imposes an
additional overhead on the resource-constrained sensors.

Message digests, digital signatures and third party cer-
tificates are common forms of accomplishing authentica-
tion among communicating entities. A different approach
to accomplish this is a ‘certificateless’ manner, proposed
by Liu et al. [23]. Their approach uses a trusted entity
called the public key generator (PKG) that generates par-
tial public-secret key pairs for each entity on the WBAN.
Entities further request the PKG to generate the corre-
sponding partial secret key using the entity’s ID as the
partial public key. The certificateless signature includes a
message hash, the result of exponentiation operation ap-
plied on the public key of the PKG and the signer, its
partial secret key and a random integer. This serves as
a mechanism to accomplish authentication and message
integrity verification. However, it is unclear whether this
scheme is designed to authenticate entities on each up-
date. This is because mutual authentication using public
key infrastructure, regardless of how secure it is, will place
an increased load on the already resource-constrained en-
tity, whether it is a personal server or a sensor.

In a different take to key agreement and refresh, Zhu
et al. [48] present a scheme that employs linked key
updates, encrypted using the XTEA cipher (extended

TEA [46]). In their work, keys are divided into 32-bit
blocks and are updated block-wise on successful authen-
tication. One thing to note is that their algorithm is
prone to de-synchronization attacks, since the tag up-
date is contingent on server authentication based on the
server response, m2. If an adversary were to block m2
and transmit an unrelated m2′, the tag would not be able
to authenticate the server, causing it to roll back its key
update, thereby disrupting future communication.

Our discussion up to this point has focused on indi-
vidual algorithms and combinations thereof to accomplish
key management and authentication in RFID systems and
WBAN applications. We next discuss algorithm frame-
works, or a collection of algorithms used to accomplish a
single or several security goals. A multi-algorithm encryp-
tion framework for active RFID tags has been proposed by
Zhou et al. [47], an improvement of which is a generic op-
timized proposal for reconfigurable security co-processor
work by Li et al. [21]. In their work, the control and data
logic module chooses one of four encryption algorithms,
namely AES, DES / 3DES (Data Encryption Standard),
RSA (Rivest-Shamir-Adleman) public key cryptosystem,
and ECC (Elliptic Curve Cryptography)-based cryptosys-
tem. Their work is deployed in an FPGA (Field Program-
able Gate Array)-based active RFID tag, where the design
allows for reconfigurability and customization. The con-
trol / data logic module chooses the applicable encryption
algorithm, in addition to the appropriate memory mod-
ule, initializes the FPGA-based execution unit and per-
forms the encryption. Their use of FPGA-based design
is based on the reconfigurability rationale of the work by
Jones et al. [18]. Jones et al. argue that a silicon-based
implementation is not suggested for the design to be (re-
)configurable. However, when we consider low resource
devices such as passive RFID tags, one does not have any
other option than implementing the custom security al-
gorithms on silicon chips. Reconfigurability in such cases,
can be accomplished by using hardware switches that can
route data to the appropriate ‘path’ of the chosen algo-
rithm for processing. This is the rationale we adopt in
designing our framework for security.

The specified ISO/IEC 29167-1:2014 standard for
RFID security [16] and IEEE 802.15.6 for WBANs [14]
provide means for manufacturers of devices conforming
to these standards to deploy multiple encryption algo-
rithms on the devices as part of the respective security
suites. From the available algorithms, the entities can
select one for use for a particular session, during secu-
rity association. When agreeing on the algorithm to be
used, however, the choice is typically communicated in
plaintext, available for an eavesdropper to learn about
the system states. This reduces the overall uncertainty
associated with the system. The approach we adopt, how-
ever, involves a random choice of one of the available al-
gorithms, based on a previously agreed and synchronized
timestamp, which increases the overall unpredictability
and thus, the security of the system.

An appropriate mechanism to accomplish adaptive

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 433

Figure 1: Overview of the multi-algorithm framework

computations to yield achieve high security, thus, is to
use reconfigurable computing. Although reconfigurable
computing is not new, with its applications being found
in multimedia and other embedded systems [2, 24, 40],
and even for securing the Internet (reconfigurable cryp-
tography solutions for IPSec-based architectures [8]), we
present its use in key management and mutual authen-
tication. Our approach depends on the communicating
entity and the timestamp, making it minimally context
sensitive, and enables resource-constrained devices to dy-
namically choose one of the available algorithms for key
management and authentication. Since it presents the
perception of changing its structure with its dynamic al-
gorithm choice, we refer to it as a metamorphic frame-
work. We draw inspiration for our work from the func-
tioning of a chameleon, which changes its color based on
its surroundings. In the sections that follow, we discuss
the proposed metamorphic framework, followed by pre-
senting a use case for the same.

3 Proposed Metamorphic Frame-
work for Key Generation and
Authentication

Our work proposes a reconfigurable security framework
for resource-constrained wireless networks with the main
objective of accomplishing multiple security goals with
simple logical operations. The central concept here is a
mechanism for choosing one of the deployed algorithms
for key generation and authentication, based on the con-
textual information. This approach is inspired by the
functioning of a chameleon that changes its color based
on the color of its surroundings.

Let us consider a conventional scenario with a system

having one pre-defined algorithm for each aspect of se-
curity. Most systems use such an architecture and this
works when all parameters other than encryption keys are
pre-defined. In such cases, the uncertainty of the system
operation remains limited. However, algorithms such as
IPSec [11] are considerably better in the security than the
former, with the entities choosing one of the pre-agreed
algorithms with a security association phase just as the
communication session begins. We derive motivation for
our proposed framework from this aspect of being able to
change algorithms and dynamically so, however, we re-
move the need for an explicit security association phase
where the entities would agree on one of the available al-
gorithms.

Figure 1 illustrates the overview of our proposed frame-
work. Imagine that a system has N encryption schemes,
each being a composite of algorithms to accomplish key
management, encryption and authentication. Central to
our framework is a mechanism to choose one of the avail-
able algorithms automatically and in a synchronous man-
ner. We refer to this as the algorithm choice logic. This
logic uses a unique combination of the ID (identifier)
of the resource-constrained entity, the initial deploy-time
timestamp (t0) and an incrementing integer number, rac,
in the range 0...(n − 1), to determine which of the N
schemes will be chosen to generate keys for data encryp-
tion and generate authentication parameters for a partic-
ular message transfer. The integer rac has a modulus of
N , i.e. it ‘wraps around’ on reaching N (Equation (1)).

rac = (rac + 1) mod N. (1)

The ‘choice’ aspect of the algorithm choice logic
is accomplished by a pseudorandom number generator
(PRNG), g(), that uses a combination of the ID, t0 and
rac as the seed. This seed, seedac, is generated as sum-
marized by Equation (2). As the seed is always changing

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 434

Figure 2: Illustration of algorithm choice process

in this approach, our approach ensures that the PRNG
generates a new pseudorandom choice of the algorithm

seedac = ID ⊕ t0 ⊕ rac. (2)

Here, ID is the identification number associated with the
resource-constrained entity (e.g. RFID tag or WBAN sen-
sor); t0 is the deploy-time timestamp; and, rac is the incre-
menting integer number, whose computation is explained
by Equation (1). ⊕ represents the Exclusive-OR (XOR)
operation.

The chosen algorithm, Ca, is determined by generating
a pseudorandom number (PRN) using seedac as the seed
for g(). The number generated has a modulus of N .

Ca = g(seedac) mod N. (3)

The deploy-time timestamp, t0, is stored on the
resource-constrained entity just prior to deploying it in
its application environment. This is among the first pre-
shared attributes, along with the ID and the initial en-
cryption parameters associated with each algorithm. Fur-
thermore, this will be updated during the course of opera-
tion as discussed later in this paper. This will ensure that
the system state remains unpredictable to an observer.
We employ the same timestamp in the algorithm chooser
logic to re-use the stored and synchronized data, and to
capitalize on the added uncertainty it provides. This spe-
cific combination of numbers, i.e. the timestamp, t0, the
incrementing number, rac, and the ID, changes contin-
uously owing to increments in rac and at random with
changes to t0. This ensures that the N algorithms have a
fair chance in being chosen for a specific encryption cycle.
The operation of the seed generation and the correspond-
ing PRN generation are illustrated by Figure 2. The func-
tion of the algorithm choice logic in Figure 1 is realized
using Ca as the select input to choose one of the N al-
gorithms that will be used to generate keys for message
encryption and generate parameters for authentication.

When transmitting messages, our framework verifies
the length of the message to be transmitted (MTI). The
length of the transmitted message is always considered to
be the length (in bits, λ) of the longest message among

all the algorithms. This ensures that messages are of con-
sistent length and ensures uncertainty of the chosen algo-
rithm.

If one entity cannot authenticate the other, it will start
an internal counter to keep track of the number of erro-
neous messages or failed authentication attempts. If the
next message results in a successful authentication, the in-
ternal counter is reset to 0, and communication proceeds
as directed by the chosen algorithm. In case the counter
reaches 3, flags the communication as erroneous and acts
as required by the system implementation.

Our framework can be tweaked to include more (or
reduced) choice in algorithms, depending on the applica-
tion needs and the extent of constraints on the available
resources. Thus, our framework has an implicit support
to scalability, with minimal changes necessary to accom-
modate more algorithms in the framework. The changes
would be in updating the algorithm chooser logic, specif-
ically by updating N and a possible change to the circuit
to extract Ca using modulo operation. Algorithm 1 sum-
marizes the working of our framework algorithm (for a
case when number of algorithms, N = 3).

4 Use Case

In this section, we discuss a use case for the frame-
work, considering two previously published algorithms for
key management and authentication [34, 35] as the con-
stituent algorithms of the framework. We discuss cus-
tomizing the framework for this use case and present a
protocol of operation (that can be generalized for other
use cases as well).

4.1 GeM2: Key Management and Au-
thentication based on Gene Mutation
and Transfer

GeM2 is a key management and authentication algorithm
inspired by the mechanism of gene mutation and trans-
fer in living organisms [34]. This features keys linked in
a manner to the ‘parent-child’ relationship in organisms.
Key update in GeM2 proceeds as follows — entities are

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 435

Algorithm 1 Algorithm choice & message transmission

1: BEGIN
2: Input: rac⇐ rac, t0⇐ t0, and nAlg⇐ 3
3:

4: rac⇐ (rac + 1) mod nAlg //Generate seed.
5:

6: seedAC⇐ rac ⊕ t0 ⊕ ID
7:

8: CA⇐ g(seedAC) mod nAlg //Choose algorithm.
9:

10: if CA = 0 then
11: Algorithm chosen = algorithm 1
12: Perform any other related actions
13: else if CA = 1 then
14: Algorithm chosen = algorithm 2
15: Perform any other related actions
16: else if CA = 2 then
17: Algorithm chosen = algorithm 3
18: Perform any other related actions
19: end if
20:

21: if λMTI < λn then
22: MTX ⇐MTI ‖ g(i)
23: else if λMTI = λn then
24: MTX ⇐MTI
25: else if λMTI > λn then
26: MTX consists of chunks of length, λMTI

27: end if
28:

29: if authentication = failed then
30: AuthFailCounter + +
31: if AuthFailCounter = 3 then
32: Flag error
33: end if
34: else if authentication = success then
35: transmit message (MTX)
36: end if
37: END

initialized with an initial key and seeds for the PRNG.
For each new key generation, a new seed is first com-
puted using the linear recurrence formula [41], seedi =
seedi−1+seedi−2, i.e. by summing the previously used (or
initially stored) seeds. Using this seed, a pseudorandom
number (numX) is generated. A mutation pattern is then
generated as follows — the ‘1’ bits of the parent key (or
initial key for the first key generation) are first ‘preserved’
by inverting the parent key, and performing an AND op-
eration on this inverted parent and numX. This muta-
tion pattern is then imposed on the parent by the XOR
(⊕) operation, i.e. new key = parent key ⊕ mutation.
With PRNG seeds being updated with each successful
(acknowledged) authentication, numX also used to gener-
ate the authentication-synchronization parameter (asvi),
computed as a hash of numX XOR-ed with a special pat-
tern called patternasv.

To add uncertainty to an otherwise straightforward key

generation mechanism, GeM2 introduces random choices
to update keys. The first random choice is at the begin-
ning of key generation, where it checks whether to use the
current parent key or update it (referred to as evolution
of the parent). This is based on a random choice between
0 (continue with key generation) and 1 (parent evolu-
tion). Following this, a state identification parameter (g)
is checked to see if it is equal to genLimit. genLimit lim-
its the number of ‘child’ keys for a parent to the specified
number. If genLimit = 5, it means that a parent key
can generate up to 5 keys before being forced to evolve.
Of course, the uncertainty is in the combination of these
two parameter checks, which implies that a parent key
can either generate no child key or up to a maximum of
genLimit child keys. Each time a parent evolves, g is re-
set to 0, while the current parent number is identified by
another state identifier (p). The parameters p and g for
a given entity pair initialized with a common set of val-
ues, will specify the current state of the system, enabling
only authorized entities to be able to determine the ap-
propriate parameters given a specific state, (pi, gj). This
facilitates key generation, as well as mutual authentica-
tion.

4.2 Butterfly1: Butterfly Key Manage-
ment and Encryption

Butterfly encryption scheme [35], which we refer to as
Butterfly1, employs a dynamic PRNG seed update tech-
nique that is näıvely based on the concept of Butterfly
effect1 [30]. In this seed update technique, the communi-
cating entity chooses an integer, j at random (0 ≤ j ≤ m,
with m being the length of the PRNG seed). The value of
j determines the bit in the seed to be inverted. This single
bit change will result in a completely new seed, which fur-
ther results in a completely different set of pseudorandom
sequences that are output from the PRNG.

The key management and authentication mechanism
in Butterfly1 uses the Butterfly seed update mechanism,
in addition to timestamp (ti) and the updated value of
the seed (sj) to generate two keys for encryption. The
first key, Ki, is computed as a pseudorandom number,
generated using a seed that consists of an XOR combina-
tion of the updated seed and timestamp. The second key,
KT , is referred to as the transfer key and is computed as
a pseudorandom number, generated using sj as the seed.

Butterfly1 uses a multiple enveloping technique for en-
ciphering the data. First, the data is XOR-ed with the
updated seed, sj , considered as the first envelope (result-
ing in an initial encrypted message, mi). Following this,
mi is encrypted using Ki using a symmetric key algo-
rithm (XOR is used in [35] due to its involutory property,
i.e. it is its own inverse) generating the intermediate ci-

1Butterfly effect is a concept in chaos theory, defined by Poli-
nar [30] as “hypersensitivity to perturbation”. This means that in a
non-linear deterministic system, if the initial conditions are changed
ever so slightly, there will be drastic changes in the output of a later
state.

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 436

Figure 3: Framework: Protocol of operation

phertext, ci. Butterfly1 also uses an XOR combination
of the updated seed (sj), the initial encrypted message
(mi) and the timestamp (ti) as the seed for a PRNG,
using the generated pseudorandom number as the mes-
sage signature, θi. Next, the concatenation of ci, ti, the
message sequence number (i), and θi, is encrypted using
KT (using the same symmetric key algorithm used for the
earlier encryption using Ki). This becomes the final en-
velope over the data. Butterfly1 relies on changing values
of the timestamp, the updated seed and hence the keys
(and message signatures) to generate continuously chang-
ing parameters that are specific to the context (time and
synchronized entity).

4.3 Using GeM2 and Butterfly1 in the
Proposed Framework

We considered GeM2 and Butterfly1 as an initial attempt
to explore the feasibility of our proposed framework. Al-
though they are stand alone security proposals, with com-
pletely different rationales and mechanisms of operation,
we explore this combination as a starting point to under-
stand the behavior of the framework with such algorithms.
This becomes a stepping stone towards exploring the the
feasibility of using standard algorithms, Diffie-Hellman [9]
for key generation, AES or DES for encryption and com-
binations thereof, in our framework.

In the algorithm choice logic (discussed in Section 3),
the value of n will be set to 2 in the computation of rac (as

defined in Equation (1)). The PRNG seed, seedac, would
then depend on the ID of the entity (RFID tag, WBAN
sensor, RFID server or WBAN hub), and t0. The mech-
anism to update the timestamp t0 is discussed as part of
the protocol of operation. The protocol of operation is as
follows for a communication of the ith message between
Alice and Bob (Figure 3):

Step 1: Alice retrieves the previously acknowledged and
synchronized timestamp, t0, and increments the
stored value of rac, and computes the algorithm
choice, Ca using Equations (1), (2) and (3).

Step 2: The algorithms are chosen as per Equation (4).

Ca =

{
0 algorithm chosen = GeM2

1 algorithm chosen = Butterfly1
(4)

Step 3: Alice computes the encryption keys and associ-
ated authentication parameters as explained in Sec-
tions 4.1 and 4.2 as specified by the chosen algorithm.

Step 4: Determining the length of the message (MTI):
In this implementation, the longest message trans-
mitted is by Butterfly1. We consider this length as
λn. The framework makes a decision on the trans-
mitted message (MTX) based on Equation (5).

MTX =

{
MTI if λMTI

= λn

MTI ‖ g(i) if λMTI
< λn.

(5)

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 437

Here, g(i) is a pseudorandom number generated us-
ing i as the seed (i being the sequence number in
Butterfly1), only to generate numbers (that have no
meaning for the algorithms) for padding the message
to be transmitted so as to make it be of the same
length as the longest message. In case messages in
Butterfly1 (or GeM2) become longer than λn, they
are broken into separate messages and transmitted
using the same mechanism.

Step 5: On receiving the ith message transmitted by Al-
ice, Bob retrieves the timestamp, t0 and performs the
same computations as Alice to generate the keys and
authentication parameters. The message integrity
verification and entity authentication then proceeds
as specified by the chosen algorithm.

Step 6: If Bob can authenticate Alice, Bob may re-
spond with an encrypted acknowledgement/response
as specified by the implementation, which could lead
to session establishment or conclusion of a message
transfer. On successful authentication, Alice and
Bob have synchronized states.

Step 7: If Bob cannot authenticate Alice, Bob uses the
internal counter to track of the number of erroneous
messages or failed authentication attempts. This
counter is reset on a successful communication, but
Bob will flag the communication as erroneous if the
counter reaches 3.

Step 8: Our framework also allows Alice and Bob to
agree on the duration of each security association, or
the duration for a single long-term communication
session. The initial timestamp, t0, is updated with
the last synchronized timestamp at the end of such
a security association. In this implementation, the
security association period was set to be the choice
of Butterfly1 algorithm. This means that whenever
the framework chooses Butterfly1, t0 is updated, i.e.
t0 = ti. Therefore, when encrypting the current mes-
sage, the processes to generate the key and other
parameters would use the previously stored (and ac-
knowledged) value of t0, and update this value when-
ever the Butterfly1 algorithm is used. This ensures
that there is no fixed duration of a security associ-
ation, which adds another layer of uncertainty and
consequently improves the security of the commu-
nication. However, if a system implementation re-
quires a consistent duration for security association,
the framework can be updated with minimal changes
to set an internal timer that determines when the se-
curity association ends, thereby forcing a timestamp
update.

Our framework is thus, able to utilize the best possible
options from the available algorithms to ensure security.
By retaining the length of the transmitted message to be a
constant, our framework introduces an additional element
of unpredictability to an observer.

5 Evaluation and Results

We evaluate our proposed metamorphic framework using
three analyses. Our analyses are in the context of the use
case discussed in Section 4, with GeM2 and Butterfly1 as
constituent algorithms of the proposed framework. Al-
though our framework proposal is generic, this gives us
a way to provide some context to the assessment. Our
evaluation of the framework involved three parts:

Key Sequence Evaluation: We implemented our
framework (along with GeM2 and Butterfly1) using
Java programming language to verify the working
of the concept and generation of key sequences
for further evaluation. We used the generated key
sequences to test similarity between consecutive keys
using Sörensen’s Similarity Index (SSI) [37]. Using
the results so obtained, we compared its performance
with the RFID security proposals by Zhu et al. [48]
and Dong et al. [10], and with an AES-based key
generation approach for WBANs proposed by Liu
et al. [22]. Note that we also implemented the
proposals by Zhu et al., Dong et al., and Liu et
al. using Java to generate key sequences for our
assessment.

Hardware Complexity Evaluation: We estimated
the approximate resource requirement for imple-
menting the proposed framework (along with GeM2
and Butterfly1) encryption scheme on hardware.

Security Evaluation: We also performed a security as-
sessment using Scyther protocol analyzer [6, 7] and
qualitative security analysis to evaluate the security
of our proposal.

5.1 Key Sequence Evaluation

We first implemented GeM2 and Butterfly1 us-
ing Java, followed by using these in the im-
plementation of the framework. In our imple-
mentation of GeM2, the initial key was set to
92EB8D6ECF7F808A705D1A4566991AF0, the initial
seeds to compute the PRNG seed were set to 14930352
and 24157817. For Butterfly1, the PRNG used to
choose the value of the variable j at random, which
decides the state of the seed (sj), was initialized to
192BC333250CCCFF , while the seed (s) itself was ini-
tially set to 12345678. We used the Java Random class
to introduce random delays (0 and 2 seconds) between
consecutive key generations, as an attempt to emulate
real-time communication, and used methods in the Ran-
dom class to extract PRNG sequences. Furthermore, we
used the Java method, System.currentT imeMillis() to
extract the timestamp. We extracted 10240 key sequences
for our assessment.

A strong cryptosystem needs to have a key manage-
ment mechanism that is strong and able to generate and
refresh keys in a manner that can perplex adversaries, for

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 438

Table 1: Summary of similarity between keys

Configuration Average SSI (SSIav)
Proposed framework∗ (K,Ki) 0.3437
GeM2∗ (K) 0.3040
Butterfly1∗ (Ki) 0.3809
Liu et al. [22] 0.3826
Zhu et al. [48] 0.4110
Dong et al. [10] 0.3815
∗ : Only keys in parentheses were considered

for analysis.

a cryptosystem is accepted to be only as strong as the keys
used (Kerchkoff’s Principle [39]). This led us to verify how
similar consecutive keys generated by each algorithm and
the framework are, since GeM2 and Butterfly1 use varying
logical operations to accomplish the desired functionality.
To evaluate similarity between keys, we considered keys
generated by the system and compare pairs of keys. We
quantified the similarity between keys using SSI, which
is a measure of how similar the various pairs of keys are,
i.e. it is the ratio of twice the total similar characters in
the two keys to the total size (in characters) of each key.
Equation (6) summarizes the computation of SSI.

SSI =
2× n(A ∩B)

n(A) + n(B).
(6)

Here, n(A ∩ B) represents the number of characters (or,
numbers) in the key pair that are same, n(A) and n(B)
represent the total number of characters (or, numbers) in
each of the keys A and B of the key pair, respectively.
The expectation is to have key similarity sufficiently low,
with an average SSI value in the vicinity of 0.30, or at
least less than 50%. This is to ensure that keys do not
appear to have obvious similarity or patterns, which could
be exploited by adversaries to derive keys.

Table 1 summarizes the average SSI values for the pro-
posed framework, GeM2, Butterfly1, and the proposals by
Liu et al. [22], Zhu et al. [48], and Dong et al. [10].

We can observe that our framework is able to generate
keys that are less similar to each other, compared to the
other algorithms, while GeM2 performs better than the
framework.

One thing to note is that when used appropriately, the
framework is able to combine the best attributes of the
algorithms and contribute to making the system improve
overall in terms of security. This can be observed with
the slightly high similarity in keys generated by Butter-
fly1, which when combined with GeM2 in the framework,
performs better. Furthermore, random choices of algo-
rithms for each communication also ensures that the over-
all unpredictability remains high. This, in addition to
low similarity between keys, improves the security. In our
continuing work, we will work to ensure that the unpre-
dictability of keys is not dependent on the best algorithm
available in the framework, but that the framework itself
will ensure high unpredictability of keys.

5.2 Hardware Complexity Evaluation

To test resource utilization, we developed a behavioral
model of our framework using VHDL (Very High Speed
Integrated Circuit - VHSIC - Hardware Description Lan-
guage) [32] and deployed it on the Xilinx Spartan-6
FPGA (Field Programmable Gate Array) SP605 Embed-
ded Kit [42]. Logical operations on an FPGA are accom-
plished sing configurable logic blocks (CLBs) and pro-
grammable interconnects. Spartan-6 has two slices, with
each slice composed of “four logic-function generators (or
look-up tables, LUTs) and eight storage elements” [43].
We implemented a modified version of the J3Gen PRNG
(Melià-Segúı et al. [26]) and SHA-1 message digest al-
gorithm (Rainier [31]). We used these implementations
to realize the various functionalities to estimate resource
consumption, and our proposal is generic, and designed
to work with any encryption, PRNG and message digest
algorithms.

Hardware resource estimation helps understand the
overall resource utility when algorithms are implemented
on application specific integrated circuits (ASICs). This is
based on the logic block utilization (i.e. LUTs, Flip-Flops,
etc.). As observed in Table 2, the resources consumed by
our framework implementation are considerably low than
available on the FPGA. The number of logic cells con-
sumed can be used to determine the approximate logic
gates for the implementation. A logic cell is a “logical
equivalent of a classic four-input LUT and a Flip Flop”
[44], resulting in 1.6 logic cells per LUT in Spartan-6 [43],
or approximately 6.4 logic cells per slice. Using the for-
mula, 1 slice ≈ 6.4 logic cells, we estimate the number
of logic cells. Furthermore, it has been estimated that
1 logic cell ≈ 15 ASIC gates [45]. Our framework re-
quires approximately 960 ASIC gates for a key size of
128 bits, where as PRESENT [5] and Grain128 [1], which
are also included in the cryptographic suite specifications
as part of ISO/IEC 29167-1:2014 [16], require 1570 and
1857 gates, respectively (as reported in their respective
publications, results summarized in Table 3). This lets us
ascertain that the overhead of our proposals on resource-
constrained devices or other devices will be considerably
less as compared to other approaches. Furthermore, our
gate count estimate is very much within the range of 200
- 3000 gates, which is suggested to be the available gates
for security on resource-constrained devices [19, 27].

5.3 Security Evaluation

We performed a security assessment of the protocol of op-
eration (Figure 3) using Scyther protocol analyser [6, 7].
The Scyther tool allows us to perform a formal security
analysis of the communication protocol [7], verifying it
using the Dolev and Yao adversary model [6, 28], which
assumes perfect cryptography, abstract messages and that
the adversary has full control over the network. In this
section, we discuss the results obtained from this analysis
(summarized in Table 4), and also elaborate on how these

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 439

Table 2: Logic resource utilization

Device Utilization Summary

Slice Registers (available:54,576) 17
Slice LUTs (available:27,288) 19

Occupied Slices (available:6,822) 10
MUXCYs used (available:13,644) 16
LUT Flip Flop pairs (/available) 13 (/22)

Bonded IOBs (available:296) 5
BUFG/BUFGMUXs (available:16) 1
Approximate Logic Cell and ASIC Gate Equivalent

Logic Cells (available:43,661) 64
ASIC Gate Equivalent 960

Table 3: Gate count estimates

HiveSec PRESENT [5] Grain128 [1]
960 1570 1857

Table 4: Evaluation of the proposed framework using
Scyther

Claim
Result

Initiator Responder

Claim: Secret
Secret Parameters‡ NAWB∗ NAWB
Claim: Alive NAV † NAV
Claim: Weakagree NAV NAV
Claim: Nisynch NAWB NAWB
Claim: Niagree NAWB NAWB
NAWB∗ : No attacks, within bounds
NAV † : No attacks, verified
‡: The following parameters were expected
to remain secret — all keys in the algorithms
timestamp, message signatures, authentication-
synchronization vector, and intended message

results impacts how the framework performs with respect
to standard security goals [38] — confidentiality, integrity,
authentication, non-repudiation (by association) and for-
ward / backward secrecy.

Claim-1: Secrecy. Parameters expected to be secret in
each configuration remain a secret, including and pri-
marily the key generation parameters and intended
messages. This claim holds true since none of these
parameters are exchanged. This further implies that
the framework configurations ensure confidentiality
of all parameters. Furthermore, with the communi-
cated parameters also including message signatures,
the entities are able to verify message integrity.

Claims-2 and 3: Alive and Weakagree. Scyther
validates our claims that the entities are running
the same configuration (Weakagree) and all previous
message sessions have used the proposed scheme

(Alive).

Claim-4: Non-injective Synchronization (Nisynch).
Our claim that the initiator and responder states are
synchronized in the framework is also verified. Syn-
chronization is dependent on the internal states of
the system, which requires that each algorithm states
be synchronized, and entities are able to recognize
any attempts of de-synchronization. This guarantees
protection against replay and de-synchronization
attacks.

Claim-5: Non-injective Agreement (Niagree).
The initial deploy-time parameters, such as the
initial seeds and timestamp, are never exchanged in
the open. Each synchronized update of the system
states imply that these parameters are automatically
updated, at times through encrypted messages.
Thus, the internal parameters that are essential in
computing the key materials are always in agreement
in both entities, as long as they are synchronized and
authenticated. Scyther validates that the framework
configurations are synchronized, and that they are
in agreement.

Authentication and Non-repudiation. Both al-
gorithms used in the framework facilitate au-
thentication, using message signatures and the
authentication synchronization vector. This ensures
that the system states are synchronized (established
by Scyther assessment) and that the entities are
(mutually) authenticated. Furthermore, the use of
pre-shared parameters and random choice of one
of the available algorithms means that the sender
of each message cannot deny that it was sent from
that particular entity. Since keys are updated
and potentially a different algorithm is chosen for
each key generation/encryption, it means that the
internal states of each entity (for each algorithm)
are always updated to the latest (synchronized)
version, as long as they are authenticated. This,
in a näıve manner helps the framework accomplish
non-repudiation by association2.

Forward and Backward security. To an observer
without the knowledge of the internal states, the
framework as a whole appears as a black-box
sequence generation engine. This means that it
appears to be a sequence generator that generates
various keys and other parameters required to
encrypt and sign messages. Unless the observing
entity has a knowledge of the internal states and the
algorithms chosen, knowledge of a contiguous set of
keys either from the past or in the future would not
yield useful information about the future keys or
previously used keys, respectively. This is primarily

2Non-repudiation by association implies accomplishing this goal
by being associated with a backend server, which can be authen-
ticated by another trusted entity using trusted third parties and
digital signatures.

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 440

due to the dependency on timestamp in the choice
of algorithms as well as updates to internal states of
the framework. This re-configurable or metamorphic
property of our framework not only provides high
security, but guarantees forward and backward
secrecy as well.

6 Concluding Remarks

Motivated by the need for security proposals that con-
sume less resources for computation, while providing
high security by means of increased unpredictability, our
work proposed a metamorphic (or, reconfigurable) secu-
rity framework. We draw inspiration for our work from
the manner in which a chameleon changes its color in re-
sponse to the color of its surroundings. Since resource-
constrained devices would require circuits to be pre-
defined at deploy time, our framework is based on using
multiple security solutions that help in accomplishing re-
configurability in its operation. Our framework uses a
synchronized value of the timestamp, an incrementing in-
teger and the ID of the resource-constrained entity for
choosing one of N available algorithms.

Unpredictability is an attribute that is perhaps central
to our framework. This is an aspect that defines the secu-
rity of our proposals, since security of a published crypto-
graphic technique is dependent on the nature of the keys
used. This is defined by how related keys are to preceding
and subsequent keys. Our assessment (Section 5) helps us
establish that the keys, although seemingly related in the
individual algorithms, are made even more unpredictable
by the presence of the framework. This added layer of un-
certainty ascertains that it remains hard for unauthorized
entities to crack the system keys, keeping the overall secu-
rity high. Our assessment also supports our claim of the
proposal being suitable for resource-constrained applica-
tions, although this will depend on the attributes of other
algorithms that may be deployed as part of the framework
in other configurations.

The presence of multiple algorithms in a framework
also means that the effect of any sub-optimal performance
by one algorithm in the framework can be mitigated by
the presence of other algorithms. Our results support
our claims of increased security through unpredictability,
while requiring less resources for ASIC implementations
of our algorithms and the framework.

With its ability to combine the attributes of the avail-
able algorithms and being able to choose one at random,
our work removes the need for a separate algorithm agree-
ment phase in communication. Security is critical in wire-
less communications, especially in resource-constrained
wireless networks with their added restrictions. When
configured appropriately, our framework presents each
resource-constrained device with an opportunity to ac-
complish several security goals, including mutual authen-
tication and non-repudiation by association.

Our work was motivated by a need to remove key ex-

change messages, while facilitating resource-constrained
devices to be able to dynamically choose from a set of
available algorithms for various aspects of security; con-
sidering that the presence of security suites is also being
suggested by the updated standard specifications [16, 15].
Our approach not only facilitates multiple algorithms, but
the facility to choose one based on the specific context of
a message exchange. This ability of dynamically being
able to choose algorithms is similar to the framework re-
configuring itself with each message. The reconfigurable
behavior makes our framework metamorphic, giving an
illusion as though the framework is changing its struc-
ture at random. In our continuing work, we will consider
extending our framework to evaluate it with more (and
diverse) algorithms and to perform a critical complex-
ity evaluation of the framework. While our focus in this
work has been to develop a framework for application
in resource-constrained wireless networks, the design of
the framework is generic, allowing it to be extended and
adapted for use in other non-resource-constrained appli-
cation environments as well.

Acknowledgments

This work has been funded by the Boeing Company. The
authors gratefully acknowledge the support and the feed-
back given by the company.

References

[1] M. Ågren, M. Hell, T. Johansson, and W. Meier,
“Grain-128a: A new version of grain-128 with
optional authentication,” International Journal of
Wireless Mobile Computing, vol. 5, pp. 48–59, Dec.
2011.

[2] I. Beretta, V. Rana, M. D. Santambrogio, and D.
Sciuto, “On-line task management for a reconfig-
urable cryptographic architecture,” in IEEE Interna-
tional Symposium on Parallel Distributed Processing
(IPDPS’09), pp. 1–4, May 2009.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Ass-
che, The Keccak Sponge Function Family, July 15,
2016. (http://keccak.noekeon.org/)

[4] L. Blum, M. Blum, and M. Shub, “A simple unpre-
dictable pseudo-random number generator,” SIAM
Journal on Computing, vol. 15, no. 2, pp. 364–383,
1986.

[5] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. B. Robshaw, Y. Seurin,
and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher,” in Cryptographic Hardware and Em-
bedded Systems (CHES’07), LNCS 4727, pp. 450–
466, Springer Berlin Heidelberg, 2007.

[6] Cas Cremers, The Scyther Tool, Apr. 4, 2014.
(https://www.cs.ox.ac.uk/people/cas.
cremers/scyther/)

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 441

[7] Cas Cremers, Scyther User Manual, Depart-
ment of Computer Science, University of Ox-
ford, 2014. (http://documents.mx/documents/
scyther-manual.html)

[8] A. Dandalis and V. K. Prasanna, “An adaptive cryp-
tographic engine for internet protocol security archi-
tectures,” ACM Transactions on Design Automation
of Electronic Systems, vol. 9, pp. 333–353, July 2004.

[9] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. 22, pp. 644–654, Nov. 1976.

[10] Q. Dong, J. Zhang, and L. Wei, “A SHA-3 based
RFID mutual authentication protocol and its imple-
mentation,” in 2013 IEEE International Conference
on Signal Processing, Communication and Comput-
ing (ICSPCC’13), pp. 1–5, Aug. 2013.

[11] B. A. Forouzan, Data Communications and Network-
ing, McGraw-HilI Forouzan Networking Series, 2007.

[12] B. Glover and H. Bhatt, RFID Essentials, O’Reilly
Media, First edition, 2006.

[13] M. J. Hakeem, K. Raahemifar, and G. N. Khan,
“A novel key management protocol for RFID
systems,” in 9th International Wireless Com-
munications and Mobile Computing Conference
(IWCMC’13), pp. 1107–1113, July 2013.

[14] IEEE Standards Association, “IEEE 802.15: Wire-
less Personal Area Networks (PANs),”, 2005.

[15] IEEE Standards Association, ‘IEEE Standard for
Local and Metropolitan Area Networks - Part 15.6:
Wireless Body Area Networks, IEEE Standard
802.15.6-2012, pp. 15–172, 2012.

[16] ISO/IEC, Information Technology – Automatic Iden-
tification and Data Capture Techniques – Part 1:
Security Services for RFID Air Interfaces, Interna-
tional Standard ISO/IEC 29167-1: 2014, pp. 10,
Aug. 2014.

[17] A. F. Jaimes and F. R. de Sousa, “A taxonomy
for learning, teaching, and assessing wireless body
area networks,” in IEEE 7th Latin American Sym-
posium on Circuits Systems (LASCAS’16), pp. 179–
182, Feb. 2016.

[18] A. K. Jones, R. Hoare, S. Dontharaju, S. Tung,
R. Sprang, J. Fazekas, J. T. Cain, and M. H.
Mickle, “An automated, FPGA-based reconfig-
urable, low-power RFID tag,” Microprocess. Mi-
crosystems, vol. 31, pp. 116–134, Mar. 2007.

[19] A. Juels and S. A. Weis, “Authenticating perva-
sive devices with human protocols,”. in Advances in
Cryptology (CRYPTO’05), LNCS 3621, pp. 293–308,
Springer, 2005.

[20] A. V. N. Krishna, A. H. Narayana, K. M. Vani,
“Window method based cubic spline curve public key
cryptography,” International Journal of Electronics
and Information Engineering, vol. 4, no. 2, pp. 94–
102, 2016.

[21] C. Li, J. Zhou, Y. Jiang, C. Chen, Y. Xu, and Z.
Luo, “A reconfigurable and scalable architecture for
security coprocessor,” in 5th IEEE Conference on

Industrial Electronics and Applications (ICIEA’10),
pp. 1826–1831, June 2010.

[22] J. Liu and K. S. Kwak, “Hybrid security mechanisms
for wireless body area networks,” in Second Inter-
national Conference on Ubiquitous and Future Net-
works (ICUFN’10), pp. 98–103, June 2010.

[23] J. Liu, Z. Zhang, X. Chen, and K. S. Kwak, “Certifi-
cateless remote anonymous authentication schemes
for wireless body area networks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, pp. 332–
342, Feb. 2014.

[24] M. Majzoobi, F. Koushanfar, and M. Potkonjak,
“Techniques for design and implementation of secure
reconfigurable PUFs,” ACM Transactions on Recon-
figurable Technology and Systems, vol. 2, pp. 5:1–
5:33, Mar. 2009.

[25] H. Martin, E. S. Millan, L. Entrena, P. P. Lopez,
and J. C. H. Castro, “AKARI-X: A pseudorandom
number generator for secure lightweight systems,”
in IEEE 17th International On-Line Testing Sym-
posium (IOLTS’11), pp. 228–233, 2011.

[26] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-
Joancomarti, “Multiple-polynomial LFSR based
pseudorandom number generator for EPC gen2
RFID tags,” in 37th Annual Conference on IEEE In-
dustrial Electronics Society (IECON’11), pp. 3820–
3825, 2011.

[27] M. O’Neill (nee McLoone), “Low-cost SHA-1 hash
function architecture for RFID tags,” in Proceedings
of the Workshop on RFID Security (RFIDsec’08),
pp. 1–11, 2008.

[28] C. Paar and J. Pelzl, Understanding Cryptography,
Springer Berlin Heidelberg, 2010.

[29] P. Peris-Lopez, E. S. Millan, Jan C. A. van der
Lubbe, and L. A. Entrena, “Cryptographically secure
pseudo-random bit generator for RFID tags,” in In-
ternational Conference for Internet Technology and
Secured Transactions (ICITST’10), pp. 1–6, 2010.

[30] D. Poulin, “A rough guide to quantum chaos,”, 2006.
(http://www.physique.usherbrooke.ca/poulin
/utilisateur/files/enseignement/rgtqc.pdf)

[31] J. Rainier, “SHA-1 sequential implementation,”
Github, 2014.

[32] C. H. Roth, Jr., Digital Systems Design Using
VHDL, PWS Publishing Company, 1998.

[33] H. Saini, “1-2 skip list approach for efficient secu-
rity checks in wireless mesh networks,” International
Journal of Electronics and Information Engineering,
vol. 1, no. 1, pp. 9–15, 2014.

[34] R. V. Sampangi and S. Sampalli, “RFID mutual au-
thentication protocols based on gene mutation and
transfer,” Journal of Communications Software and
Systems, vol. 9, pp. 44, Mar. 2013.

[35] R. V. Sampangi and S. Sampalli, “RFID encryption
scheme featuring pseudorandom numbers and but-
terfly seed generation,” in 22nd International Con-
ference on Software, Telecommunications and Com-
puter Networks (SoftCOM’14), pp. 128–132, Sept.
2014.

International Journal of Network Security, Vol.19, No.3, PP.430-442, May 2017 (DOI: 10.6633/IJNS.201703.19(3).12) 442

[36] Lu Shi, M. Li, S. Yu, and J. Yuan, “BANA: Body
area network authentication exploiting channel char-
acteristics,” IEEE Journal on Selected Areas in Com-
munications, vol. 31, pp. 1803–1816, Sept. 2013.

[37] T. Sorensen, “A method of establishing groups of
equal amplitude in plant sociology based on similar-
ity of species content and its application to analyses
of the vegetation on danish commons,” Biologiske
Skrifter Kongelige Danske Videnskabernes Selskab,
vol. 5, no. 4, pp. 1–34, 1957.

[38] W. Stallings, Cryptography and Network Security:
Principles and Practice, Pearson Prentice Hall, 2010.

[39] W. Trappe and L. C. Washington, Introduction to
Cryptography with Coding Theory, Pearson Prentice
Hall, 2006.

[40] N. S. Voros, M. Hübner, J. Becker, M. Kühnle, F.
Thomaitiv, A. Grasset, P. Brelet, P. Bonnot, F.
Campi, E. Schüler, H. Sahlbach, S. Whitty, R. Ernst,
E. Billich, C. Tischendorf, U. Heinkel, F. Ieromni-
mon, D. Kritharidis, A. Schneider, J. Knaeblein, and
W. Putzke-Röming, “MORPHEUS: A heterogeneous
dynamically reconfigurable platform for designing
highly complex embedded systems,” ACM Trans-
actions on Embedded Computing Systems, vol. 12,
pp. 70:1–70:33, Apr. 2013.

[41] E. W. Weisstein, “Linear recurrence equation,”
MathWorld–A Wolfram Web Resource, 2012.

[42] Xilinx, Getting Started with the Spartan-6 FPGA
SP605 Embedded Kit, Xilinx Inc., June 2010.

[43] Xilinx, Spartan-6 FPGA Configurable Logic Block:
User Guide, Xilinx Inc., Feb. 2010.

[44] Xilinx, 7 Series FPGA Configurable Logic Block:
User Guide, Xilinx Inc., Nov. 2014.

[45] Xilinx, “All programmable low-end portfolio product
selection guide,”, 2014.

[46] J. Yu, G. Khan, and F. Yuan, “XTEA encryption
based novel RFID security protocol,” in 24th Cana-
dian Conference on Electrical and Computer Engi-
neering (CCECE’11), pp. 58–62, May 2011.

[47] J. Zhou, Y. Xu, and X. Li, “Reconfigurable and scal-
able security module of active RFID for security-
sensitive applications,” in The 2nd IEEE Interna-
tional Conference on Information Management and
Engineering (ICIME’10), pp. 135–140, Apr. 2010.

[48] G. Zhu and G. N. Khan, “Symmetric key based
RFID authentication protocol with a secure key-
updating scheme,” in 26th Annual IEEE Canadian
Conference on Electrical and Computer Engineering
(CCECE’13), pp. 1–5, May 2013.

Biography

Raghav V. Sampangi Dr. Raghav V. Sampangi is a
Postdoctoral Fellow at the Faculty of Computer Science,
Dalhousie University, Canada. His research interests in-
clude security, privacy, and usability in Context-Aware
Systems and the Internet of Things. He has worked on
reconfigurable security in emerging wireless networks such
as RFID and wireless body area networks (WBAN). Cur-
rently, he focuses on key generation and authentication
in resource-constrained devices, and usable security in
Context-Aware Systems and the Internet of Things.

Srinivas Sampalli Dr. Srinivas (Srini) Sampalli is a pro-
fessor and 3M National Teaching Fellow in the Faculty of
Computer Science, Dalhousie University, Halifax. His re-
search is in emerging wireless technologies, especially in
the intersection of smartphones, near field communica-
tions (NFC) and mobile cloud computing. He has investi-
gated protocol vulnerabilities, security best practices, risk
mitigation and analysis, design of intrusion detection and
prevention systems, and applications in healthcare and
mobile commerce. His projects have been sponsored by
NSERC, Industry Canada and NRC. Dr. Sampalli has re-
ceived many teaching awards at the Faculty, University,
provincial and national levels, including a named teaching
award and 3M National Teaching Fellowship, Canada’s
most prestigious teaching acknowledgment.

