
International Journal of Network Security, Vol.19, No.3, PP.335-339, May 2017 (DOI: 10.6633/IJNS.201703.19(3).02) 335

Behavioral and Security Study of the OHFGC
Hash Function

Ahmed Drissi and Ahmed Asimi
(Corresponding author: Ahmed Drissi)

Department of Mathematics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco

B.P 8106, Agadir, Morocco

(Email: idrissi2006@yahoo.fr)

(Received Mar. 10, 2016; revised and accepted May 22 & June 10, 2016)

Abstract

The designs of several hash functions (SB, FSB, RFSB,
SFSB, OHFGC, · · ·) are based on the error-correcting
codes properties. The hash function based on the classical
Goppa code ”OHFGC” [7] is distinguished by the possi-
bility that an user selects certain parameters to achieve a
level of performance and security corresponds to its needs.
The objective of this article examines the security features
of the hash function ”OHFGC” and its behavior in order
to propose relevant parameters for different user situa-
tions. We also propose both a method to summarize all
parameters in one and a method that links the size of the
hashed to the document.

Keywords: Classical Goppa code, one way hash function,
syndrome decoding

1 Introduction

Several hash functions (SB, FSB, RFSB, SFSB, OHFGC,
· · ·) [2, 3, 4, 9] are based on the error-correcting codes
properties. The hash function based on the classical
Goppa code ”OHFGC” [7] is distinguished by the abil-
ity that an user selects certain parameters to achieve a
level of performance and security corresponds to its needs.
In the next section, we recall the algorithms components
of the OHFGC. Section Three is devoted to the security
study by the design model and the hashed size. In sec-
tion four, we study the performance, the behavior of the
OHFGC and its sensitivity to initial conditions. Our pro-
posed method of choosing a single parameter from the
others is presented in section five. It ends with a conclu-
sion. Table 1 is the notations used in this paper.

Let the finite field F2m = {0, 1, α, α2, · · · , α2m−2} and
its primitive element α which is the root of a primitive
polynomial of the degree m on F2 [10]. There is a biuni-
vocal correspondence between the elements of F2m , as a
F2 vector space its base is (1, α, α2, · · · , αm−1), and the

elements of F2m is defined by:

ϕ : F2m −→ F2m

x =

i=m−1∑
i=0

aiα
i −→ (a0, · · · , am−1)T

2 Recall on the OHFGC Hash
Function

The hash of a message M by OHFGC is according to
the MERKLE and DAMGARAD model [6, 11], in the
heart of this model there is a compression function. The
compression function of the OHFGC [7] is composed of
the following algorithms:

• A compression function CF .

A compression function CF , of the input size n and
of the output r, based on H (a parity check matrix
of a classical Goppa code), and is defined as follows:

CF : F2n → F2r

x → x(1) +Hφ(x)t,

with x = (x(2), x(1)), x(1) ∈ F2n−r , x(2) ∈ F2r and{
φ(x) = x if w(x) ≤ n

2
φ(x) = x⊕ 1n if w(x) � n

2

• The generation of a parity check matrix.

The generation of a parity check matrix (H ∈
Mr,n(F2)) from a primitive element of a field F2m

and an integer n with (2m ≺ n ≺ 2m − 1).

The generation of H is done as follows:

1) Choose an integer n such as 2m ≺ n ≺ 2m − 1 and a
primitive element α of F2m .

2) Calculate (ij)
n
j=1 with ij = nj mod (2m− 1) and t =

E(n
2m).

International Journal of Network Security, Vol.19, No.3, PP.335-339, May 2017 (DOI: 10.6633/IJNS.201703.19(3).02) 336

Table 1: Notations

N The set of integers.
F2 = {0, 1} A finite field of the two elements.

n an integer.
m an integer.

F2m The finite field of 2m elements, with m an integer.
F2m

∗ The multiplicative group of the nonzero elements of F2m .
Mrxn(K) The set of rxn matrices with coefficients in an abelian field K.

F2
n The set of the vectors that components 0 or 1 and their length is n.

1n = (1, 1, ..., 1) The vector of n components equal to 1.
OHFGC One-way Hash function synchronized based on Goppa Codes.

CF Compression function.
E(x) The integer part of x.

t An integer.
Γ(L, xt) A classical Goppa code with L its support and xt its polynomial.

OHFGC(m) One-way Hash function based on Goppa Code with his principle parameter m.
w(x) The sum of the components of x.
⊕ An XOR operation.

3) Calculate K ′ = (ϕ(αi−t−1
j))i=1,··· ,t;j=1,··· ,n.

4) The parity control matrix H is composed of lines in
K ′ without repetition and in the same order. This is
the parity check matrix of Γ(L, xt) in F2 of rxn type.

5) r is the output size of OHFGC and the compression
function CF .

Remark 1. We cannot predict the value of the hashed
size r before the construction of H, this is due to a par-
ticular property of the parity check matrix of a classical
Goppa code. We have to recourse to implementation.

3 The OHFGC Security Study

The security of the entire hash functions depends mainly
on its design model and the hashed size. The first en-
sures resistance against structural attacks and the second
guarantees its resistance to generic attacks. In the two
following paragraphs we discuss these principles in the
case of the OHFGC.

1) The OHFGC security based on design model.

The OHFGC is built according to the model
MERKLE and DAMAGARAD [6, 11]. MERKLE [6]
showed that the security of any hash function is de-
signed according to the model is summarized in com-
pression function of the resistance, constructed with,
at the three security criteria (resistance to pre-image,
second pre-image and collisions).

For hash functions were based on code, including the
OHFGC, the security is easily linked to the difficulty
of the problem by decoding syndromes [4, 8, 12].

The following two issues proved hard [7], provide the
security for the OHFGC.

Given H a matrix of the type rxn of elements of the
F2 and s ∈ F2r .

Find x = (x(2), x(1)) ∈ F2n−rxF2r such as x(1) +
Hxt = s.

Given H a matrix of the type of rxn of elements of
the F2 and s ∈ F2r .

Find x = (x(2), x(1)) ∈ F2n−rxF2r and y =
(y(2), y(1)) ∈ F2n−rxF2r such as x(1) + y(1) =
H(x+ y)t.

2) The OHFGC security based on its hashed size.

Generic attacks [5] (see Table 2) depend on the num-
ber of the possible hashed 2r of the size r. As to
ensure safe of some functions hash, simply increase
the size of hashed (at the moment the sizes 256 and
512 are considered acceptable). For the OHFGC,
we propose to give varying sizes included in inter-
vals depending on its primary endpoint: primitive
polynomial. In addition, it is distinguished by the
possibility of extending these intervals by increasing
the degree of the primitive polynomial. This prop-
erty gives the complexity of the OHFGC for a longer
time.

Table 2: Complexity of the best generic attacks

Generic attack Complexity
Search pre-image 2r

Research of second pre-image 2r

Research of collisions 2
r
2

International Journal of Network Security, Vol.19, No.3, PP.335-339, May 2017 (DOI: 10.6633/IJNS.201703.19(3).02) 337

4 The Behavior Study and the
Performance of OHFGC Func-
tion

The parameters of the OHFGC function are n,m,α (α is
a root of a primitive polynomial p(x) of degree m) [1] and
hashed size r. Tables 3, 4, 5, 6, 7, provides examples of
the parameters that can be used. These examples give us
an idea of the possible choices.

Table 3: The hashed size for m=8

m p(x) n Hashed size r 2m

8 x8 + x5 + x3 + x+ 1 254 4 256
8 x8 + x5 + x3 + x+ 1 253 90 256
8 x8 + x5 + x3 + x+ 1 252 120 256
8 x8 + x5 + x3 + x+ 1 251 16 256
8 x8 + x5 + x3 + x+ 1 250 120 256
8 x8 + x5 + x3 + x+ 1 249 120 256
8 x8 + x5 + x3 + x+ 1 248 120 256
8 x8 + x5 + x3 + x+ 1 247 90 256
8 x8 + x5 + x3 + x+ 1 100 43 256

Table 4: The hashed size for m=9

m p(x) n Hashed size r 2m

9 x9 + x5 + 1 254 4 512
9 x9 + x5 + 1 253 90 512
9 x9 + x5 + 1 510 4 512
9 x9 + x5 + 1 509 251 512
9 x9 + x5 + 1 508 246 512
9 x9 + x5 + 1 507 251 512
9 x9 + x5 + 1 506 252 512
9 x9 + x5 + 1 504 252 512
9 x9 + x5 + 1 503 59 512
9 x9 + x5 + 1 502 60 512
9 x9 + x5 + 1 501 243 512
9 x9 + x5 + 1 500 243 512
9 x9 + x5 + 1 400 198 512
9 x9 + x5 + 1 300 52 512
9 x9 + x5 + 1 200 99 512

These data lead us to seek to have a OHFGC function
of the variable hashed size and summarize the parameters
in one.

1) The behavior study of the OHFGC.

Any modification of the hashed document leads a
variation on the hashed. The variation on the hashed
is measured by the Hamming distance between the
two vectors (hashed). The graphs (Figures 1, 2,
3, 4) represent the Hamming distance between the

Table 5: The hashed size for m=10

m p(x) n Hashed size r 2m

10 x10 + x3 + 1 1022 495 1024
10 x10 + x3 + 1 1021 373 1024
10 x10 + x3 + 1 1020 510 1024
10 x10 + x3 + 1 1019 364 1024
10 x10 + x3 + 1 1018 500 1024
10 x10 + x3 + 1 1017 500 1024
10 x10 + x3 + 1 1016 500 1024
10 x10 + x3 + 1 1015 365 1024
10 x10 + x3 + 1 1014 500 1024
10 x10 + x3 + 1 1013 500 1024
10 x10 + x3 + 1 1012 493 1024
10 x10 + x3 + 1 1011 500 1024
10 x10 + x3 + 1 1000 387 1024
10 x10 + x3 + 1 100 50 1024
10 x10 + x3 + 1 800 400 1024

Table 6: The hashed size for m=11

m p(x) n Hashed size r 2m

11 x11 + x2 + 1 2046 4 2048
11 x11 + x2 + 1 2045 1011 2048
11 x11 + x2 + 1 2044 1012 2048
11 x11 + x2 + 1 2043 1011 2048
11 x11 + x2 + 1 2042 1012 2048
11 x11 + x2 + 1 2041 1012 2048
11 x11 + x2 + 1 2040 1012 2048
11 x11 + x2 + 1 2039 1011 2048
11 x11 + x2 + 1 2038 1012 2048
11 x11 + x2 + 1 2037 1012 2048
11 x11 + x2 + 1 2000 990 2048

Table 7: The hashed size for m=12

m p(x) n Hashed size r 2m

12 x12 + x6 + x4 + x+ 1 4094 4 4096
12 x12 + x6 + x4 + x+ 1 4093 1500 4096
12 x12 + x6 + x4 + x+ 1 4092 1783 4096
12 x12 + x6 + x4 + x+ 1 4091 64 4096
12 x12 + x6 + x4 + x+ 1 4090 1602 4096
12 x12 + x6 + x4 + x+ 1 4089 1767 4096
12 x12 + x6 + x4 + x+ 1 4088 1587 4096
12 x12 + x6 + x4 + x+ 1 4087 16 4096
12 x12 + x6 + x4 + x+ 1 4000 64 4096
12 x12 + x6 + x4 + x+ 1 3000 128 4096
12 x12 + x6 + x4 + x+ 1 409 194 4096

International Journal of Network Security, Vol.19, No.3, PP.335-339, May 2017 (DOI: 10.6633/IJNS.201703.19(3).02) 338

Figure 1: OHFGC (4092, 12,1783)

Figure 2: OHFGC(2040,11,1012)

hashed of the original document and the hashed of
the amended document by a single bit within the first
100 positions in the original document.

In summary, in the four examples of the OHFGC
function, each modification of the document to hash,
by a single bit, causes variation of the hashed by
approximately half the number of bits.

2) The OHFGC performance.

We hashed a file of size 1.01 MB by the OHFGC(n,
m, r) function, Table 8 shows the execution time for the
chosen parameters and which have its performance.

Figure 3: OHFGC (1020, 10,510)

Figure 4: OHFGC (504, 9,252)

Table 8: Performance of the on core (TM) 2 duo CPU
2.00 GHZ

functions Execution time
OHFGC (4092, 12,1783) 10,98200 s
OHFGC (2040, 11,1012) 6,70800 s
OHFGC (1020, 10,510) 3,52600 s
OHFGC (504, 9,252) 1,95000 s

5 Proposal Method for Selecting
Parameters

After the behavioral study of the OHFGC(n,m, r), we
propose to keep a single parameter of the OHFGC(m)
and to link n to the document size to be hashed by the
relation n = (2m+1+document size)mod(2m−2) and by
following the hashed size r will vary from one document
to another in the interval [1,mE(2m−2

2m)].

Explication 1. The hashed size is between 1 and
[1,mE(2m−2

2m)] indeed. The matrix H has at least one
line. we have n = (2m+ 1 + document size)mod(2m− 2)
then 2m ≺ n ≺ 2m − 2. We have also r ≤ mt (since r
is the number of lines in H after reduction) consequently
1 ≤ r ≤ mE(2m−2

2m).

Remark 2. Having the variable hashed size in a range
increase the complexity of generic attacks. We take for
example the following intervals (Table 9).

Table 9: Examples of the intervals document size

m [1,mE(2m−2
2m)]

8 [1,120]
9 [1,252]
10 [1,510]
11 [1,1023]
12 [1,2040]

International Journal of Network Security, Vol.19, No.3, PP.335-339, May 2017 (DOI: 10.6633/IJNS.201703.19(3).02) 339

6 Conclusion

In conclusion, we can announce that our OHFGC(m)
function parameterized by a primitive polynomial of the
degree m and of the variable size from one document to
another, is an efficient and secure function. The flexibil-
ity of choosing the parameter m of the OHFGC depending
on the context of the use ensures that our exclusive func-
tion can last longer as it will be used by different users in
different contexts.

References

[1] A. Asimi and A. Lbekkouri, “Determination of irre-
ducible and primitive polynomials over a binary finite
field,” 2009. (file:///C:/Users/user/Downloads/
asimiprim.pdf)

[2] D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and
N. Sendrier, “SHA-3 proposal: FSB,” Submission to
NIST, pp. 81–85, 2008.

[3] D. Augot, M. Finiasz, and N. Sendrier, “A family of
fast syndrome based cryptographic hash functions,”
in Progress in Cryptology (Mycrypt’05), pp. 64–83,
Springer, 2005.

[4] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe,
“Really fast syndrome-based hashing,” in Progress
in Cryptology (AFRICACRYPT’11), pp. 134–152,
Springer, 2011.

[5] C. Boura, Analyse De Fonctions De Hachage Cryp-
tographiques, Ph.D. Thesis, University Pierre et
Marie Curie-Paris VI, 2012.

[6] I. B. Damgard, “A design principle for hash func-
tions,” in Advances in Cryptology (CRYPTO’89), pp.
416–427, Springer, 1989.

[7] A. Drissi and A. Asimi, “One-way hash function
based on goppa codes ohfgc,” Applied Mathematical
Sciences, vol. 7, no. 143, pp. 7097–7104, 2013.

[8] M. Finiasz, “Nouvelles constructions utilisant des
codes correcteurs derreurs en cryptographie á clef
publique,” These de doctorat, École Polytechnique,
2004.

[9] W. R. Ghanem, M. Shokir, and M. Dessoky, “Defense
Against Selfish PUEA in Cognitive Radio Networks
Based on Hash Message Authentication Code,” In-
ternational Journal of Electronics and Information
Engineering, vol. 4, no. 1, pp. 12–21, 2016.

[10] R. Lidl and H. Niederreiter, Finite Fields (Encyclo-
pedia of Mathematics and Its Applications, vol. 20),
Reading, MA, USA: AddisonWesley, pp. 428–431,
1983.

[11] R. C. Merkle, “One way hash functions and des,” in
Advances in Cryptology (CRYPTO’89), pp. 428–446,
Springer, 1989.

[12] N. Sendrier, Cryptosyst Emes a Cl e Publique Bas
es Sur Les Codes Correcteurs D’erreurs, Habilita-
tion diriger les recherches, Universit Pierre et Marie
Curie, Paris, France (in French), 2002.

Ahmed Drissi received his PhD degree in cryptology
from the Faculty of Science, the University Ibn Zohr
Agadir, Morocco in 2014. His research interests include
Code theory and the Cryptology.

Ahmed Asimi received his PhD degree in Number the-
ory from the University Mohammed V Agdal in 2001. He
is reviewer at the International Journal of Network Secu-
rity (IJNS). His research interest includes Number theory,
Code theory, and Computer Cryptology and Security. He
is a full professor at the Faculty of Science at Agadir since
2008.

