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Abstract

Recently, Wang et al. [IEEE INFOCOM 2011, 820-828],
and Nie et al. [IEEE AINA 2014, 591-596] have proposed
two schemes for secure outsourcing of linear programming
(LP). They did not consider the standard form: minimize
cTx, subject to Ax = b,x ≥ 0. Instead, they studied a
peculiar form: minimize cTx, subject to Ax = b,Bx ≥ 0,
where B is a non-singular matrix. In this note, we stress
that the proposed peculiar form is unsolvable and mean-
ingless. The two schemes have confused the functional
inequality constraints Bx ≥ 0 with the nonnegativity con-
straints x ≥ 0 in the linear programming model. But the
condition x ≥ 0 is indispensable to LP. Thus, both two
schemes failed.

Keywords: Cloud computing, functional inequality con-
straints, linear programming, nonnegativity constraints,
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1 Introduction

Cloud computing makes use of the massive resources of
computing and storage systems via the Internet to effi-
ciently deal with information processing. It supports a
paradigm shift from local to network-centric computing
and network-centric content [10, 17], and benefits scien-
tific and engineering applications, such as data mining,
computational financing, and many other computational
and data-intensive activities [14, 18]. Cloud computing
makes it possible to enable customers with limited compu-
tational resources to outsource large-scale computational
tasks to the cloud, including linear equations (LE), linear
programming (LP), matrix multiplication computation,
and matrix inversion computation.

In 2011, Dreier and Kerschbaum [4] put forth a method
for secure outsourcing of LP. In order to protect the so-
lution x, the Dreier-Kerschbaum scheme uses the affine

transformation

z = Q−1x + r,

where Q is a positive monomial matrix (a monomial ma-
trix contains exactly one non-zero entry per row and col-
umn), and r is a random vector picked by the client. Wang
et al. [15] also presented a scheme for outsourcing of LP
based on the transformation y = M−1(x + r), where M
is a random non-singular matrix and r is a random vec-
tor. In 2014, Nie et al. [11] proposed another scheme for
outsourcing of LP based on the same transformation as
that used in [15].

In 2013, Lei et al. [8] have proposed a scheme for out-
sourcing matrix inversion computation over the field R
of real numbers. After that, they [7] proposed another
scheme for outsourcing matrix multiplication computa-
tion over R. But the verifying equations in [7, 8] do not
hold over R because the computational errors, especially
rounding errors, are not considered carefully. That means
the client cannot check whether the cloud server is cheat-
ing him.

Wang et al. [16] have ever proposed a scheme for out-
sourcing large-scale systems of linear equations to cloud,
which enables a client to securely harness the cloud for
iteratively finding successive approximations to the LE
solution, while keeping both the sensitive input and out-
put of the computation private. Recently, Cao and Liu [1]
pointed out that the Wang et al.’s scheme fails because the
involved homomorphic encryption system [2, 12] is invalid
in the context of the scheme. In 2014, Chen et al. [3] pro-
posed two computation outsourcing schemes for LE and
LP. Both two schemes are insecure because the technique
of masking a vector with a diagonal matrix is vulnerable
to statistical analysis attacks. In 2015, Salinas et al. [13]
proposed a scheme for outsourcing LE, which makes use
of the conjugate gradient method to solve the equivalent
quadratic program in the client-server scenario. Recently,
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Hsien et al. [6, 9] presented two surveys of public auditing
for secure data storage in cloud computing.

In this note we would like to stress that the proposed
peculiar form by Wang et al. [15] and Nie et al. [11] is
unsolvable and meaningless. In fact, they did not consider
the standard form:

Minimize cTx, subject to Ax = b,x ≥ 0.

Instead, they studied a peculiar form:

Minimize cTx, subject to Ax = b,Bx ≥ 0,

where A is an m× n matrix, c is an n× 1 vector, b is an
m × 1 vector, x is an n × 1 vector of variables, and B is
an n× n non-singular matrix.

They have confused the functional inequality con-
straints Bx ≥ 0 with nonnegativity constraints x ≥ 0
in the linear programming model. In nature, the condi-
tion x ≥ 0 is indispensable to LP. Thus, both two schemes
failed. We also review the possible method for secure out-
sourcing of LP, which is due to Dreier and Kerschbaum.

2 Preliminaries

Linear programming has numerous important applica-
tions. Among these allocating resources to activities is
the most common type of application. The standard form
for a linear programming problem can be described as fol-
lows [5]. Select the values for x1, · · · , xn so as to

maximize c1x1 + c2x2 + · · ·+ cnxn,

subject to the restrictions

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

and

x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0.

c1x1 + c2x2 + · · · + cnxn is called the objective function.
The first m constraints are sometimes called functional
constraints. The restrictions xj ≥ 0 are called nonnega-
tivity constraints.

The simplex method, a general procedure for solving
linear programming problems, is based on solving systems
of equations. Therefore, it has to firstly convert the func-
tional inequality constraints to equivalent equality con-
straints. This conversion is accomplished by introducing
slack variables. After the conversion, the original linear
programming model can now be replaced by the equiva-
lent model (called the augmented form).

Using matrices, the standard form for the general linear
programming model becomes

maximize cTx, subject to Ax ≤ b,x ≥ 0

where A is an m× n matrix, c is an n× 1 vector, b is an
m × 1 vector, and x is an n × 1 vector of variables. To
obtain the augmented form of the problem, introduce the
column vector of slack variables xs = (xn+1, · · · , xn+m)T

so that the constraints become

[A, I]

[
x
xs

]
= b and

[
x
xs

]
≥ 0,

where I is the m×m identity matrix, and the null vector
0 now has n+m elements.

Notice that the nonnegativity constraints are left as
inequalities because they are used to determine the leaving
basic variable according to the minimum ratio test.

3 Analysis of Two Schemes for
Outsourcing of LP

3.1 Review

We now take the scheme in [15] as the example to show
the incorrectness of the proposed peculiar form (see page
822 of [15] and page 592 of [11]). In the scheme, there are
two entities, the client and the cloud server. The client
has the original problem

min cTx, s.t. Ax = b, Bx ≥ 0 (1)

where A is an m× n matrix, c is an n× 1 vector, b is an
m × 1 vector, x is an n × 1 vector of variables, B is an
n× n non-singular matrix.

To ensure the privacy of input and output, the client
transforms the original problem into the following prob-
lem

min c′Ty, s.t. A′y = b′, B′y ≥ 0 (2)

where 
A′ = QAM
B′ = (B−PQA)M
b′ = Q(b + Ar)

c′ = γMT c

y = M−1(x + r)

satisfying

|B′| 6= 0,Pb′ = Br,b + Ar 6= 0, γ > 0,

where P is an n×m matrix, Q is a random m×m non-
singular matrix, M is a random n×n non-singular matrix,
and r is an n×1 vector. The client then sends Problem (2)
to the server.

3.2 Analysis

Upon receiving Problem (2), the server has to introduce
the nonnegativity conditions y ≥ 0 into it and solve the
following problem

min c′Ty, s.t. A′y = b′, B′y ≥ 0, y ≥ 0 (3)
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This is because the constraints B′y ≥ 0 should be viewed
as a part of the functional constraints, not the necessary
nonnegativity constraints, unless

B′ = (B−PQA)M

can be rewritten as a diagonal matrix where the entries
on the main diagonal are strictly positive (in such case,
B′y ≥ 0 implies y ≥ 0).

Unfortunately, the solution of the following problem

min cTx, s.t. Ax = b, Bx ≥ 0, x ≥ 0 (4)

cannot be derived from the solution of Problem (3), be-
cause the transformation

y = M−1(x + r), wherex ≥ 0

cannot ensure that y ≥ 0.
The authors of [11, 15] have confused the functional in-

equality constraints Bx ≥ 0 with the nonnegativity con-
straints x ≥ 0. In fact, the proposed peculiar form is
meaningless and unsolvable, unless Bx ≥ 0 can be rewrit-
ten as x ≥ 0.

4 A Possible Method for Secure
Outsourcing of LP

In 2011, Dreier and Kerschbaum [4] have already pre-
sented a possible method for secure outsourcing of LP.
The scheme can be briefly described as follows.

Given the original LP problem

min cTx, s.t.M1x = b1,M2x ≤ b2,x ≥ 0,

the client uses a positive monomial matrix Q (a monomial
matrix contains exactly one non-zero entry per row and
column) to hide c and obtains

min cTQQ−1x,

s.t. M1QQ−1x = b1,

M2QQ−1x ≤ b2,

Q−1x ≥ 0.

He then uses a positive vector r to hide x and obtains

min cTQ(Q−1x + r),

s.t. M1Q(Q−1x + r) = b1 + M1Qr,

M2Q(Q−1x + r) ≤ b2 + M2Qr,

(Q−1x + r) ≥ r.

Setting z = Q−1x + r and taking a strictly positive diag-
onal matrix S (a diagonal matrix where the entries on the
main diagonal are strictly positive), the client obtains

min cTQz,

s.t. M1Qz = b1 + M1Qr,

M2Qz ≤ b2 + M2Qr,

Sz ≥ Sr,

z ≥ 0 (see the above definitions ofQ and r).

Set c′T = cTQ and

M′ =

 M1Q 0
M2Q
−S

A

 , b′ =

 b1 + M1Qr
b2 + M2Qr
−Sr


where A is a permutation matrix representing slack-
variables. Hence, the client can rewrite the program as
follows:

min c′Ts zs, s.t. M′zs = b′, zs ≥ 0,

where c′s is c′ with added zeros for the slack-variables and
zs is the variable vector (z with added slack-variables). To
hide the contents of M′ and b′, the client uses a nonsin-

gular matrix P and with M̂ = PM′ and b̂ = Pb′ and
obtains

min c′Ts zs,

s.t. M̂zs = b̂,

zs ≥ 0.

Finally, the client outsources the above problem to the
cloud server. As

z = Q−1x + r,

the resulting x can be obtained from z by calculating

x = Q(z− r).

Notice that in the Dreier-Kerschbaum scheme the non-
negativity constraints zs ≥ 0 has explicitly specified. But
it is a pity that the authors [11] did not pay more atten-
tions to the specification although they cited the Dreier-
Kerschbaum’s work.

The designing art in the scheme can be depicted as
follows

x
affine transformation−−−−−−−−−−−−−−−−→ z = Q−1x + r

adding slack-variables−−−−−−−−−−−−−−−−−→ zs = (zT , zn+1, · · · , zn+k)T .

Clearly, the cloud server cannot recover x from zs be-
cause Q, r are the session keys randomly picked by the
client.

5 Conclusion

We point out that the procedure for determining the leav-
ing basic variable in the simplex method requires that all
variables are subject to nonnegativity. One must draw
a clear distinction between the functional inequality con-
straints and the nonnegativity constraints.

Notice that deriving the augmented form of a standard
form for a linear programming problem is very easy. It
can be solely done by the client himself even though who
is assumed to be of weak computational capability.
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