
International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 251

Accountability in Cloud Computing by Means of
Chain of Trust

Dipen Contractor, and Dhiren Patel
(Corresponding author: Dipen Contractor)

Computer Engineering Department, NIT Surat, India

(contractor.dipen@gmail.com, dhiren29p@gmail.com)

(Received Nov. 17, 2015; revised and accepted Feb. 11 & Mar. 6, 2016)

Abstract

Cloud computing offers various services in form of infras-
tructure, platform, and software to meet the consumer
requirements. It is radically changing how information
technology services are created, delivered, accessed, and
managed. However, this swift has prompted concerns re-
garding security and privacy due to cloud computing char-
acteristics such as the multi-tenancy, elasticity, and lay-
ered architecture. One of the major challenge is to offer
accountability in cloud services across all the dependen-
cies. When one entity relies on other entities for func-
tioning, it creates a dependency in system and makes it
difficult to sort out the responsible entity among them.
In this paper, we analyze the problem of creating ac-
countable cloud services. We utilize basic functionality
provided by Trusted Computing Group (TCG) in form of
chain of trust (CoT) by securely recording identities (of
entities). We propose a solution that modifies existing
chain of trust to build accountable cloud computing. We
explore dependency relationship in building reliable chain
of trust in cloud and define it for better implementation.

Keywords: Accountability, chain of trust, cloud comput-
ing, dependency

1 Introduction

Cloud computing is an amalgamation of technologies like
service oriented architecture (SOA) and virtualization,
that turns Internet into service delivery infrastructure.
Service providers can lease a set of resources from cloud
infrastructures to provide their software as services in
an economical way without owning physical infrastruc-
tures [3].

Various Cloud service models serve as forms of abstrac-
tion and eliminate the need to deal with internal details of
the operation, management, and state of the underlying
infrastructure [27]. The cloud service provider’s (CSP’s)

computing resources are pooled to serve all consumers
using a multi-tenant model, with different physical and
virtual resources dynamically assigned according to con-
sumer demand. The customer generally has no control
of the location of the allocated resources. As a result,
establishing accountability in distributed and layered ar-
chitecture is an issue. The problem arises when you con-
sider that the application is dependent on functioning of
entities in order to continue processing, and thus a single
entity failure could stop the entire application.

According to Cloud Computing Incidents Database
(CCID), major CSPs have suffered downtime ranging
from a few minutes to a few hours [10, 30]. During a cloud
service disruption, affected customers will not be able to
access the cloud service and in some cases may suffer de-
graded performance. For example, in June 2013, major
cyber-attack was launched on North Korea by South Ko-
rea [20, 23]. The attack compromised an update of ap-
plication hosted at cloud service provider that also hosts
North Korean government websites. Many government
websites were defaced by this attack. According to Trend
Micro [24], website defacement was only the tip of the ice-
berg; sensitive information (of military and government)
was also compromised.

Trusted computing architecture [26] offers a concept
of a chain of trust (CoT). We explore this concept us-
ing few additional operations to model dependencies in
distributed and layered architecture of cloud. Account-
ability of chain is rooted from tamper resistant hardware
and identity (and integrity) of each component running
on a particular platform can be assured. Propagation of
chain follows the principle of measure before loading [26].
It means that the entity that is executed; measures the
identity of the next entity (to be executed), then passes
on the execution to the measured entity. This function-
ality is associated with SElinux, which provides isolation
of execution of any program with LSM (Linux security
module) hooks [11]. According to David et al. [14], any
mechanism that promotes accountability should have fol-
lowing two basic features:



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 252

1.1 Tamper-resistance

A mechanism to promote accountability should deter and
detect any modification or malfunctioning in it [6]. Mech-
anism must be tamper resistant or at least tamper evi-
dent. No entity can bypass assessment operations, and if
it tries, it can be identified easily. Consumer and provider
both can rely on such mechanism and present it as a proof
to any third party (if dispute arises). In fault detection,
one can decide responsibility and act accordingly.

1.2 Privacy and Transparency Balance

Accountability promotes control and transparency in sys-
tem [15]. Keeping record of all entities brings trans-
parency, however; this may help the attacker to launch
specific attack or leads rivals to know insights of cloud.
Maintaining privacy while recording identities will equal-
ize transparency.

Considering dependence relationships in cloud comput-
ing with features mentioned above, we present formaliza-
tion of Chain of Trust applicable with service level agree-
ment or third party certificates.

Rest of this paper is organized as follows: Section 2
discusses cloud computing basics. In Section 3, we discuss
dependencies in cloud scenario. In Section 4, we discuss
chain of trust and its formation in cloud computing. In
Section 5, we present formal representation of chain of
trust with conclusion and references at the end.

2 Background

National Institute of Standards and Technology (NIST)
has defined the Cloud Computing as [12].

A model for enabling convenient, on-demand network
access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released
with minimal management effort or service provider in-
teraction.

2.1 Service Delivery Models

The Service model describes an organization’s scope and
control over the computing environment and characterizes
the level of abstraction for its use. As shown in Figure 1,
three well-known and often used service models are Soft-
ware as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS).

Cloud computing is not restricted to Infrastruc-
ture/Platform/Software as a Service; it can be further
extended to provide a variety of service models. Arm-
brust et al. [4] coin the phrase “X as a Service (XaaS)”;
where X can be anything like data, management, security
etc. that can be provided to consumer as a service.

Figure 1: Cloud computing with layers

2.2 Cloud Actors

The NIST cloud computing reference architecture recog-
nizes the main actors in a cloud ecosystem, their activities
and functions in terms of cloud computing.

Service Consumer: A service consumer is a person or
an organization that uses service from, one or more
cloud service providers.

Cloud service provider (CSP): A cloud service
provider is an organization, or entity responsible
for making a cloud service available to interested
parties.

Service provider (SP): A service providers is an orga-
nization, or entity responsible for building or combin-
ing individual services such as IaaS, PaaS, or SaaS.

Cloud auditor: A cloud auditor is a party that can per-
form independent assessment of services, system op-
erations, performance, and security of the cloud im-
plementation.

Cloud broker: A cloud broker is an entity that manages
the use, and delivery of cloud services, and/or nego-
tiates relationships between cloud service providers
and cloud consumers.

Cloud carrier: A cloud carrier is an intermediary (ac-
tor) that provides connectivity of cloud services from
providers to cloud consumers.

3 Dependencies

Cloud Computing environment consists of a number of
players (actors) that interact in fragile manner, to benefits
for their own and for others. Individual service providers
can independently manage policies, and controls cloud
entities. Cloud computing ecosystems enable highly dy-
namic and effective organizational collaborations. Orga-
nizations (dispersed geographically) can provide services
from different levels of abstraction (e.g. business, archi-
tecture, or programming). These abstractions create de-
pendencies.

Many researchers have found different types of depen-
dencies in cloud computing [16, 28], such as organizational



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 253

Figure 2: Conceptual model for architectural dependen-
cies in cloud computing

and architectural. Organizational dependencies further
classified (based on their existence) as inter-layer and
intra-layer dependencies. According to Siani Pearson et
al. [16] organizational dependencies may arise in situation
where cloud service is composed from different services
provided by different service providers. Due to that, ac-
countability of system is shared with a cloud provider as
well as with individual service providers.

Consumers must understand the scope of system man-
agement and monitoring, including access management,
change management, configuration management, patch
management, and vulnerability management of individ-
ual service providers.

3.1 Architectural Dependencies

We conceptualize the architecture of cloud computing to
elaborate architectural dependencies. We try to intricate
entity, service, domains, and layer for understanding de-
pendence relationship.

As depicted in Figure 2, Domain represents a group-
ing of similar entities inside a layer. E.g. infrastructure
(IaaS) security domain includes physical access control
mechanism for physical resources. Each domain contains
a predefined policy [21] based on that; rules, credentials
or attributes are assigned to each entity. An Entity can
be defined as physical resource (e.g. memory or disk), a
process, or services in cloud computing. Functionality of
an entity depends on other entities as shown in Figure 2.
Entities from different domain communicate through lay-
ers. Entities from different domains and layers can be ac-
counted in a single chain. The dependence relation is the
relation that exits between entities of different domains
across layers. Each domain operates with different policy
so it is essential to handle dependence relation carefully
in chain construction.

3.2 Organizational Dependencies

This section intends to support a discussion of account-
ability aspects of cloud computing by presenting simple
usage scenarios from client’s perspective. Depending on
the deployment model (i.e. private, community, public,
and hybrid); cloud providers, and users interact differ-
ently. Traditionally client server architecture does not
have dependency relationships but in a cloud like environ-
ment, it could be between layers (SaaS, PaaS and IaaS).
Evolving public cloud services are complex and dependent
on providers and provider to provider as connections. In
fact, the SaaS service you receive may be provided by
another IaaS provider [13].

To elaborate the situation, we present highly out-
sourced scenario of cloud computing. We assume a cloud
service provider borrows platform from PaaS provider to
host applications of different software providers. The
PaaS provider might have leased infrastructure from pub-
lic or private IaaS provider. As shown in Figure 3, the
situation is similar to hybrid cloud computing. The main
issue lies in the form of establishing accountability. For
example; if a cloud service consumer complains about
malfunctioning of a particular service, then how cloud
provider will come to know which layer or domain has a
fault?. Assuming that cloud service provider has identi-
fied a particular service provider; Since ownership of the
infrastructure belongs to another service provider, it is
difficult for cloud service provider to investigate without
proof. The solution to this problem lies in securely keep-
ing identities of all the entities involved from different
layers or providers.

4 Accountability in Cloud Com-
puting

Accountability is about defining governance to comply in
a responsible manner with internal and external criteria,
ensuring implementation of appropriate actions, explain-
ing and justifying those actions and remedying any failure
to act properly [15].

Accountability and its different attributes for dis-
tributed dependable systems are briefly studied by Siani
Pearson [16] and other researchers. They have worked in
A4cloud project [1] for promoting accountability in cloud
architectures. Accountability could be divided in two
types; prospective accountability (preventive controls)
and retrospective accountability (detective controls). De-
tective controls for the cloud include secure and trust-
worthy auditing, tracking, reporting, and monitoring of
system.

Main components of this accountability notion are
transparency, responsibility, provision for assurance, and
satisfaction of obligations [14].

For the purposes of this paper, accountable cloud
maintains a tamper-evident record that provides non-
repudiable evidence. Based on this record, a faulty node



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 254

Figure 3: Cloud computing services outsourced from different providers

(whose observable behavior deviates from that of a cor-
rect node) can be detected. Accountable cloud provides
primitives for cloud carriers to validate the identities of
entities associated in cloud.

Figure 4: Certificate issued to TPM from privacy CA

We setup a chain of trust that could be fully embedded
in to each layer. This implies that the consumer needs to
know all information regarding identities of entities in-
volved in service orchestration [29]. To provide tamper
evidence feature, we also maintain original hash of indi-
vidual modules as they load to identify mismatched entity.
Individual service providers are accountable for their own
layer activity. Hence, consumers should understand the
dependency of their application on all services and assess
risks pertaining to third-party service providers. CSPs
have been reluctant to share information relating to plat-
form security using the argument that it could provide
insights to hackers. However, consumers should demand
transparency from CSPs and seek information necessary
to perform risk assessment and ongoing security manage-
ment. Before utilizing services from any CSP, consumer
can ask about all identities of all the entities and service
providers involved in that services.

5 Chain of Trust

As explained earlier, we need to keep track of all the en-
tities that are involved in service creation at each layer.
A chain of trust is a term used to describe the sequence
of hashes that incorporates different entities that spawns
over multiple layers in a cloud [19].

The first element of the chain (Root) should be reli-
able and it can vouch for its accountability (e.g. IBM’s
4758 secure processor [8] and a tamper-evident hardware
chip [22]). During the initialization of platform, Root en-
tity is loaded first, and then other modules are loaded.
The Root records identity (in terms of hash) of the sec-
ond element after booting of the platform and continue to
build the chain. The second element then records iden-
tity of the third element in the chain within the layer.
As the second element is already assessed, it assesses the
third element’s integrity, and so on. These hashes will
be securely sent to consumer (or trusted third party) for
verification. With availability of actual hash from original
manufacturer and reference database [25], one can easily
identify mismatched entity.

Chain of trust concept technically relies on TCG
(Trusted Computing Group) architecture for recording
hash and reporting of it using cryptographic primitives.
To this effect, TCG specifies a hardware module, the
Trusted Platform Module (TPM) [18]. TPM is a tam-
per resistant piece of cryptographic hardware built onto
the system board. It implements primitive cryptographic
functions, using which more complex features can be de-
rived.

The manufacturer embeds a unique master keypair



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 255

named as endorsement key (EK) during the creation of
TPM chip. The private part of EK never leaves out of
the chip. It also embeds mechanism [2] for a certificate
on the public key-part of EK, which vouches for the au-
thenticity of TPM. This certificate allows a third party
or consumer to verify that messages signed with this EK
come from a genuine TPM. Moreover, it allows a third
party to communicate over a trusted channel with the
TPM. However, due to privacy concerns, the EK is not
used directly but an intermediary attestation identity key
(AIK) is used, which is wrapped in a certificate, signed by
an externally trusted certificate authority (CA) (as shown
in Figure 4).

Verification of CoT requires certificate given by any
trusted third party; in our case Privacy CA. This certifi-
cate assures involvement of accountable service provider.
Moreover, a certificate Certij(AIKj , rj) also contains
hash of root entity rj , so that it can be verified. Storing
hash of entities will require large and secure storage. TPM
comes with a limited number of registers named plat-
form configuration registers (PCRs). Also at application
layer, two lists are maintained viz, stored measurement
list (SML) and integrity measurement list (IML) [9]. To
permit a TPM version to perform in the cloud, specifica-
tions have been generated for a virtual TPM (vTPM) [17]
that provides software instances of TPMs for each virtual
machine. As shown in Figure 7, a chain is built across lay-
ers with a single root (as in a private cloud deployment en-
vironment). In other case, highly outsourced cloud would
have individual root for each layer, so we name it as multi-
rooted chains. Working of CoT is explained with few ba-
sic operations as discussed below, which combines various
functionalities of TPM.

5.1 Extend Operation

As defined in reference architecture of TPM [26], extend
operation maintains the final single hash of a platform. It
discards individual hashes after adding to a single value..
Verifier has to derive all the steps and try to get that sin-
gle hash value. As explained in previous section, hashes
of individual identities are sequentially stored. For identi-
fication and verification of dependencies in CoT, we have
changed traditional extend operation as shown in Fig-
ure 5. CoT also maintains original hash of the modules
of entities as evidence and provided when explicitly asked
by the consumer or third party. Extend operation stores
actual hash and extended hash of individual entities to
different list. For operating on PCRs, only TPM can
write or extend it. SML and IML are utilized for stor-
ing hashes encrypted with AIK at application level and
sent whenever they are required.

CoT comprises identities of entities and actors involved
in cloud service life cycle with privacy. Let us define entity
set E = {e1, e2, e3, e4, . . . , en}. Hash of the each entity
has one to one mapping to set H = {h1, h2, h3, . . . , hn}.
Each entity belongs to a particular domain from set
D = {d1, d2, d3, . . . , dn}. Each domain operates at a par-

Figure 5: Extend operation in CoT: Our proposal

ticular layer of set L = {l1, l2, l3, . . . , ln}. Mainly cloud
standard architecture is based on SPI (software, plat-
form, infrastructure) framework [31] and that contains
only three layers. To define dependence relationship, we
need to define dependency in cloud. We begin with plat-
form configuration registers. Root represents a first ele-
ment in chain whose hash r1 is recorded in initial register.

PCR0 = Root = SHA1(r1 ‖ 0160).

Subsequently;

PCR1 = CoTe1 = SHA1(h1 ‖ SHA1(r1 ‖ 0160))

PCR2 = CoTe2

= SHA1(h2 ‖ SHA1(h1 ‖ SHA1(r1 ‖ 0))

= SHA1(h2 ‖ CoTe1).

5.2 Dependency Operation

Dependency is expressed by both extending and hashing,
symbolized by dependency operator Π. The functionality
of entity e2 is dependent on e1, and it can be represented
as

Depe2 = (e2Πe1) = SHA1(h2 ‖ CoTe1).

In similar way, individual domain’s CoT can be formal-
ized as

CoTd1 = Depen = (enΠen−1Πen−2Π · · ·Πe1).

As described earlier, multiple domains are contained in
a layer, so layer’s dependency in a private cloud scenario
(single rooted chain) can be shown as

CoTl1 = Depdn = (dnΠdn−1Πdn−2Π · · ·Πd1).

5.2.1 Dependency Relation

As explained in architectural dependency section, depen-
dency relation exits between two different layers (or do-
mains) which may be owned by different service providers
and therefore there exits multi-rooted CoT.

Typically, for cloud service provider, it can be repre-
sented as,

CoTcsp = Depln

= (lnΠln−1Πln−2Π . . .Πl1)

= (lSaaSΠlPaaSΠlIaaS).



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 256

Figure 6: Transfer of CoT

Cloud service provider sends an individual layer wise
CoT with its certificate which is used for authenticity
and verifiability. Formally, certificate of a layer can be
Certilj = AIKj , rj where j is a number of that layer.

Here, AIK proves identity of a service provider and r
(hash of the root) can be used for verification of CoT while
maintaining privacy. The extend operation preserves the
order of dependency; an entity cannot pretend to occur
after a certain event as ordering is automatic. Numbers
of PCRs are limited on TPM chip so SML will be uti-
lized afterward. Hashing reduces the amount of data that
needs to be stored, and extended in order to detect ma-
nipulation.

5.2.2 Verification of CoT

Verification of CoT will be done at consumer side, but it
may be delegated to third party based on computational
powers. TPM works well with asymmetric key cryptog-
raphy; while keeping in mind adversary present on the
network. Initially, consumer sends a certificate contain-
ing public key PUCOS and nonce Nc (Nonce is used to
ensure freshness of certain responses), given by trusted
third party CA. Then CSP will reply all individual CoT
of layers (denoted by j) with its certificates, encrypted
with consumer’s public key.

Our formal model creates a single chain of trust that
can accommodate different roots and handle dependence
relationships. Verification of this chain can be done by
trusted third party or even at consumer side (with the
help of reference manifest database) [25]. These reference
hashes are collected from the original source: i.e. the
software and hardware manufacturers. Each certificate
provides identity of a service provider. After matching all
the hashes of CoT, Root hash notifies the completeness
of the chain to consumer.

5.2.3 Implementation of CoT in Cloud Comput-
ing

In our experiments; we use host machine with Ubuntu
12.04 and Xen 4.3.0 hypervisor [5] based cloud test bed
with various domains. Domain-0 is the highest privi-
leged domain; consumer operates at individual domain-U.
Without enabling TC (TPM chip from BIOS), we initi-
ated domain-0, then we compiled a user kernel and from
which we created our Master domain for TC. We then en-
abled TC from BIOS. We kept minimal functionality and

Figure 7: Cloud computing and CoT

less interfaces for this domain. Now, from this domain,
we can initiate individual domain CoT. Each domain-
U receives a vTPM instance for integrity measurement.
Consumer can ask for complete CoT (from infrastruc-
ture entity resources to SaaS resources).Therefore, this
CoT approach is useful to both parties viz; CSP and con-
sumers. CSP can rectify a fault and decide responsibility,
and end-user can present it as a proof for remediation
[15].Currently we have implemented it using basic script-
ing language i.e. python. From our previous work [7],
we utilized communication mechanism to get individual
chain from different domains. Actual PCR values and its
corresponding CoT values are shown in Figure 8.

6 Conclusion

Everything as a service concept of cloud environment al-
lows easier utilization of resources of different providers
but it makes difficult to establish accountability of low-
level entities. We propose chain of trust (CoT) as one
solution to provide recording, transferring, and verifying
identities of entities. Offering transparency while main-
taining privacy is achieved with CoT. Verifying individ-
ual terms will lead to tamper evidence property of CoT.
Secure generation of keys and certificate denote tamper
resistance nature of system and thus CoT could be an ac-
ceptable solution to manage and verify architectural and
organization dependencies present in cloud computing.



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 257

Figure 8: PCR values and its corresponding domain CoTs



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 258

References

[1] A4Cloud, The Cloud Accountability Project, July 3,
2016. (http://www.a4cloud.eu/)

[2] I. M. Abbadi, “Clouds trust anchors,” in IEEE
11th International Conference on Trust, Security and
Privacy in Computing and Communications (Trust-
Com’12), pp. 127–136, 2012.

[3] M. Almorsy, J. Grundy, and I. Müller, “An analysis
of the cloud computing security problem,” in Pro-
ceedings of APSEC Cloud Workshop, pp. 8–18, 2010.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, and I. Stoica, “A view of cloud computing,”
Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield,
“Xen and the art of virtualization,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 164–
177, 2003.

[6] D. Catteddu, M. Felici, G. Hogben, A. Holcroft, et
al., “Towards a model of accountability for cloud
computing services,” in International Workshop on
Trustworthiness, Accountability and Forensics in the
Cloud (TAFC’13), pp. 1–10, 2013.

[7] D. Contractor and D. Patel, “Analyzing trustworthi-
ness of virtual machines in data-intensive cloud com-
puting,” in 2014 Twelfth Annual International Con-
ference on Privacy, Security and Trust (PST’04),
pp. 403–406, July 2014.

[8] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L.
Van Doorn, and S. W. Smith, “Building the IBM
4758 secure coprocessor,” Computer Journal, vol. 34,
no. 10, pp. 57–66, 2001.

[9] IMA, Integrity Measurement Architecture (Linux
IMA), July 3, 2016. (http://sourceforge.net/
apps/mediawiki/linux-ima/index.php)

[10] T. Mather, S. Kumaraswamy, and S. Latif, Cloud
Security and Privacy: An Enterprise Perspective on
Risks and Compliance. O’Reilly Media, 2009.

[11] F. Mayer, D. Caplan, and K. MacMillan, SELinux by
Example: Using Security Enhanced Linux. Pearson
Education, 2006.

[12] P. Mell and T. Grance, “The NIST definition of
cloud computing,” National Institute of Standards
and Technology, vol. 53, no. 6, pp. 50, 2009.

[13] A. Nakhimovsky, T. Myers, Google, Amazon, and
Beyond: Creating and Consuming Web Services,
Springer, 2004.

[14] D. Nunez, C. Fernandez-Gago, S. Pearson, and M.
Felici, “A metamodel for measuring accountability
attributes in the cloud,” in IEEE 5th International
Conference on Cloud Computing Technology and Sci-
ence (CloudCom), vol. 1, pp. 355–362, 2013.

[15] S. Pearson, “Towards accountability in the cloud,”
IEEE Internet Computing, vol. 15, no. 4, pp. 64–69,
2011.

[16] S. Pearson, V. Tountopoulos, D. Catteddu, et al.,
“Accountability for cloud and other future Internet
services,” in IEEE 4th International Conference on
Cloud Computing Technology and Science (Cloud-
Com’12), pp. 629–632, 2012.

[17] R. Perez, R. Sailer, and L. van Doorn, “vTPM: Vir-
tualizing the trusted platform module,” in Proceed-
ings of the 15th Conference on USENIX Security
Symposium, pp. 305–320, 2006.

[18] V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock,
and C. Vishik, “TPM virtualization: Building a gen-
eral framework,” in Trusted Computing, pp. 43–56,
2008.

[19] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger,
and P. McDaniel, “Seeding clouds with trust an-
chors,” in Proceedings of the 2010 ACM workshop
on Cloud Computing Security Workshop, pp. 43–46,
2010.

[20] J. Singh, “Cyber-attacks in cloud computing: A case
study,” International Journal of Electronics and In-
formation Engineering, vol. 1, no. 2, pp. 78–87, 2014.

[21] S. B. Sitkin and N. L. Roth, “Explaining the limited
effectiveness of legalistic remedies for trust/distrust,”
Organization Science Journal, vol. 4, no. 3, pp. 367–
392, 1993.

[22] S. W. Smith, Trusted Computing Platforms: Design
and Applications, vol. 2, Springer, 2005.

[23] I. Srivastava, South Korea Cyber-attacked on Korean
War Anniversary, June 29, 2013.
(http://timesofindia.indiatimes.com/world/
rest-of-world/South-Korea-cyber-attacked-on

-Korean-war-anniversary/articleshow/

20833246.cms?referral=PM)

[24] Trend Micro, Trend Micro Investigates June 25
Cyber Attacks in South Korea, July 1, 2013.
(http://www.trendmicro.com/vinfo/us/
threat-encyclopedia/web-attack/124/

trend-micro-investigates-june-25-cyber\

\-attacks-in-south-korea)

[25] Trusted Computing Group, TCG Infrastruc-
ture Working Group Reference Manifest (RM)
Schema Specification, Version 1.0, Nov. 16, 2006.
(https://www.trustedcomputinggroup.org/
wp-content/uploads/IWG-Reference_Manifest_

Schema_Specification_v1.pdf)

[26] Trusted Computing Group, TCG Software Stack
(TSS) Specification, Version 1.2, July 3, 2016.
(http://www.trustedcomputinggroup.org/
tcg-software-stack-tss-specification/)

[27] Z. Wang, Y. Lu, G. Sun, “A policy-based de-
duplication mechanism for securing cloud storage,”
International Journal of Electronics and Information
Engineering, vol. 2, no. 2, pp. 70–79, 2015.

[28] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic,
“Accountability as a service for the cloud,” in 2010
IEEE International Conference on Services Comput-
ing (SCC’10), pp. 81–88, 2010.



International Journal of Network Security, Vol.19, No.2, PP.251-259, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).10) 259

[29] A. R. Yumerefendi and J. S. Chase, “Trust but verify:
accountability for network services,” in Proceedings
of the 11th Workshop on ACM SIGOPS European
Workshop, pp. 37, 2004.

[30] M. Zareapoor, P. Shamsolmoali, and M. A. Alam,
“Establishing safe cloud: Ensuring data security and
performance evaluation,” International Journal of
Electronics and Information Engineering, vol. 1, no.
2, pp. 88–99, 2014.

[31] L. J. Zhang and Q. Zhou, “CCOA: Cloud comput-
ing open architecture,” in IEEE International Con-
ference on Web Services (ICWS’09), pp. 607–616,
2009.

Dipen Contractor Dipen contractor received his B.E
degree in computer engineering in 2008 & M.E. degree in
computer science and engineering in 2011. He is pursuing
Ph.D. in computer engineering at National Institute of
Technology Surat. His research interests include Cloud
computing, Information security, Trust management,
Remote attestation, and programming with Trusted
Platform Module.

Dhiren Patel Dr.Dhiren Patel is a professor of computer
engineering at National Institute of Technology Surat. He
carries more than 20 years of experience in Academics,
Research & Development of Secure ICT Infrastructure
Design. His research interests cover Security and Encryp-
tion Systems, Cloud Computing and IoT, Identity and
Access Management, e-Voting, Advanced Computer Ar-
chitecture etc. Besides numerous journal and conference
articles, Prof. Dhiren has authored a book ”Information
Security: Theory & Practice” published by Prentice Hall
of India (PHI) in 2008. He is actively involved in Indo-
UK, Indo-Norway, and Indo-Japan security research col-
laborations.


