
International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 193

A Secure Communication Model for Expressive
Access Control Using CP-ABE

Jayam Modi, Manav Prajapati, Abhinav Sharma, Ravi Ojha, and Devesh Jinwala
(Corresponding author: Devesh Jinwala)

Computer Engineering Department, S V National Institute of Technology, India

Computer Engineering Department, S V National Institute of Technology, India

Ichchhanath, SURAT-395 007, Gujarat, India

(Email: dcjinwala@gmail.com)

(Received June 13, 2015; revised and accepted Jan. 11 & Mar. 3, 2016)

Abstract

Attribute Based Encryption is a technique that associates
user’s attributes with keys. Data is encrypted using a spe-
cific policy and only those keys whose attributes satisfy
that policy are allowed to decrypt it. In this paper, we
propose a secure communication model based on Cipher-
text Policy Attribute Based Encryption (CP-ABE). This
model allows Role Based Access Control for documents
without the use of a secure server to enforce the access
policies. We propose a scalable implementation for key re-
vocation and user attribute updation with improved flex-
ibility. Our method uses a key revoke-list and key-version
to achieve this. We show the implementation using the
CP-ABE toolkit, an open source library that implements
the CP-ABE scheme. We also show how confidential-
ity, integrity and source authentication is achieved in our
model.

Keywords: Access rights, CP-ABE, expressive access con-
trol, secure communication model

1 Introduction

Information has been a valuable resource ever since hu-
mans began to communicate and like all other resources
it needs to be protected. With the advent of the Internet
and computing technology, digital means for exchanging
information gained importance. Millions of people con-
nected to Internet exchange information of potentially
crucial nature. The methods used to secure this trans-
fer of information have evolved over the years.

In this era of Internet, it is inevitable for various ser-
vice providers like Google and Facebook to store sensitive
personal information of users on servers. Considering the
variety and importance of this information, there is a risk
of an attack on these servers. This leads to concerns about
compromise of personal data. To avoid such a compro-

mise, the data can be stored in an encrypted form on the
servers. This ensures that the privacy of the data remains
intact. The task of selective sharing of information and
access control now becomes a big challenge. Traditionally,
a trusted server used to be employed in order to enforce
access control but the data must be stored in unencrypted
form on such a server. Public Key Infrastructure can be
used to enforce access control over encrypted data by cre-
ating a trust model as discussed in [10]. In a PKI based
model, when a user wants to selectively share the data,
he must encrypt it with the public keys of each and every
intended recipient. This is not a feasible option in many
scenarios. When data is to be shared with a large group
of users or the intended target audience determined by
some attributes is not fully known, the PKI based model
cannot be used. Another problem with this model is that
the users higher in the access hierarchy have to store a
large number of keys. This problem was solved to some
extent using the method proposed in [1].

In [17], the idea of Attribute Based Encryption was in-
troduced. Several schemes were proposed to achieve fine
grained access control [9]. These scheme overcame the
limitations faced by the model proposed in [10]. In an
ABE based model, the data can be stored in an encrypted
form on a server. This breakthrough lead to further de-
velopments in Role Based Access Control(RBAC) using
ABE. Consequently, CP-ABE and KP-ABE encryption
schemes were developed. A survey of these ABE schemes
and access structures and their comparisons in cloud envi-
ronment has been given in [12]. When the attributes are
at different levels, the CP-HABE, which is a hierarchical
CP-ABE scheme proposed in [14] proves to be useful.

1.1 Our Contribution

In this paper, we propose a secure communication model
that can be used for selective sharing in an unsecure stor-
age server environment. We achieve this by using CP-

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 194

ABE. Our model provides a scalable method for revoking
keys and updating attributes of keys. We use a similar
key revocation technique as in [6]. We attempt to address
some issues in key revocation and dynamic attribute up-
dation. Our scalable key revocation mechanism allows to
effectively revoke a user’s key immediately without much
overhead by using revoke list. But the revocation pro-
cess is completed lazily for a large batch of revoked keys.
Our proposed mechanism provides complete freedom of
choosing when to perform this lazy completion. It can
be done when a threshold number of revocations have ac-
cumulated or any arbitrarily set time period has elapsed.
We enable key attribute updation using the revocation
mechanism itself. In our scheme, all key attributes can be
assumed to be dynamic in nature. Also, our scheme does
not require changing the public and master key pair of
CP-ABE. We discuss the working of the proposed model
in Section 3. We also provide pseudocodes in Section 4
to show clearly how our model can be implemented. We
show how our model ensures confidentiality, integrity and
authentication under some attack scenarios in Section 5.

2 Theoretical Background and
Related Work

2.1 Theoretical Background

Cryptography is used to secure the communication be-
tween two parties. The earliest form of cryptography was
secret key cryptography, which involved the use of a se-
cret key that was known to both the parties before the
exchange of data. As the size of networks and organiza-
tions grew bigger, the quadratic growth in the number
of keys required for secure communication lead to serious
concerns. Thus, when the idea of public key encryption
was proposed by Diffie and Helman in [7], it was promptly
accepted and as a result many different public key encryp-
tion schemes were developed.

A few emerging applications like cloud services often
demand that the access to data should be governed by a
policy wherein only specific individuals are granted access
to the data. In such cases, there is a need for a crypto-
graphic scheme that allows only those users whose at-
tributes satisfies a decryption policy to decrypt the data.
In Public Key cryptography, there is a single Private Key
that can decrypt the data encrypted by the corresponding
Public Key. Attribute Based Encryption [17] was intro-
duced as an attempt to overcome this limitation.

Shamir in [18] defined a technique known as Identity
Based Encryption that enabled any pair of users to com-
municate securely and to verify each other’s signatures
without exchanging private or public keys, without keep-
ing directories and without using the services of a third
party. In this scheme, the public key of the receiver is

a combination of the receiver’s attributes and it is com-
puted by the sender with the help of publicly known at-
tributes of the receiver. This eliminated the need for key
exchange and therefore prevented man-in-the-middle at-
tacks as opposed to public-key schemes. The private key
of a user is generated by the key generation center after
proper identity check of the user.

Attribute-based encryption (ABE) was an approach
proposed by Sahai and Waters in [17]. In traditional
public-key cryptography, a message is encrypted for a
specific receiver using the receiver’s public-key. But in
large organizations, often there is requirement of a tech-
nique that allows members to specify access policies for
restricting data to groups of intended recipients. This
can be achieved by using a trusted server to store data.
The server can check certification of a user before grant-
ing him access to files. A major drawback of this method
is the security of the server. ABE aims to achieve se-
cure selective sharing while removing the dependency on
servers with access control mechanisms. The access con-
trol logic is embedded in the encryption technique and
thus encrypted data remains confidential even if the stor-
age server is untrusted.

There are two types of Attribute Based Encryption,
namely Key-Policy Attribute Based Encryption (KP-
ABE) and Ciphertext-Policy Attribute Based Encryption
(CP-ABE). [9] provides a scheme to implement KP-ABE.
In KP-ABE, ciphertexts are associated with sets of de-
scriptive attributes, and users’ keys are associated with
policies. In key-policy ABE, the encryptor exerts no con-
trol over who has access to the data it encrypts, except by
it’s choice of descriptive attributes for the data. Rather,
it must trust that the key-issuer issues the appropriate
keys to grant or deny access to the appropriate users.

CP-ABE was first presented in [3]. In CP-ABE, a
user’s private key is associated with a set of attributes
and the access policy is specified in the ciphertext. A
user can decrypt an encrypted text if and only if his at-
tributes satisfy the policy specified in the ciphertext. The
policy can be built using conjunctions, disjunctions and
(k, n) threshold gates. The private keys can be obtained
by a user even after the data has been encrypted. Thus
the actual set of users that can decrypt a ciphertext is
not needed to be known at the time of encryption. This
allows the incorporation of future users who may obtain a
key that will satisfy the policy of the encrypted text and
hence be able to read the data.

All the above efforts are shown to be special cases of
Functional Encryption [4]. The term Functional Encryp-
tion was first seen in [11], disguised in the form of predi-
cate encryption. Functional encryption is a scheme which
allows a user to gain knowledge about a specific function
of the encrypted text. The data is encrypted with a pub-
lic key pk . A master secret key is held by a trusted
authority. It can generate secret key skf corresponding
to function f . The user having skf can compute the func-

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 195

tion f on any encryption of x. There are four phases in a
functional encryption system - setup, keygen, encryption
and decryption. The setup phase generates a public key
and the master secret key. Keygen phase generates the se-
cret key skk. Encryption phase encrypts a message x with
the public key. Decryption phase enables user to compute
F (k, x) from the encrypted message. Functional encryp-
tion systems have a wide range of applications today like
spam filtering on encrypted mail, expressive access control
and mining on large datasets.

2.2 Related Work

The issue of user key revocation in CP-ABE is not ad-
dressed often in the proposed schemes. Majority of the
authors who propose schemes focus on proving the secu-
rity of their scheme. Piretti, Traynor and McDaniel in [15]
roughly addressed the issue of attribute revocation for the
first time. They suggested that each attribute should be
valid only within a particular time-frame. After the va-
lidity of the attribute expires, the system administrator
will release latest version of the attribute. The user up-
dates his key based on the latest available version of the
attribute. To revoke an attribute, the latest version of
the attribute will not be released. The major problem
with this solution is that of time synchronization between
the system administrator and the user. To overcome this
shortcoming, Bethencourt in [3] proposed that every key
of a user should have an expiration date. A user will be
able to decrypt the message only if the date of encryption
of message is less than the expiration date of the user’s
key.

In [20], it is proposed that whenever an attribute needs
to be revoked, the key generation authority will redefine
the master key components of the revoked attributes. The
corresponding public key components are also redefined.
The user’s secret keys need to be updated for data access.
The new data is encrypted using the new public key. To
perform these updates, proxy re-key’s [13] are generated
by the authority. Using these re-key’s, the proxy servers
can update the existing ciphertexts on the storage sever
as well as the user’s secret keys. This maintains back-
ward compatibility in the system. This method transfers
the load of the authorities onto the proxy servers leading
to better performance than the methods proposed in [3]
and [15].

Chen and Gerla in [5] proposed a fading function based
method for implementing dynamic attributes. In their
method, the concept of a fading function, F(x,y) was in-
troduced. This function takes two parameters as input,
the attribute name and the time at which its value is to
be determined. It then outputs a unique value based on
these two parameters. If the sender sends a message at
time t1, the receiver will be able to decrypt that message
at time t2 if and only if F(attribute, t1) = F(attribute,
t2).

Weber in [19] proposed a method for incorporating
the type of dynamic attributes whose values can be ex-
pressed in a list. He proposed that each attribute should
be converted into a group element and then those ele-
ments should be translated into appropriate components
of the private key. These components are transferred to
the users device and stored in a secured compartment
of the device that cannot be accessed by the user. All
these attributes are bound together using a common ran-
dom factor during the key generation process resulting in
blinding of each key component. This in turn also blinds
the ciphertext when the attributes are used in it. During
the decryption process, the same common random factor
is used to unblind the ciphertext. The malicious users
cannot combine the components of the different keys in
the same manner as an authentic user and thus the de-
cryption algorithm will fail.

Chuha, Roy and Stoev in [6] use the concept of negative
attributes to allow immediate key revocation, and the re-
vocation process is completed lazily after a fixed time slice
expires. To handle key attribute update, they propose
that two separate access tress should be used for encryp-
tion process. One tree is for static attributes and other
is for dynamic attributes. The tree of dynamic attributes
is connected via a dummy node in the main access tree.
After encryption using the main tree, the part of cipher-
text that corresponds to dynamic attributes is separated
out and re-encrypted using the access tree for dynamic
attributes. The receiver applies original key to remaining
part of ciphertext and obtains a key from the local key
server for decrypting the dynamic attributes part of the
cipher-text. Our model uses a similar technique but al-
lows more flexibility and efficiency for key revocation by
providing a mechanism to complete the revocation process
after an arbitrary time limit or upon reaching a threshold
number of revocations. Also, our scheme uses a simple
technique for key attribute updation using the revoca-
tion mechanism. This allows making all key attributes
dynamic.

Doshi in [8] proposed that for updating an attribute,
the user should return his old secret key and the CA will
give the user the new secret key to the user after verifying
the new value of the attribute. The keygen algorithm
takes old values from old secret key. An algorithm for
using this technique in semi-trusted environment is also
discussed in it.

3 Proposed Secure Communica-
tion Model

We propose a Secure Communication Model that allows
expressive access control without the use of a secure stor-
age server. The model has been developed using the
cpabe-toolkit [2].

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 196

The CP-ABE toolkit provides four command line tools
to perform the various operations of the CP-ABE scheme
proposed in [3]. They can be used manually or can be
invoked by larger systems. The four command line tools
are:

• cpabe-setup - generates a public key and a master
secret key;

• cpabe-keygen - generates a private key with a given
set of attributes;

• cpabe-enc - encrypts a file according to a policy,
which is an expression in terms of attributes;

• cpabe-dec - decrypts a file using a private key.

Our proposed model provides the following functional-
ities:

• Sending file to intended audience - A user can specify
the attributes of the intended audience while sending
a file. The model ensures that only the intended
audience will be able to view the file.

• Receive files - A user can receive the files intended
for him.

• Revoke access rights of some user - This is necessary
if some user is no longer a part of the network and
should not have access to the network’s files.

• Update access rights of some user - This is necessary
if the role of some user in the network changes.

Figure 1 shows a use case diagram of the model.

3.1 Components of the Proposed Model

The model has three entities, namely the Repository, Key
Generation Center (KGC) and the users. The Repository
and the KGC interact with the users to perform several
tasks.

The Repository is a central server accessible to all. It
is assumed that this server is not secure. The repository
stores the encrypted files sent by all users, along with the
timestamp when each file was uploaded at server, send-
ing user’s id and the minimum Key Version required
to decrypt the file. The Repository has a Public-Private
key pair. All data sent from repository is signed using its
Public key.

The Key Generation Center (KGC) performs the tasks
related to key management. It stores the user’s at-
tributes and performs tasks such as initial key distri-
bution, key revocation, distributing Revoke List and
Active Key Version, key renewal and updating user’s
attributes. The KGC has a Public-Private key pair. All
data sent from KGC is signed using its Public key.

Each user has access to KGC and Repository. They
have their own private key (i.e. cp-abe secret key), KGC

and Repository’s public key and the CP-ABE public key
with them.

A private key in CP-ABE is associated with a set of
attributes. In our proposed model, each private key has
two types of attributes - User Attributes and Essential
Attributes. User Attributes describe the user. E.g. de-
partment, name, experience, salary, etc. Essential At-
tributes are used to implement the model features. They
are key id and Key Version. For a key to decrypt a
file, in addition to satisfying the constraints on user at-
tributes, it also needs to satisfy the constraints on essen-
tial attributes.

Each user has a user id which uniquely identifies him
within the organization. Each key has a key id that
uniquely identifies a key. At any given point of time,
each user id may be associated with only one key id.
Each key id is uniquely associated with a fixed set of
attributes. So, the key id associated with a user has to
be changed if the attributes of the user are changed.

At any point of time, the whole system will have
an Active Key Version. It is a positive integer that
is used for implementing the key revocation feature of
the model. It starts from 1 and can only be incre-
mented. Every key also has a Key Version as one of
its attributes which may be less than or equal to the
Active Key Version.

3.2 The Proposed Model

When a new user enters the organization, he is authenti-
cated at the KGC. His attributes are stored in a database
at the KGC and a private key is provided to him. The
public key of KGC and Repository is also provided to
him. It is assumed that these functions are done through
direct physical contact. A user must maintain the secrecy
of his private key.

Further updates in the private key don’t require direct
physical contact as the KGC can simply encrypt the up-
dated private key using cp-abe with policy such that only
the concerned user may be able to decrypt it.

3.2.1 Send a File

For encrypting a file, the following data is required:

1) cp-abe Public key - It is publicly available and each
user has a local copy on their own machine.

2) Revoke List - This is the list of key ids
which have been revoked since the last
Active Key Version update.

3) Active Key Version - This is the
Active Key Version as discussed in Section
3.1.

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 197

Figure 1 Use case diagram for the communication model

The Revoke List and Active Key Version are
stored at the KGC and are fetched every time a file needs
to be encrypted.

The following steps are followed when a user uploads
a file to repository:

1) User obtains the current Revoke List, and
Active Key Version from the KGC.

2) User select the policy file. The policy file contains a
boolean formula that describes the User Attributes
of the intended audience.

3) User generates the augmented policy file. In this
step, the boolean formula in the policy file is aug-
mented with constraints on the essential attributes.
It includes the following:

• minimum Key Version required to decrypt
the file, which is the Active Key Version.
E.g. If the Active Key Version is 2, then
version >= 2 is used;

• list of revoked key ids. The key id that tries
to decrypt the file should not be any of these.
E.g. If the Revoke List is (4, 6, 10), then
(key id != 4 and key id != 6 and key id !=
10) is used.

Thus, the (augmented policy) = (original policy)
and (constraints on essential attributes). E.g. (aug-
mented policy) = (original policy) and ((key id !=
4 and key id != 6 and key id != 10) and version
>= 2).

4) User encrypts the selected file using cp-abe with pol-
icy as the augmented policy generated.

5) User sends ’Upload Request’ to Repository along
with his user id.

6) Repository generates Asymmetric Key Pair (K1, K2)
such that K1 and K2 are inverse of each other as done
in RSA [16].

7) Repository encrypts K1 using cp-abe with policy
such that only the concerned user’s key be able to
decrypt it.

8) Repository signs the encrypted data with his Public
Key and sends it to the user.

9) User receives signed and encrypted K1 from Reposi-
tory. He verifies the signature and decrypts K1.

10) User signs the encrypted file that he wants to upload
with K1.

11) User uploads the signed and encrypted file along
with the minimum Key Version required to de-
crypt (which is the Active Key Version at the
time of encryption) to the repository.

12) Repository receives the file, verifies the signature us-
ing K2 and stores it along with the upload timestamp
and the minimum Key Version required to decrypt
the file.

It should be noted that a key with Key Version less
than the Active Key Version at the time of encryp-
tion of a file will not be able to decrypt the file. Such a
key should be renewed before trying to use it to decrypt
a file.

3.2.2 File Refresh

The user may periodically check the repository for new
files intended for him. The following steps are performed
in this operation:

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 198

1) User sends the File Refresh Request to the repository.
In the request, the user also sends the timestamp of
the last file refresh done by him.

2) Repository selects all files that were uploaded after
the given timestamp along with the upload times-
tamp and the minimum Key Version requirement
of each file. Repository signs this data with his Pub-
lic Key and sends the signed data to user.

3) User receives data from Repository and verifies the
signature.

4) If the maximum of Key Version requirement of all
received files is greater than the Key Version of
the key possessed by the user, then he requests for
an updated key from the KGC otherwise the next
step is skipped.

5) (skipped if not required) The KGC generates another
private key using cp-abe module for the user using
his attributes (that were stored at KGC) and the
Active Key Version of system. KGC encrypts
the new key using cp-abe with policy such that only
the concerned user be able to decrypt it. KGC signs
the encrypted key with its Public Key and sends it
to user. If the key id of the user has been revoked,
the KGC doesn’t return any new key.

6) (skipped if key id was revoked) User receives the
signed and encrypted updated key from KGC. He
verifies the signature and decrypts it with his old
key.

7) User tries to decrypt each file using cp-abe module
one by one using his private key (which may or may
not be updated in the above step).

8) User deletes the files that couldn’t be decrypted and
can view those that were successfully decrypted.

3.2.3 Key Revocation

The KGC receives request from the administration for
revoking a certain key. The following steps are performed
at the KGC:

• KGC adds the key id to the Revoke List. Now
whenever, a user requests the Revoke List, this
new list will be sent. So, when the user encrypts the
file, the augmented policy will make sure that the
none of the revoked keys can decrypt the file.

• It marks the key id in its database.

This is a temporary fix for revoking keys as it is not
scalable. The size of the Revoke List will keep on in-
creasing and lead to increased overhead. When a certain
number of revoke keys have accumulated OR a fixed time
period has passed, the following process will be done by
KGC:

1) KGC increments the Active Key Version of the
system.

2) KGC sets the Revoke List to empty.

Now, whenever a file is encrypted, the new
Active Key Version will be used to construct
the augmented policy. As the existing keys have old
Key Version, they will not be able to decrypt it. The
users may then ask the KGC for key renewal. They
will be given their new keys, which will have the same
attributes as their old key, but with the Key Version
incremented. The revoked users marked in the database
will not be issued new keys.

Note that the user can still use his revoked key to de-
crypt only those messages that had been encrypted before
his key was revoked.

3.2.4 Update Attributes

When the KGC receives request to update attributes of a
particular user, the following steps are performed:

1) KGC finds the current key id associated with the
concerned user and revokes that key.

2) KGC generates a key with a new key id, new at-
tributes and Active Key Version.

3) KGC encrypts the updated key using cp-abe with
policy such that only the old key of concerned user
be able to decrypt it.

4) KGC signs the encrypted updated key. KGC sends
the data to user.

5) User receives the data, verifies the signature and de-
crypts the updated key using his old key.

Note that even after receiving his new updated key, the
user still possesses his old key. This old key can be used
to decrypt only those messages that had been encrypted
before his attributes were updated.

4 Pseudocodes

This model has been implemented using socket program-
ming. There are three modules - User, Repository and
KGC. The KGC and Repository modules run on a server
and service requests sent by User module. The user can
invoke commands for sending files or doing a file refresh
through his modules. Calls are made to the CP-ABE
toolkit to perform various functions.

The list of functions, invoked in various pseudocodes,
along with their description is as follows:

• cpabe-keygen(masterkey, public key, at-
tributes) - CP-ABE module function that returns
a private key associated with given attributes.

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 199

• cpabe-enc(public key, plain text, policy) - CP-
ABE module function that returns encrypted file
with given policy.

• cpabe-dec(public key, private key, en-
crypted text) - CP-ABE module function that
returns decrypted file if the provided key satisfies
the policy.

• request(request type, receiver, ...) - sends the
specified request to the receiver with optional argu-
ments and returns response from receiver.

• response(data) - sends data in response to the cur-
rent request.

• send(data, receiver) - sends the data to specified
receiver.

• receive(data) - receives data from current connec-
tion.

• verify(attributes) - verify if the passed attributes
are correct.

• new keyID() - generates a new unique key id.

The following notations are obeyed in the pseudocodes:

• (msg)k1 - msg encrypted using Public Key cryp-
tography with key k1. Denotes encryption, if k1 is
public key. Denotes signing, if k1 is private key.

• {msg}pol - msg encrypting using cpabe-enc with
policy pol.

4.1 Repository Module

1) Response to File Refresh Request - This proce-
dure in Pseudocode 1 is invoked while receiving new
files.

Pseudocode 1 Response to Refresh Request

Input:

last refresh TS : Timestamp of last file refresh done

by user

1: procedure Process Request(’Refresh Messages’,

last refresh TS)

2: pkt ← ’ ’

3: for all msg whose TS is > last refresh TS do

4: pkt← pkt + (msg, sender user id, upload TS,

key version required)

5: end for

6: signed pkt ← (pkt)REPO priv key

7: Response (signed pkt)

8: end procedure

2) Response to Upload Request - This procedure
in Pseudocode 2 is invoked when the user sends File
Upload Request.

Pseudocode 2 Response to Upload Request

Input:

user id : user id of the user who sent Upload Request

1: procedure Process Request(’Upload Request’,

user id)

2: (K1, K2) ← generate Asymmetric key pair

3: sender key id ← key id map[user id]

4: policy ← ’key id=sender key id’

5: {K1}policy ← cpabe-enc (pub key, K1, policy)

6: signed msg1 ← ({K1}policy)REPO priv key

7: Response (signed msg1)

8: Receive (signed msg2)

9: {msg}policy ← (signed msg2)K2

10: store ({msg}policy, Current TS, Key version,

user id)

11: end procedure

4.2 User Module

1) Essential Constraints Generation - This proce-
dure in Pseudocode 3 is invoked by send file method.

Pseudocode 3 Essential constraints generation

Input:

Revoke List : List of key id that are revoked

AKV : Active Key Version of the system

1: procedure Essential constraints gen (Re-

voke List, AKV):

2: essential constraints ← ’ ’

3: for all x in Revoke List: do

4: essential constraints← essential constraints +

’and key id ! =x’

5: end for

6: essential constraints ← essential constraints +

’and key version >= AKV’

7: return essential constraints

8: end procedure

2) Send File - This procedure in Pseudocode 4 is in-
voked when the user decides to upload file to Repos-
itory.

3) File Refresh - This procedure in Pseudocode 5 is
invoked when the user wants to receive new files.

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 200

Pseudocode 4 Send file

Input:

msg : File that is to be upload to Repository

policy : Boolean formula denoting which users the file

is intended for

1: procedure Send File(msg, policy):

2: signed pkt1 ← Request (’Revoke List and

Active Key Version’ , KGC)

3: (Revoke List, AKV) ← (signed pkt1)KGC pub key

4: essential constraints ← Essential constraints gen

(Revoke List, AKV)

5: augmented policy ← ’(’ + policy + ’)’ +

essential constraints

6: {msg}augmented policy ← cpabe-enc (pub key, msg,

augmented policy)

7: signed pkt2 ← Request (’Upload Request’,

REPO, user id)

8: {K1}key id=sender id ← (signed-pkt2)REPO pub key

9: K1 ← cpabe-dec (pub key, priv key, {K1}
key id=sender id)

10: signed msg ← ({msg}augmented policy)K1

11: send (signed msg, REPO)

12: end procedure

4.3 KGC Module

1) Response to Revoke List and Ac-
tive Key Version request - This procedure in
Pseudocode 6 is invoked when the user sends Request
for Revoke List and Active Key Version.

2) Response to Attribute Updation - This proce-
dure in Pseudocode 7 is invoked when KGC has to
update attributes of the user.

3) Response to Update key version Request -
This procedure in Pseudocode 8 is invoked when the
user sends Update key version request.

4) Response to revoke user key request - This pro-
cedure in Pseudocode 9 is invoked when a user’s key
is to be revoked.

5 Security Analysis of the Model

The KGC, Repository and user exchange information be-
tween them over an unsecure network to achieve the func-
tionalities described in Section 3.2. We justify that our
model ensures Confidentiality, Integrity and Authentica-
tion of the information exchanged.

Any message that the KGC or Repository send to a
user is signed by their private key. Signing ensures in-

Pseudocode 5 File Refresh

Input:

CKV : Current Key Version of key possessed by the

invoking user.

last refresh TS : Timestamp of last File Refresh done

by the user.

1: procedure Refresh(CKV, last refresh TS):

2: signed pkt ← Request (’Refresh Messages’,

REPO, last refresh TS)

3: Message list ← (signed pkt)REPO pub key

4: Required version← Max (version requirement of

all files)

5: if Required version > CKV then

6: signed pkt ← Request (’Update Key Version’,

KGC, user id)

7: {new key}key id = requester key id ←
(signed pkt)KGC pub key

8: new key ← cpabe-dec (pub key, priv key,

{new key}key id=requester key id)

9: end if

10: for all enc msg in Message list do

11: (msg, status) ← cpabe-dec (pub key, priv key,

enc msg)

12: if status = fail then

13: delete msg

14: else

15: show msg

16: end if

17: end for

18: last refresh TS ← Max (TS of all files)

19: end procedure

Pseudocode 6 Response to Revoke List and AKV re-
quest

1: procedure Process Request(’ Revoke List and

Active Key Version ’):

2: msg ← List of revoked user + AKV

3: signed msg ← (msg)KGC priv key

4: Response (signed msg)

5: end procedure

tegrity of information as well as authentication of its
source. This signing process takes place in two cases-

• When the user requests Revoke List and
Active Key Version from KGC, the KGC
signs the packet containing this data before sending
it to the user.

• When the user requests Repository for File Refresh,

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 201

Pseudocode 7 Response to attribute updation

Input:

user id : user id of User whose attributes have to be

updated

new attributes : Updated attributes of the user

1: procedure Process Request(’Attribute upda-

tion’, user id, new attribute)

2: verify(new attributes)

3: attributes[user id] ← new attributes

4: old key id ← key id map[user id]

5: Request(’Revoke Key’, KGC, old key id)

6: key id map[user id] ← new keyID()

7: new key ← cpabe-keygen (master key, pub key,

attributes[user id] + key id map[user id] + AKV)

8: policy ← ’key id = old key id’

9: {new key}key id = old key id ← cpabe-enc

(pub key, new key, policy)

10: signed-pkt ← ({new key}key id = old key id)

KGC priv key

11: Response(signed-pkt)

12: end procedure

Pseudocode 8 Response to update key version request

Input:

user id : user id of user who sends the Update

Key Version Request

AKV : Active Key Version of the system

1: procedure Process Request (’Update

Key Version’, user id):

2: requester key id ← key id map[user id]

3: new key ← cpabe-keygen (master key, pub key,

attributes[user id] + requester key id + AKV)

4: policy ← ’key id = requester key id’

5: {new key}policy ← cpabe-enc (pub key, new key,

policy)

6: signed pkt ← ({new key}policy)KGC priv key

7: Response(signed-pkt)

8: end procedure

the Repository signs all the files before sending them
to the user.

When confidential data is sent to any user, encryption
is done using cpabe with appropriate policy. This ensures
confidentiality of information. This takes place in two
scenarios.

• When the KGC sends a renewed key to user, the
KGC encrypts the renewed key using cpabe-enc. The
policy specified is such that only the intended user’s

Pseudocode 9 Response to revoke user key request

Input:

key id : key id of key that has to be revoked

Revoke List : List of key ids that have been revoked

Threshold : Maximum allowed size of Revoke List

1: procedure Process Request(’Revoke Key’,

key id):

2: Revoke List ← Revoke List + key id

3: if Size (Revoke List) > Threshold then

4: AKV ← AKV + 1

5: Revoke List ← φ

6: end if

7: end procedure

old key can decrypt it.

• When a user has to send files to other users, the user
encrypts data using cpabe-enc before uploading it to
Repository.

When a user wants to send any data to the Repository,
an asymmetric key pair is generated by KGC when user
wants to upload a file. Integrity of file is achieved because
the file is signed by user before sending to Repository.
Authentication is achieved because only the user who sent
the ’Upload Request’ will be able to decrypt K1 which
is to be used to sign the data. Confidentiality of file is
ensured because the file is encrypted using cp-abe before
signing. This approach avoids the need for public-private
key pair for each user.

5.1 Attack Scenarios

Figure 2 describes the messages that are exchanged be-
tween various entities. We provide an analysis of how
our communication model remains secure in the case of
attacks carried out by an adversary on each of these mes-
sages.

1) Adversary fabricates Message 1 and sends it to KGC
- In this case, there is no issue because Revoke List
and Active Key Version are public information
and our model doesn’t require them to be held se-
cretly.

2) Adversary intercepts Message 2, modifies it and
sends the corrupted message instead - The attack will
be curbed as Message 2 is signed by the KGC. If the
adversary tries to carry out such an attack, the user
will detect that the message has lost its integrity.

3) Adversary poses as a legitimate user U1 and tries to
upload a harmful file to Repository (Message 3) -
An authentication mechanism is used by the Repos-
itory to verify the uploader. The Repository sends a
message containing a key using which the uploader

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 202

Figure 2 Communication between different entities

is supposed to sign his file. The Repository encrypts
this message using cpabe-enc with policy such that
only U1’s key be able to decrypt it. Therefore, the
adversary will not be able to extract the key from
KGC’s message and won’t be able to sign the file.

4) A legitimate user perpetrates an insider attack by
uploading a harmful file to Repository - Due to the
authentication mechanism employed by the Reposi-
tory, the uploader of each file is known. After detec-
tion of the harmful file, this information can be used
to take action against the user.

5) Adversary fabricates Message 4 posing as a legitimate
user U1 - The KGC encrypts the renewed key using
cpabe-enc and a policy such that only U1’s old key
may be able to decrypt it. So, the adversary will
not be able to decrypt the Message 5 from KGC.
Therefore, the adversary will not be able to obtain
U1’s key. The only thing that this attack succeeds in
doing is generating a futile response from KGC.

6) Adversary intercepts Message 5 from KGC to find
out a user’s key - Due to the same reason given in
previous attack scenario, this attack won’t work.

7) Adversary intercepts Message 7 that was being sent
to user U1 OR Adversary sends Message 6 to Repos-
itory - The files uploaded on the Repository are en-
crypted using cpabe-enc. The Repository sends these
encrypted files in response to a Message 6. The ad-
versary will not be able to decrypt any files.

8) Adversary intercepts Message 7 that was being sent

to user U1 and sends different files instead to U1 -
The KGC signs the files before sending them to U1.
Due to this, if an attacker tries to carry out such an
attack U1 will detect that the files received by him
are not from Repository.

In our proposed model, we rely on the security of the
CP-ABE toolkit for the encryption and decryption pro-
cess. We assume that data encrypted using the toolkit
remains confidential. The toolkit implements the scheme
proposed in [3].

6 Conclusion and Future Scope

The secure communication model proposed by us allows
users to selectively share files among other users. It is
more secure than using a server to enforce access control
because in the event the Repository is compromised, our
model ensures that the files would remain confidential. A
user’s key can be revoked, which effectively revokes all
access rights of the user. The user’s attributes can also
be updated, which effectively changes his access rights.

As compared to a PKI-based approach, our model has
the following advantages:

1) There is no need for managing multiple public keys
using Certificate Authorities. There are only 3 pub-
lic keys in our model: cpabe public key, KGC and
Repository public key. These are available to all since
the initial key distribution.

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 203

2) For sending file to N users only one encryption is
required as opposed to N encryptions in case of PKI.

3) The sender can simply specify the attributes of the
intended audience. As opposed to PKI, he doesn’t
need to know exactly who constitutes the intended
audience. Due to this property of our model, there
is no need for each User to store the list of all users
along with their attributes.

These advantages hold as long as there exists a secure
and scalable implementation of KGC.

The following are a few areas which can be worked
upon to make our proposed model more secure and flexi-
ble:

1) Provide a mechanism to change the Master key-
Public key pair of CP-ABE in case the Master key
is compromised or a brute force attack is success-
ful in discovering the Master key. It is a challenge
to incorporate this functionality while still allowing
operations on files encrypted before the Master key
change.

2) Formalize the mechanism to change public-private
key pair of KGC and Repository.

References

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution
to a problem of access control in a hierarchy,” ACM
Transactions on Computer Systems, vol. 1, no. 3,
pp. 239–248, 1983.

[2] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-
Policy Attribute-Based Encryption, Mar. 24, 2011.
(http://acsc.cs.utexas.edu/cpabe/)

[3] J. Bethencourt, A. Sahai, B. Waters, “Ciphertext-
policy attribute-based encryption,” in IEEE Sympo-
sium on Security and Privacy (SP’07), pp. 321–334,
2007.

[4] D. Boneh, A. Sahai, and B. Waters, “Functional en-
cryption: Definitions and challenges,” in Theory of
Cryptography, pp. 253–273, Springer, 2011.

[5] N. Chen and M. Gerla, “Dynamic attributes design
in attribute based encryption,” in Annual Conference
of ITA (ACITA), University of Maryland, MD, 2009.

[6] M. Chuah, S. Roy, and I. Stoev, “Secure descriptive
message dissemination in dtns,” in Proceedings of the
Second ACM International Workshop on Mobile Op-
portunistic Networking, pp. 79–85, 2010.

[7] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644–654, 1976.

[8] N. Doshi and D. Jinwala, “Updating attribute in
cp-abe: A new approach.,” IACR Cryptology ePrint
Archive, vol. 2012, p. 496, 2012.

[9] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access
control of encrypted data,” in Proceedings of the 13th
ACM Conference on Computer and Communications
Security, pp. 89–98, 2006.

[10] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y.
Ravid, “Access control meets public key infrastruc-
ture, or: Assigning roles to strangers,” in Proceed-
ings of IEEE Symposium on Security and Privacy
(S&P’00), pp. 2–14, 2000.

[11] J. Katz, A. Sahai, and B. Waters, “Predicate encryp-
tion supporting disjunctions, polynomial equations,
and inner products,” in Advances in Cryptology (EU-
ROCRYPT’08), pp. 146–162, Springer, 2008.

[12] C. C. Lee, P. S. Chung, and M. S. Hwang, “A survey
on attribute-based encryption schemes of access con-
trol in cloud environments,” International Journal of
Network Security, vol. 15, no. 4, pp. 231–240, 2013.

[13] X. Liang, Z. Cao, H. Lin, and J. Shao, “Attribute
based proxy re-encryption with delegating capabil-
ities,” in Proceedings of the 4th ACM International
Symposium on Information, Computer, and Commu-
nications Security, pp. 276–286, 2009.

[14] X. Liu, J. Ma, J. Xiong, and G. Liu, “Ciphertext-
policy hierarchical attribute-based encryption for
fine-grained access control of encryption data,” Inter-
national Journal of Network Security, vol. 16, no. 6,
pp. 437–443, 2014.

[15] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters,
“Secure attribute-based systems,” in Proceedings of
the 13th ACM Conference on Computer and Com-
munications Security, pp. 99–112, 2006.

[16] R. L. Rivest, A. Shamir, and L. M. Adleman, Cryp-
tographic Communications System and Method, US
Patent 4,405,829, Sep. 20, 1983.

[17] A. Sahai and B. Waters, “Fuzzy identity-based
encryption,” in Advances in Cryptology (EURO-
CRYPT’05), pp. 457–473, Springer, 2005.

[18] A. Shamir, “Identity-based cryptosystems and signa-
ture schemes,” in Advances in Cryptology, pp. 47–53,
Springer, 1985.

[19] S. G. Weber, “Securing first response coordination
with dynamic attribute-based encryption,” in IEEE
World Congress on Privacy, Security, Trust and
the Management of e-Business (CONGRESS’09),
pp. 58–69, 2009.

[20] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute
based data sharing with attribute revocation,” in
Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security,
pp. 261–270, 2010.

Jayam Modi, Manav Prajapati, Abhinav Sharma
and Ravi Ojha obtained their B.Tech. in Computer En-
gineering in 2015 from Sardar Vallabhbhai National Insti-
tute of Technology, Surat, India. The work discussed here
was a team effort towards the fulfilment of their B.Tech.

http://acsc.cs.utexas.edu/cpabe/

International Journal of Network Security, Vol.19, No.2, PP.193-204, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).04) 204

degree and was achieved under the guidance of Dr. De-
vesh Jinwala.

Devesh Jinwala is a Professor at Sardar Vallabhbhai
National Institute of Technology, Surat, India. His ma-
jor areas of interest are Information and Communica-
tions Security, Privacy and Cryptography, Security in Re-
source Constrained Devices, Software Requirements Spec-
ifications, Load Distribution and Failure Tolerance in
Distributed Systems and Algorithms and Computational
Complexity.

	Introduction
	Our Contribution

	Theoretical Background and Related Work
	Theoretical Background
	Related Work

	Proposed Secure Communication Model
	Components of the Proposed Model
	The Proposed Model
	Send a File
	File Refresh
	Key Revocation
	Update Attributes

	Pseudocodes
	Repository Module
	User Module
	KGC Module

	Security Analysis of the Model
	Attack Scenarios

	Conclusion and Future Scope

